Final answer:
Scientific notation is essential in handling large numbers in physics. The gravitational constant is crucial for calculating gravitational forces. Understanding Earth's mass involves utilizing known values such as its radius and the gravitational constant.
Explanation:
Scientific Notation: Scientific notation is commonly used in astronomy and other sciences to represent very large or small numbers efficiently.
Gravitational Constant: The gravitational constant, denoted by G, is a fundamental constant used to calculate gravitational forces.
Earth's Mass Calculation: Earth's mass, represented as 5.97 x 10²⁴ kg, can be calculated using known values like its radius and the gravitational constant.
Consider a positive charge Q and a point B twice as far away from Q as point A. What is the ratio of the electric field strength at point A to the electric field strength at point B
Answer:
[tex]\frac{E_{A}}{E_{B}}=4[/tex]
Explanation:
The electric field is defined as the electric force per unit of charge, this is:
[tex]E=\frac{F}{q}[/tex].
The electric force can be obtained through Coulomb's law, which states that the electric force between to electrically charged particles is inversely proportional to the square of the distance between them and directly proportional to the product of their charges. The electric force can be expressed as
[tex]F=\frac{kQq}{r^{2}}[/tex].
By substitution we get that
[tex]E=\frac{kQq}{qr^{2}}\\\\E=\frac{kQ}{r^{2}}[/tex]
Now, letting [tex]E_{A}[/tex] be the electric field at point A, letting [tex]E_{B}[/tex] be the electric field at point B, and letting R be the distance from the charge to A:
[tex]E_{A}=\frac{kQ}{R^{2}}\\\\E_{B}=\frac{kQ}{(2R)^{2}}[/tex].
The ration of the electric fields is
[tex]\frac{E_{A}}{E_{B}}=\frac{\frac{kQ}{R^{2}}}{\frac{kQ}{(2R)^{2}}}\\\\\frac{E_{A}}{E_{B}}=\frac{\frac{1}{R^{2}}}{\frac{1}{(2R)^{2}}}\\\\\frac{E_{A}}{E_{B}}=\frac{\frac{1}{R^{2}}}{\frac{1}{(4)R^{2}}}\\\\\\\frac{E_{A}}{E_{B}}=\frac{1}{\frac{1}{(4)}}\\\\\frac{E_{A}}{E_{B}}=4[/tex]
This means that at half the distance, the electric field is four times stronger.
The ratio of the electric field strength at point A to the electric field strength at point B is 4.
Given to us
A positive charge Q and a point B is twice as far away from Q as point A.
What is Coulomb's Law?According to Coulomb's law, the electric force between two electrical charges particles is inversely proportional to the square of the distance between them and it is directly proportional to the product of their charges.
[tex]F =\dfrac{k\ Q_1 Q_2}{r^2}[/tex]
We know that an electric field is written as,
[tex]F= EQ[/tex]
Merging the two-equation we get
[tex]E = \dfrac{k Q}{r^2}[/tex]
What is the ratio of the electric field?As we can write
[tex]\dfrac{E_A}{E_B} = \dfrac{\dfrac{k Q}{R^2}}{\dfrac{k Q}{(2R)^2}}[/tex]
[tex]\dfrac{E_A}{E_B} = 4[/tex]
Hence, the ratio of the electric field strength at point A to the electric field strength at point B is 4.
Learn more about Coulomb's Law:
https://brainly.com/question/506926
A plastic sphere floats in water with 50.0% of its volume submerged. This same sphere floats in glycerin with 40.0% of its volume submerged. Determine the densities of:a. The glycerin b. The sphere.
Explanation:
weight of water displaced=weight of sphere,
Since, plastic sphere floats in water with 50.0% of its volume submerged
so, water=2 sphere,
so sphere's density = 1/2 of water's density
Now, weight of glycerin displaced=weight of sphere,
Also given This same sphere floats in glycerin with 40.0% of its volume submerged.
so glycerin =2.5 sphere,
so sphere's density = .4 of glycerin's = 1/2 of water's.
So glycerin = 1.25 water
Density of glycerin is 5/ 4 times of water density.
Density of sphere is 1/2 times of water density.
Density is defined as ratio of mass to volume , that is density is the amount of mass per unit of volume.
Since, plastic sphere floats in water with 50% of its volume submerged.
So, Density of sphere = [tex]\frac{1}{2} *water density[/tex]
Since, same sphere floats in glycerin with 40% of its volume submerged.
So, Density of sphere = [tex]\frac{40}{100}*Glycerin density=\frac{2}{5}*glycerindensity[/tex]
Density of Glycerin = 5/2 of sphere density
Density of glycerin = [tex]\frac{5}{2}*\frac{1}{2}*waterdensity[/tex]
Density of glycerin = [tex]\frac{5}{4} *waterdensity[/tex]
Learn more:
https://brainly.com/question/13427880
A batter hits a softball over a third baseman's head with speed v0 and at an angle ?from the horizontal. Immediately after the ball is hit, the third baseman turns and runs at a constant velocity v=7.000m/s, for a time t=2.000s. He then catches the ball at the same height at which it left the bat. The third baseman was initiallyl=18.00m from home plate (the location where the ball was hit from).
a) Find v0. Use g=9.807m/s2 for the magnitude of the acceleration due to gravity. Assume that there is no air resistance.
b) Find the angle ? in degrees.
c)Find the components vxand vy of the ball’s velocity, v, 0.100 s before the ball is caught.
d)Find the vector components x and y of the ball’s position, r, 0.100 s before the ball is caught.
Answer:
a) The magnitude of the initial velocity is 18.77 m/s.
b) The launching angle is 31.51°.
c) The horizontal component of the velocity at t = 1.900 s is 16.00 m/s.
The vertical component of the velocity vector at t = 1.900 s is -8.823 m/s.
d) The horizontal component of the position vector at time t = 1.900 s is 30.40 m.
The vertical component of the position vector at time t = 1.900 s is 0.9375 m
Explanation:
Hi there!
The equations for the velocity and position vector of the ball are the following:
r = (x0 + v0 · t · cos α, y0 + v0 · t · sin α + 1/2 · g · t²)
v = (v0 · cos α, v0 · sin α + g · t)
Where:
r = position vector at time t
x0 = initial horizontal position.
v0 = initial velocity.
t = time.
α = launching angle.
y0 = initial vertical position.
g = acceleration due to gravity.
v = velocity vector at time t.
a and b) First, let´s find the range of the ball, i.e. the horizontal distance traveled by the ball.
The distance traveled by the baseman can be calculated with this equation:
x = v · t
Where:
x =traveled distance.
v = velocity.
t = time
Then:
x = 7.000 m/s · 2.000 s
x = 14.00 m
The baseman runs 14.00 m. Since he was located 18.00 from the home plate, the horizontal distance traveled by the ball is (14.00 m + 18.00 m) 32.00 m.
If we locate the origin of the frame of reference at the point where the ball is hit, the initial vertical and horizontal positions (x0 and y0) are zero. Since the ball is caught at the same height at which it left the bat, the vertical position of the ball when it is caught is 0.
So, the position vector of the ball at the time when it is caught (2 s after it is hit), is the following:
r = (32.00 m, 0 m)
Using the equations of the x- and y-components of the position vector, we can obtain the initial velocity and the angle:
rx = x0 + v0 · t · cos α (x0 = 0)
ry = y0 + v0 · t · sin α + 1/2 · g · t² (y0 = 0)
rx = 32.00 m = v0 · 2.000 s · cos α
ry = 0 m = v0 · 2.000 s · sin α - 1/2 · 9.807 m/s² · (2.000 s)²
Solving the first equation for v0:
16.00 m/s / cos α = v0
And replacing v0 in the second equation:
0 m = 32 m · sin α / cos α - 1/2 · 9.807 m/s² · (2.000 s)²
1/2 · 9.807 m/s² · (2.000 s)² = 32 m · tan α
1/2 · 9.807 m/s² · (2.000 s)² / 32 m = tan α
α = 31.51°
b) The launching angle is 31.51°
The initial velocity will be:
16.00 m/s / cos α = v0
16.00 m/s / cos (31.51°) = v0
v0 = 18.77 m/s
a) The magnitude of the initial velocity is 18.77 m/s.
c) Let´s use the equation of the velocity vector:
v = (v0 · cos α, v0 · sin α + g · t)
vx = v0 · cos α
vy = v0 · sin α + g · t
The horizontal component of the velocity does not depend on time (neglecting air resistance).
Then:
vx = 18.77 m/s · cos (31.51°)
vx = 16.00 m/s
0.100 s before the ball is caught, the horizontal component of the velocity is 16.00 m/s.
Now let´s calculate the vertical component of the velocity:
vy = 18.77 m/s · sin (31.51°) - 9.807 m/s² · 1.900 s
vy = -8.823 m/s
The vertical component of the velocity vector at t = 1.900 s is -8.823 m/s.
d) Let´s use the same equations we have used in part a).
x = x0 + v0 · t · cos α
x = 18.77 m/s · 1.900 s · cos (31.51°)
x = 30.40 m
The horizontal component of the position vector at time t = 1.900 s is 30.40 m
y = y0 + v0 · t · sin α + 1/2 · g · t²
y = 18.77 m/s · 1.900 s · sin (31.51°) - 1/2 · 9.807 m/s² · (1.900 s)²
y = 0.9375 m
The vertical component of the position vector at time t = 1.900 s is 0.9375 m
A block lies on a plane raised an angle theta from the horizontal. Threeforces act upon the block: F_w_vec, the force of gravity;F_n_vec, the normal force;and F_f_vec, the force of friction. Thecoefficient of friction is large enough to prevent the block fromsliding .Part A)Because the block is not moving, the sum ofthe y components of the forces acting on the block must bezero. Find an expression for the sum of the y componentsof the forces acting on the block, using coordinate system b.Express your answer in terms of someor all of the variables F_n, F_f, F_w, and theta.\sum f_y=Part B)Because the block is not moving, the sum ofthe x components of the forces acting on the block must bezero. Find an expression for the sum of the x componentsof the forces acting on the block, using coordinate system b.Express your answer in terms of someor all of the variables F_n, F_f, F_w, and theta.\sum F_{x}=0Part C)To find the magnitude of the normal force,you must express F_n in terms of F_w since F_f is an unknown. Using the equations youfound in the two previous parts, find an expression for F_n involving F_w and theta but not F_f.F_n =Diagram:In the diagram, a block is placed on an inclined surface with its both x and y components
Answer:
A) N = W cos θ , B) fr = W sin θ, C) N = W cos θ
Explanation:
To find the required expressions, let's make a free body diagram of the block, see attached.
In the problem of inclined plane the reference system used the x axis is parallel to the plane and the y axis is perpendicular
In this reference system the only force that we must decompose is the body weight F_w = W) for this we use trigonometry
Note that the angle of the plane is equal to the angle between the axis and the weight, therefore
sin θ = [tex]W_{x}[/tex] / W
cos θ = [tex]W_{y}[/tex] / W
[tex]W_{x}[/tex] = W sin θ
[tex]W_{y}[/tex] = W cos θ
B) Let us write Newton's second law for each axis, in this case as the block is still the acceleration is zero
X axis
fr - [tex]W_{x}[/tex] = 0
fr = W sin θ
A) Y Axis
N - [tex]W_{y}[/tex] = 0
N = W cos θ
C) N = W cos θ
Two charges (q1 = 3.8*10-6C, q2 = 3.2*10-6C) are separated by a distance of d = 3.25 m. Consider q1 to be located at the origin. 2) What is the distance in meters?
Answer:
The distance is 1.69 m.
Explanation:
Given that,
First charge [tex]q_{1}= 3.8\times10^{-6}\ C[/tex]
Second charge [tex]q_{2}=3.2\times10^{-6}\ C[/tex]
Distance = 3.25 m
We need to calculate the distance
Using formula of electric field
[tex]E_{1}=E_{2}[/tex]
[tex]\dfrac{kq_{1}}{x^2}=\dfrac{kq_{2}}{(d-x)^2}[/tex]
[tex]\dfrac{q_{1}}{q_{2}}=\dfrac{(x)^2}{(d-x)^2}[/tex]
[tex]\sqrt{\dfrac{q_{1}}{q_{2}}}=\dfrac{x}{d-x}[/tex]
[tex]x=(d-x)\times\sqrt{\dfrac{q_{1}}{q_{2}}}[/tex]
Put the value into the formula
[tex]x=(3.25-x)\times\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}}[/tex]
[tex]x+x\times\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}}=3.25\times\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}}[/tex]
[tex]x(1+\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}})=3.25\times\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}}[/tex]
[tex]x=\dfrac{3.25\times\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}}}{(1+\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}})}[/tex]
[tex]x=1.69\ m[/tex]
Hence, The distance is 1.69 m.
Here are the positions at three different times for a bee in flight(a bee's top speed is about 7 m/s).
time
4.8 s
5.3 s
5.8 s
position
< -3.2,7.7, 0 > m
< -1.0,6.4, 0 > m
< 0.7,4.6, 0 > m
(a) Between 4.8 s and 5.3 s, what was the bee's average velocity? Becareful with signs.
< 4.4correct check mark, -2.6correct check mark, 0 > m/s
(b) Between 4.8 s and 5.8 s, what was the bee's average velocity? Becareful with signs.
< 3.9correct check mark, -3.1correct check mark, 0 > m/s
(c) Of the two average velocities you calculated, which is the bestestimate of the bee's instantaneous velocity at time 4.8 s?
acorrect check mark
(d) Using the best information available, what was the displacementof the bee during the time interval from 4.8 s to 4.85 s?
< -2.98wrong check mark, 7.57wrong check mark, 0 > m
Answer:
(a) see attachment below
(b) see attachment below
(c) the average velocity in part (a) is a better estimate than that in part (b) because it was calculated for a shorter time interval compared to part (b). The basically definition of instantaneous velocity is that it is the limit of the average velocity as the time interview approaches zero (that is as the time interview becomes smaller and smaller). In other words the shorter the time interview the better the accuracy of the result.
(d) see attachment below.
Explanation:
Check the attachment below for the full solution of this problems.
Thank you for reading this post and I hope it is helpful to you. Thank you.
The average velocities between different time intervals are calculated using displacement and time intervals. The best estimate of the bee's instantaneous velocity is determined by one of the calculated average velocities. To find the displacement during a specific time interval, subtract the initial position from the final position.
Explanation:(a) The average velocity between 4.8 s and 5.3 s can be calculated by finding the displacement and dividing it by the time interval. The displacement is given by subtracting the initial position from the final position, which results in < -4.2, -1.3, 0 > m. Dividing this displacement by the time interval of 0.5 s gives an average velocity of < -8.4, -2.6, 0 > m/s.
(b) Similarly, between 4.8 s and 5.8 s, the displacement is < 3.7, -3.1, 0 > m and the time interval is 1 s. Dividing the displacement by the time interval gives an average velocity of < 3.7, -3.1, 0 > m/s.
(c) The best estimate of the bee's instantaneous velocity at time 4.8 s would be the average velocity between 4.8 s and 5.3 s, which was calculated in part (a) as < 4.4, -2.6, 0 > m/s.
(d) To find the displacement of the bee during the time interval from 4.8 s to 4.85 s, we can subtract the initial position at 4.8 s from the position at 4.85 s. The initial position is < -3.2, 7.7, 0 > m and the position at 4.85 s is < -1, 6.4, 0 > m. Subtracting these vectors gives a displacement of < 2.2, -1.3, 0 > m.
Learn more about average velocity here:https://brainly.com/question/1375440
#SPJ3
PART ONE
A student sits on a rotating stool holding two
2 kg objects. When his arms are extended
horizontally, the objects are 1 m from the axis
of rotation, and he rotates with angular speed
of 0.73 rad/sec. The moment of inertia of the
student plus the stool is 8 kg m2
and is assumed to be constant. The student then pulls
the objects horizontally to a radius 0.28 m
from the rotation axis.
Calculate the final angular speed of the
student.
Answer in units of rad/s.
(USE PICTURES)
PART TWO
Calculate the change in kinetic energy of the
system.
Answer in units of J.
Answers:
a) [tex]1.05 rad/s[/tex]
b) [tex]1.38 J[/tex]
Explanation:
a) Final angular velocity :
Before solving this part, we have to stay clear that the angular momentum [tex]L[/tex] is conserved, since we are dealing with circular motion, then:
[tex]L_{o}=L_{f}[/tex]
Hence:
[tex]I_{i} \omega_{i}=I_{f} \omega_{f}[/tex] (1)
Where:
[tex]I_{i}[/tex] is the initial moment of inertia of the system
[tex]\omega_{i}=0.73 rad/s[/tex] is the initial angular velocity
[tex]I_{f}[/tex] is the final moment of inertia of the system
[tex]\omega_{f}[/tex] is the final angular velocity
But first, we have to find [tex]I_{i}[/tex] and [tex]I_{f}[/tex]:
[tex]I_{i}=I_{s}+2mr_{i}^{2}[/tex] (2)
[tex]I_{f}=I_{s}+2mr_{f}^{2}[/tex] (3)
Where:
[tex]I_{s}=8 kgm^{2}[/tex] is the student's moment of inertia
[tex]m=2 kg[/tex] is the mass of each object
[tex]r_{i}=1 m[/tex] is the initial radius
[tex]r_{f}=0.28 m[/tex] is the final radius
Then:
[tex]I_{i}=8 kgm^{2}+2(2 kg)(1 m)^{2}=12 kgm^{2}[/tex] (4)
[tex]I_{f}=8 kgm^{2}+2(2 kg)(0.28 m)^{2}=8.31 kgm^{2}[/tex] (5)
Substituting the results of (4) and (5) in (1):
[tex](12 kgm^{2}) (0.73 rad/s)=8.31 kgm^{2}\omega_{f}[/tex] (6)
Finding [tex]\omega_{f}[/tex]:
[tex]\omega_{f}=1.05 rad/s[/tex] (7) This is the final angular speed
b) Change in kinetic energy:
The rotational kinetic energy is defined as:
[tex]K=\frac{1}{2}I \omega^{2}[/tex] (8)
And the change in kinetic energy is:
[tex]\Delta K=\frac{1}{2}I_{f} \omega_{f}^{2}-\frac{1}{2}I_{i} \omega_{i}^{2}[/tex] (9)
Since we already calculated these values, we can solve (9):
[tex]\Delta K=\frac{1}{2}(8.31 kgm^{2}) (1.05 rad/s)^{2}-\frac{1}{2}(12 kgm^{2}) (0.73 rad/s)^{2}[/tex] (10)
Finally:
[tex]\Delta K=1.38 J[/tex] This is the change in kinetic energy
To find the final angular speed of the rotating student who pulls objects closer, we apply the conservation of angular momentum, which allows us to solve for the new angular speed. To calculate the change in kinetic energy, we compare the initial and final kinetic energies of the system, considering the changes in moment of inertia and angular speed.
Explanation:The question involves the concept of conservation of angular momentum and relates to the change in angular speed when a student on a rotating stool moves two 2 kg objects closer to the axis of rotation. Initially, the objects are 1 m away from the rotation axis and the system rotates with an angular speed of 0.73 rad/sec. The moment of inertia (I) of the student plus the stool is 8 kg·m2, and the student pulls the objects to a radius of 0.28 m.
Using conservation of angular momentum, we can say that the initial angular momentum (Linitial) equals the final angular momentum (Lfinal). The formula for angular momentum is L = I·ω, where ω is the angular speed. Therefore:
Linitial = (I + 2·m·rinitial2)·ωinitial
Lfinal = (I + 2·m·rfinal2)·ωfinal
Plugging in the values:
8 kg·m2 + 2(2 kg)(1 m)2)· 0.73 rad/s = (8 kg·m2 + 2(2 kg)(0.28 m)2)·ωfinal
Solving for ωfinal, we find the final angular speed of the student.
For the change in kinetic energy (KE), we calculate the initial and final kinetic energies using KE = (1/2)Iω2, and then find the difference between them to get the change in kinetic energy.
Engineers can determine properties of a structure that is modeled as a damped spring oscillator, such as a bridge, by applying a driving force to it. A weakly damped spring oscillator of mass 0.206 kg is driven by a sinusoidal force at the oscillator's resonance frequency of 33.8 Hz. Find the value of the spring constant.
Answer:
Spring Constant K=9290.9550 N/m
Explanation:
Formula we are going to use is:
[tex]2\pi f=\sqrt{\frac{K}{m}}[/tex]
Where:
f is the frequency
K is the spring constant
m is the mass
Given:
Mass of spring oscillator=m=0.206 kg
Resonance Frequency=f=33.8 Hz
Find:
Spring Constant=K=?
Solution:
From Above formula:
Taking Square on both sides
[tex]4(\pi)^2f^2=\frac{K}{m} \\K=4(\pi)^2f^2*m\\K=4(\pi)^2(33.8)^2*(0.206)\\K=9290.9550 N/m[/tex]
Spring Constant K=9290.9550 N/m
CH===The radius of a sphere is increasing at a rate of 3 mm/s. How fast is the volume increasing when the diameter is 40 mm? Evaluate your answer numerically. (Round the answer to the nearest whole number.)'
Answer:
15086 mm³/s
Explanation:
Given
dr / dt = 3 mm/s
v = 4/3 π r³
dv / dt = (4 / 3) π 3r² dr/dt
= 4πr² x 3
= 12πr²
= 12 x 22/7 x 20²
= 15086 mm³/s
The volume of a sphere with a radius increasing at 3 mm/s will be increasing at a rate of approximately 15072 mm³/s when the diameter is 40 mm. This is calculated using the derivative of the sphere's volume formula.
Given that the radius of a sphere is increasing at a rate of 3 mm/s, we need to find how fast the volume is increasing when the diameter is 40 mm. First, we note that the diameter is 40 mm, so the radius is 20 mm.
The formula for the volume of a sphere is:
V = (4/3)πr³
To find the rate at which the volume is increasing, we take the derivative of the volume with respect to time (t):
dV/dt = 4πr²(dr/dt)
We know from the problem that dr/dt (the rate at which the radius is increasing) is 3 mm/s, and r (the radius at the given moment) is 20 mm. Plugging these values into the derivative formula, we get:
dV/dt = 4π(20)²(3)
dV/dt = 4π(400)(3) = 4800π mm³/s
Evaluating this value numerically and rounding to the nearest whole number, we get:
dV/dt ≈ 15072 mm³/s
a insect is resting on the rim of a rotating table topper the topper is stopped after covering 125° and 1.3s later. What was the insect angular velocity in rad/s.
answer choices:
A. 0.7384
B. 1.6782
C. 2.1866
D. 464.73
Explanation:
I assume you're looking for the average angular velocity:
ω_avg = Δθ / Δt
ω_avg = (125° × π / 180°) / (1.3 s)
ω_avg = 1.6782 rad/s
A 25,000-kg train car moving at 2.50 m/s collides with and connects to a train car of equal mass moving in the same direction at 1.00 m/s. How much does the kinetic energy of the system decrease during the collision?
Answer:
14062.5 J
Explanation:
From the law of conservation of momentum,
Total momentum before collision = Total momentum after collision.
V = (m₁u₁ + m₂u₂)/(m₁+m₂).................1
Where V = common velocity after collision
Given: m₁ = m₂ = 25000 kg, u₁ = 2.5 m/s, u₂ = 1 m/s
Substitute into equation 1
V = [25000(2.5) + 25000(1)]/(25000+25000)
V = (62500+25000)/50000
V = 87500/50000
V = 1.75 m/s.
Note: The collision is an inelastic collision as such there is lost in kinetic energy of the system.
Total Kinetic energy before collision = kinetic energy of the first train car + kinetic energy of the second train car
E₁ = 1/2m₁u₁² + 1/2m₂u₂²........................ Equation 2
Where E₁ = Total kinetic energy of the body before collision, m₁ and m₂ = mass of the first train car and second train car respectively. u₁ and u₂ = initial velocity of the first train car and second train car respectively.
Given: m₁ = m₂ = 25000 kg, u₁ = 2.5 m/s, u₂ = 1 m/s
Substitute into equation 2
E₁ = 1/2(25000)(2.5)² + 1/2(25000)(1.0)²
E₁ = 12500(6.25) + 12500
E₁ = 78125+12500
E₁ = 90625 J.
Also
E₂ = 1/2V²(m₁+m₂)....................... Equation 3
Where E₂ = total kinetic energy of the system after collision, V = common velocity, m₁ and m₂ = mass of the first and second train car respectively.
Given: V = 1.75 m/s, m₁ = m₂ = 25000 kg
Substitute into equation 3
E₂ = 1/2(1.75)²(25000+25000)
E₂ = 1/2(3.0625)(50000)
E₂ = (3.0625)(25000)
E₂ = 76562.5 J.
Lost in kinetic Energy of the system = E₁ - E₂ = 90625 - 76562.5
Lost in kinetic energy of the system = 14062.5 J
The decrease in kinetic energy of the system during the collision is 14062.5 kg m/s².
The question involves a collision between two train cars of equal mass moving in the same direction, which falls under the principles of momentum conservation and kinetic energy assessment in physics. First, we calculate the final velocity of the combined train cars using the law of conservation of momentum. Then, we compare the initial and final kinetic energies to find the decrease in kinetic energy due to the collision.
pi = m1v1 + m2v2 = (25000×2.50) + (25000×1) = 87500 kg m/s.
Using momentum conservation, vf = pi / (m1 + m2) = 87500/(25000 + 25000) = 1.75 m/s.
KEi = ½m1v1² + ½m2v2² = ½(25000)(2.5)² + ½(25000)(1)² = 90625 kg m/s²
KEf = ½(m1+m2)vf² = ½(25000+25000)(1.75)² = 76562.5 kg m/s².
The difference in kinetic energy: ΔKE = KEi - KEf = 90625 - 76562.5 = 14062.5 kg m/s².
two 10-kilogram boxes are connected by a massless string that passes over a massless frictionless. What is tension in the string
Answer:
The tension in the string is 87.72 N.
Explanation:
Given that,
Mass of two each boxes = 10 kg
Suppose the inclined plane makes an angle is 60° with the horizontal and the coefficient of kinetic friction between the box and plane is 0.15.
We need to calculate the acceleration
Using balance equation
[tex]mg-T=ma[/tex]
Put the value into the formula
[tex]10g-T=10a[/tex]
[tex]98-T=10a[/tex]....(I)
Again using balance equation
[tex]T-mg\sin\theta-F_{f}=ma[/tex]
[tex]T-mg\sin\theta-\mu mg=ma[/tex]
Put the value into the formula
[tex]T-10g\sin60-\mu10\cos60=10a[/tex]
[tex]T-10\times9.8\dfrac{\sqrt{3}}{2}-0.15\times10\times9.8\cos\times\dfrac{1}{2}=10a[/tex]
[tex]T-84.8+7.35=10a[/tex]
[tex]T-77.45=10a[/tex]...(II)
From equation (I) and (II)
[tex]98-77.45=20a[/tex]
[tex]a=\dfrac{98-77.45}{20}[/tex]
[tex]a=1.0275\ m/s^2[/tex]
Put the value of acceleration in equation (I)
[tex]98-T=10\times1.028[/tex]
[tex]-T=10\times1.028-98[/tex]
[tex]T=87.72\ N[/tex]
Hence, The tension in the string is 87.72 N.
The tension in the string connecting the two 10-kilogram boxes is 98 N.
Explanation:The tension in the string connecting the two 10-kilogram boxes can be determined using Newton's second law and the equilibrium equation for the x-direction. Based on these equations, the tension in the shorter string is twice the tension in the longer string. Therefore, the tension in the string connecting the two boxes would be:
Tension = weight of the hanging mass
So, the tension in the string would be equal to the weight of each 10-kilogram box which is:
Tension = (10 kg) × (9.8 m/s²) = 98 N
Learn more about tension in a string here:https://brainly.com/question/34111688
#SPJ3
An ambulance is driving towards the hospital at a velocity 108 km/h and emitting a steady 798-Hz sound from its siren. The sound reflects off the front of the hospital and is received by the same ambulance. In addition to it's own siren, the ambulance hears a shifted tone from the reflection at what frequency? The speed of sound on this day is 343 m/s. a. 1.06e+3Hz b. 855Hz c. 850Hz d. 1.08e+3Hz e. 950 Hz
The ambulance will hear a reflected sound with a frequency of 855Hz, which is calculated using the Doppler Effect.
Explanation:The subject of this question is the Doppler Effect, which states that the observed frequency of a wave depends on the relative speed of the source and the observer. In this case, the source of the sound is the ambulance and the observer is also the ambulance (after reflection of the sound from the hospital). We can use the formula for Doppler Effect in this case:
F' = F *(v+v0) / (v-vS)
Where:
F' is the apparent frequency (the frequency heard by the observer), F is the source frequency (the frequency of the emitted sound), v is the speed of sound on this day, v0 is the speed of the observer (which is zero since the sound after reflection is observed at the same spot), vS is the speed of the source (which is the speed of the ambulance converted to m/s).
Putting the given values into this formula, we can calculate:
F' = 798Hz * (343m/s + 0) / (343m/s - 108km/h converted to m/s) = 855Hz
Therefore, the frequency of the reflected sound heard by the ambulance is 855Hz. The correct option is b. 855Hz.
https://brainly.com/question/33454469
#SPJ12
A 0.37 kg object is attached to a spring with a spring constant 175 N/m so that the object is allowed to move on a horizontal frictionless surface. The object is released from rest when the spring is compressed 0.19 m. Find the force on the object when it is released. Answer in units of N. What is the acceleration at this instant? Answer in units of m/s^2.
Answer:
[tex]F=33.25\ N[/tex]
[tex]a=89.8649\ m.s^{-2}[/tex]
Explanation:
Given:
mass of the object, [tex]m=0.37\ kg[/tex]spring constant, [tex]k =175\ N.m^{-1}[/tex]compression in the spring, [tex]\Delta x=0.19\ m[/tex]Now the force on the spring on releasing the compression:
[tex]F=k. \Delta x[/tex]
[tex]F=175\times 0.19[/tex]
[tex]F=33.25\ N[/tex]
Now the acceleration due to this force:
[tex]a=\frac{F}{m}[/tex]
[tex]a=\frac{33.25}{0.37}[/tex]
[tex]a=89.8649\ m.s^{-2}[/tex]
Final answer:
The force exerted on a 0.37 kg object when released from a compressed spring with a constant of 175 N/m is 33.25 N. The acceleration at this instant is 89.86 m/s².
Explanation:
We are given a 0.37 kg object attached to a spring with a spring constant of 175 N/m, compressed by 0.19 m. The force exerted by the spring when it is released can be calculated using Hooke's Law, which states that the force exerted by a spring is proportional to the displacement from its equilibrium position:
F = -kx
Where:
F is the force in newtons (N),k is the spring constant in newtons per meter (N/m), andx is the displacement from the equilibrium position in meters (m).Plugging in the values we get:
F = -(175 N/m) * (0.19 m)
F = -33.25 N
Since the negative sign indicates the direction of the force is opposite to the direction of displacement, we can say that the magnitude of the force is 33.25 N. To find the acceleration at this instant, we can use Newton's second law of motion:
a = F/m
a = 33.25 N / 0.37 kg
a = 89.86 m/s²
The acceleration of the object when it is released is 89.86 m/s².
Which of the following observations represent conclusive evidence of an interaction? (Select all that apply.)
a. Change of temperature without change of velocity
b. Change of identity without change of velocity
c. Change of position without change of velocity
d. Change of shape or configuration without change of velocity
e. Change of direction without change of speed
Answer:
a,b,d and e are correct.
Explanation:
a) Change of temperature without change of velocity is a conclusive evidence of an interaction. As the temperature of a body will only change if heat energy is flows in or out of the body with surrounding. So, option a) is correct.
b) Change of the direction without change of speed is an evidence of an interaction. The direction changes when the object is under a perpendicular acceleration acceleration which clearly means the particle is interacting or external force applied. So, option b is correct.
d) Change of shape or configuration without change of velocity is conclusive evidence of an interaction. The shape can change only if external stress is applied on the particle. So, Option d is correct.
e) Change of identity without change of velocity is a conclusive evidence of an interaction. The identity of an object can only change if it interacts with surroundings. So, option e is correct
Therefore the only incorrect option is c .
In this exercise we have to use our knowledge of physics to identify the best alternative that corresponds to each of the given questions:
the only incorrect alternative is the letter C
So analyzing each alternative, we find that:
a) Change of hotness outside change of speed exist a evidence of an interplay.
As the temperature of a main part of written work will only change if heat strength exist flows fashionable or exhausted the accompanying encircling.
So, alternative A happen correct.
b) Change of the course outside change of speed happen an evidence of an interaction.
The management changes when the object happen secondary a at right angles to increasing speed acceleration which without any doubt wealth the piece exist communicate or outside force applied.
So, alternative B exist correct.
d) Change of shape or arrangement outside change of speed exist evidence of an interplay.
The shape can change only if outside stress happen used ahead of the atom.
So, alternative D exist correct.
e) Change of similarity outside change of speed happen a evidence of an interplay.
The person's individuality of an object can only change if it communicate accompanying environment.
So, alternative E exist correct
See more about physics at brainly.com/question/15468653
A positive charge Q1,-45.5 nC is located at the origin. A negative charge Q2 =-5.5 nC is located on the positive x-axis, p = 14 cm from the origin.
Choose the correct relation to indicate the continuous region on the x-axis that includes a point where the electric field is zero.
Answer:
r = 0.1045 cm
Explanation:
The electric field of a point charge is given by the expression
E = k q / r²
Let's look for the field created by each load
Q₁ charge
E₁ = k Q₁ / (r-0)²
E₁ = - 8.99 10⁹ 45.5 10⁻⁹ / r²
E₁ = - 409.05 / r²
Q₂ charge
E₂ = k Q₂ / (r-0.14)₂
E₂ = - 8.99 10⁹ 5.5 10⁻⁹ / (r-0.14)²
E₂ = -49.45 / (r-0.14)²
The electric field is a vector quantity, so we must use the sum of vectors to get the total field
E_total = E₁ + E₂
The burden of proof is always considered positive as the two charges are negative the strength is attractive, consider three regions of interest.
- Left of the two charges in this case the two forces are directed to the right and therefore the field is not canceled
- to the right of the two charges, the forces go to the left and the field is not canceled for any distance
- Between the two charges, in this case each force goes in the opposite direction and there is a point for the field to cancel
0 = E₁ - E₂
E₁ = E₂
-409.05 / r² = - 49.45 /(r-0.14)²
(r-0.14)² = 49.45 / 409.05 r²
r² - 2 0.14r + 0.14² = 0.12 r²
r² (1-0.12) - 0.28 r + 0.0196 = 0
0.88 r² - 0.28 r + 0.0196 = 0
r² - 0.318 r + 0.0223 = 0
We solve the second degree equation
r = [0.318 ±√(0.318² - 4 0.0223)] / 2
r = [0.318 ± 0.109] 2
r₁ = 0.209 / 2 = 0.1045 m
r₂ = 0.2135 m
We see that the result in the area of interest between charges is
r = 0.1045 cm
- There are zones on the sides of the charge, but the force in these zones has a component that takes the test load to the part between the loads, therefore the field is never canceled
In the lab, Michelle and Brian measured the acceleration of a cart rolling on an inclined track with one block under one end, and found that the acceleration was 0.482 m/s2. On another table, Yasin and Cameron found, with a similar setup, an acceleration of 0.718 m/s2. a. What is the percent difference between the result found by Yasin and Cameron, aY&C, in terms of the result of Michelle and Brian, aM&B? b. What is the percent difference between the two results when you treat them as "equivalent"?
Answer:
a) e% = 49.0%
, b) e% = 19.7%
Explanation:
The percentage difference is the absolute uncertainty between the value accepted by 100
e% = Δx / x_value
a) for this case the correct accepted value is x_value = 0.482 m / s²
Δx = 0.718 - 0.482
Δx = 0.236 m / s²
e% = 0.236 / 0.482 100
e% = 48.96%
b) In this case the results of the two experiments are real and the correct value is the average
x_value = (0.482 + 0.718) / 2
x_value = 0.600 m / s²
e% = (0.718 - 0.600) / 0.600 100
e% = 19.7%
food product with 10 kg mass is being transported to thesurface of the moon,where the acceleration due to gravity is1.624 m/s2; about 1/6 of the value on earth. Compute thefollowing:a.The force exerted by the product on the earth’s surface; inSI units and English units.b.The product force exerted on the surface of the moon; inSI and English units
Answer:
In SI units 98.1 N, 16.24 N
English units 22.053861 lbf, 3.6509144 lbf
Explanation:
g = Acceleration due to gravity
m = Mass = 10 kg
Weight on Earth
[tex]W=mg\\\Rightarrow W=10\times 9.81\\\Rightarrow W=98.1\ N[/tex]
Converting to lbf
[tex]98.1\times 0.22481=22.053861\ lbf[/tex]
On Moon
[tex]W=10\times 1.624\\\Rightarrow W=16.24\ N[/tex]
Converting to lbf
[tex]16.24\times 0.22481=3.6509144\ lbf[/tex]
In SI units 98.1 N, 16.24 N
English units 22.053861 lbf, 3.6509144 lbf
An electrical motor spins at a constant 2695.0 rpm. If the armature radius is 7.165 cm, what is the acceleration of the edge of the rotor?
A) 28.20 m/s^2
B) 572,400 m/s^2
C) 281.6 m/s^2
D) 5707 m/s^2
Answer:
Acceleration will be [tex]5706.77rad/sec^2[/tex]
So option (D) will be correct answer
Explanation:
We have given angular speed of the electrical motor [tex]\omega =2695rpm[/tex]
We have to change this angular speed in rad/sec for further calculation
So [tex]\omega =2695rpm=2695\times \frac{2\pi }{60}=282.2197rad/sec[/tex]
Armature radius is given r = 7.165 cm = 0.07165 m
We have to find the acceleration of edge of motor
Acceleration is given by [tex]a=\omega ^2r=282.2197^2\times 0.07165=5706.77rad/sec^2[/tex]
So acceleration will be [tex]5706.77rad/sec^2[/tex]
So option (D) will be correct answer
Final answer:
The acceleration of the edge of the rotor is approximately 572400 m/s^2.
Explanation:
The acceleration of the edge of the rotor can be determined using the formula:
acceleration = radius x (angular velocity)²
In this case, the radius of the armature is given as 7.165 cm, which is equal to 0.07165 m. The angular velocity can be calculated by converting the given rpm (2695.0) to radians per second. One revolution is equal to 2π radians, and one minute is equal to 60 seconds, so:
angular velocity = (2695.0 rpm) x (2π rad/1 rev) x (1 min/60 s)
Once the angular velocity is determined, it can be substituted into the formula for acceleration along with the radius:
acceleration = (0.07165 m) x [(2695.0 rpm) x (2π rad/1 rev) x (1 min/60 s)]²
Mathematically solving this equation will give the value of the acceleration in m/s². After calculating the expression, we find that the acceleration of the edge of the rotor is approximately 572400 m/s².
Assume that the motor has accelerated the wheel up to an angular velocity Ï1 with angular acceleration α in time t1. At this point, the motor is turned off and a brake is applied that decelerates the wheel with a constant angular acceleration of â5α. Find t2, the time it will take the wheel to stop after the brake is applied (that is, the time for the wheel to reach zero angular velocity). Express your answer in terms of some or all of the following: Ï1, α, and t1.
Answer:
t₂ = t₁ / 5
Explanation:
Rotational kinematics using: ωf = ωi + αt
Starting from rest and speeding up:
ω₁ = 0 + αt₁ .. Eq1
Starting from ω₁ and slowing to a stop:
0 = ω₁ - 5αt₂
Substituting for ω₁ from Eq 1
0 = αt₁ - 5αt₂
5αt₂ = αt₁
5t₂ = t₁
t₂ = t₁ / 5
A motorcycle is following a car that is traveling at constant speed on a straight highway. Initially, the car and the motorcycle are both traveling at the same speed of 21.5 m/s , and the distance between them is 52.0 m . After t1 = 4.00 s , the motorcycle starts to accelerate at a rate of 6.00 m/s2 . The motorcycle catches up with the car at some time t2. How long does it take from the moment when the motorcycle starts to accelerate until it catches up with the car? In other words, find t2-t1? How far does the motorcycle travel from the moment it starts to accelerate (at time t1) until it catches up with the car (at time t2 )?
Answer:
a) t = 4.16 s
b) x = 141.51 m
Explanation:
Given
v = 21.5 m/s
x0 = 52.0 m
a = 6.0 m/s²
a) Motorcycle
x = v0*t + (a*t²/2)
x = 21.5t + (6*t²/2)
x = 21.5t + 3t² (I)
Car
x = x0 + v0*t
x = 52 + 21.5t (II)
then we can apply I = II
21.5t + 3t² = 52 + 21.5t
⇒ 3t² = 52
⇒ t = 4.16 s
b) We can use I or II, then
x = 52 + 21.5*(4.16)
⇒ x = 141.51 m
To find the time it takes for the motorcycle to catch up with the car, we can use the equation of motion and the given information. The motorcycle starts accelerating at t1, so it covers a distance of 0 m. The distance covered by the car until the motorcycle catches up is equal to the initial distance between them, which is 52.0 m.
Explanation:To find the time it takes for the motorcycle to catch up with the car, we first need to find the acceleration of the car. Since it is traveling at a constant speed, its acceleration is zero. The motorcycle's acceleration is given as 6.00 m/s². We can use the equation of motion, s = ut + 0.5at², to find the distance each vehicle covers from time t1 to t2. The motorcycle will cover a distance of 0 m, as it starts accelerating at t1. The car will cover a distance of (21.5 m/s)(t2 - t1). Since the motorcycle catches up with the car, the distance covered by the car is equal to the initial distance between them, which is 52.0 m.
Learn more about Motion of vehicles here:https://brainly.com/question/32366903
#SPJ12
Phil leans over the edge of a cliff and throws a rock upward at 5 m/s. Neglecting air resistance, two seconds later the rock's speed is A. 15 m/s. B. 5 m/s. C. 10 m/s. D. zero. E. none of the above
The final velocity of the rock is 15 m/s upwards. The rock's initial velocity is upwards at 5 m/s. The acceleration due to gravity is downwards at 9.8 m/s². Hence the correct option is A.
The initial velocity of the rock is upwards at 5 m/s. This is denoted by u.
The acceleration due to gravity is downwards at 9.8 m/s². This is denoted by a.
The time taken for the rock to reach its final velocity is 2 seconds. This is denoted by t.
The final velocity of the rock is denoted by v.
We can use the following equation to calculate the final velocity of the rock:
v = u + at
Substituting the values of u, a, and t, we get:
= 5 + 9.8 * 2
= 15 m/s
Therefore, the final velocity of the rock is 15 m/s upwards. Hence the correct option is A.
To know mroe about velocity:
https://brainly.com/question/34025828
#SPJ12
The rock's speed two seconds after being thrown upward is zero. Gravity causes the object to slow down and eventually come to a stop before starting to fall back down.
Explanation:
The rock's speed two seconds after being thrown upward is zero (D).
When an object is thrown upwards, its speed decreases due to the force of gravity pulling it downward. Gravity causes the object to slow down and eventually come to a stop before starting to fall back down. In this case, since the rock's speed is zero after two seconds, it means it has reached its highest point and is now starting to fall back down.
Learn more about Projectile Motion here:https://brainly.com/question/20627626
#SPJ11
If a proton and an electron are released when they are 5.50×10−10 mm apart (typical atomic distances), find the initial acceleration of each of them. Express your answer in meters per second squared.
Final answer:
The initial acceleration of a proton and an electron released 5.50×10−10 mm apart is calculated using Coulomb's law and Newton's second law. The proton's acceleration is approximately 4.91×10¹⁴ m/s², and the electron's acceleration is approximately 8.99×10¹⁶ m/s².
Explanation:
To find the initial acceleration of a proton and an electron when they are released 5.50×10−10 mm apart, we use Coulomb's law to calculate the force and then apply Newton's second law to find the acceleration. First, convert the distance to meters, so 5.50×10−10 mm is 5.50×10−12 m. Coulomb's law gives us the force as F = k×|q1×q2|/r2, where k is Coulomb's constant (9.00×109 N×m2/C2), q1 and q2 are the charges of the proton and electron (1.60×10−19 C), and r is the separation distance. Substituting the values gives F = 8.20×10−10 N. Then, use Newton's second law, a = F/m, where m is the mass of the particle. For the proton, m = 1.67×10−27 kg, and for the electron, m = 9.11×10−31 kg. Therefore, the initial acceleration of the proton is ap ≈ 4.91×1014 m/s2 and the initial acceleration of the electron is ae ≈ 8.99×1016 m/s2.
The initial acceleration of the proton is approximately [tex]\(4.56 \times 10^{19} \, \text{m/s}^2\)[/tex] and the initial acceleration of the electron is approximately [tex]\(8.35 \times 10^{21} \, \text{m/s}^2\)[/tex].
To calculate the initial acceleration of the proton and electron when they are 5.50×10^(-10) mm apart, we can use Coulomb's law, which states that the force between two point charges is directly proportional to the product of the charges and inversely proportional to the square of the distance between them.
The formula for Coulomb's law is:
[tex]\[ F = \frac{{k \cdot |q_1 \cdot q_2|}}{{r^2}} \][/tex]
Where:
- F is the force between the charges,
- k is Coulomb's constant [tex](\(8.9875 \times 10^9 \, \text{N m}^2/\text{C}^2\))[/tex],
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges (in this case, the charge of a proton and an electron, which are [tex]\(1.6 \times 10^{-19} \, \text{C}\) and \(-1.6 \times 10^{-19} \, \text{C}\)[/tex], respectively),
- r is the distance between the charges.
First, we need to convert the distance from milli meters to meters:
[tex]\[ r = 5.50 \times 10^{-10} \, \text{mm} = 5.50 \times 10^{-13} \, \text{m} \][/tex]
Now, we can calculate the force between the charges using Coulomb's law:
[tex]\[ F = \frac{{8.9875 \times 10^9 \times |(1.6 \times 10^{-19}) \times (-1.6 \times 10^{-19})|}}{{(5.50 \times 10^{-13})^2}} \][/tex]
[tex]\[ F = \frac{{8.9875 \times 10^9 \times 2.56 \times 10^{-38}}}{{3.025 \times 10^{-25}}} \][/tex]
[tex]\[ F \approx 7.61 \times 10^{-8} \, \text{N} \][/tex]
Since force F = ma, we can rearrange to find acceleration [tex]\( a = \frac{F}{m} \)[/tex]. For both the proton and electron, we use their respective masses, which are approximately [tex]\(1.67 \times 10^{-27} \, \text{kg}\) and \(9.11 \times 10^{-31} \, \text{kg}\)[/tex], respectively.
For the proton:
[tex]\[ a_p = \frac{7.61 \times 10^{-8}}{1.67 \times 10^{-27}} \][/tex]
[tex]\[ a_p \approx 4.56 \times 10^{19} \, \text{m/s}^2 \][/tex]
For the electron:
[tex]\[ a_e = \frac{7.61 \times 10^{-8}}{9.11 \times 10^{-31}} \][/tex]
[tex]\[ a_e \approx 8.35 \times 10^{21} \, \text{m/s}^2 \][/tex]
So, the initial acceleration of the proton is approximately [tex]\(4.56 \times 10^{19} \, \text{m/s}^2\)[/tex] and the initial acceleration of the electron is approximately [tex]\(8.35 \times 10^{21} \, \text{m/s}^2\)[/tex].
These values represent the accelerations they experience due to the electrostatic force when they are [tex]5.50\times10^{-10}[/tex] mm apart.
Complete question :- Determine the initial acceleration of a proton and an electron when they are initially [tex]5.50\times10^{-10}[/tex] mm apart, a typical atomic distance. Provide the answer in meters per second squared.
The sound source of a ship’s sonar system operates at a frequency of 22.0 kHz . The speed of sound in water (assumed to be at a uniform 20∘C) is 1482 m/s . What is the difference in frequency between the directly radiated waves and the waves reflected from a whale traveling straight toward the ship at 4.95 m/s ? Assume that the ship is at rest in the water.
Your target variable is Δf, the magnitude of the difference in frequency between the waves emitted from the sonar device and the waves received by the device after reflecting off the whale. Write an expression for Δf in terms of the relevant frequencies using the subscript notation introduced above.
Express your answer in terms of some or all of the variables fLe, fLr, fSe, and fSr.
Δf =_______________.
Answer:
147.45 Hz
[tex]\Delta f=f_{Lr}-f_{Se}[/tex]
Explanation:
v = Speed of sound in water = 1482 m/s
[tex]v_w[/tex] = Speed of whale = 4.95 m/s
The difference in frequency is given by
[tex]\Delta f=f\dfrac{v+v_w}{v-v_w}-f\dfrac{v}{v-v_w}\\\Rightarrow \Delta f=f_{Lr}-f_{Se}[/tex]
Frequency of the wave in stationary condition
[tex]f_{Lr}=f\dfrac{v+v_w}{v-v_w}[/tex]
Ship's frequency which is reflected back
[tex]f_{Se}=f\dfrac{v}{v-v_w}[/tex]
[tex]f_{Se}=22\ kHz[/tex]
[tex]\mathbf{\Delta f=f_{Lr}-f_{Se}}[/tex]
[tex]\Delta f=f_{Lr}-f_{Se}\\\Rightarrow \Delta f=22\times \dfrac{1482+4.95}{1482-4.95}-22\\\Rightarrow \Delta f=0.14745\ kHz\\\Rightarrow \Delta f=147.45\ Hz[/tex]
The difference in wavelength is 147.45 Hz
The Difference in frequency Δf = 147.4 Hz
Expression for Δf in terms of the relevant frequencies ; Δf = fL[tex]_{r}[/tex] - fL[tex]_{s}[/tex]
Given data :
Speed of sound in water ( V ) = 1482 m/s
Speed of whale ( Vw ) = 4.95 m/s
Frequency of ship sonar ( f ) = 22.0 kHz
Calculate the difference in frequencyΔf = [tex]f\frac{v + v_{w} }{v - v_{w} } - f \frac{v}{v-v_{w} }[/tex] ------ ( 1 )
where :
[tex]f \frac{v}{v-v_{w} }[/tex] = Frequency of ship ( F[tex]_{s}[/tex] ) = 22 kHz [tex]f\frac{v + v_{w} }{v - v_{w} }[/tex] = Frequency of wave when stationary ( FL[tex]_{r}[/tex] )= 22 * [ ( 1482 + 4.95) / ( 1482 - 4.95 ) ]
= 22.1474 kHz.
Back to equation ( 1 )
Δf = 22.1474 - 22
= 0.1474 kHz ≈ 147.4 Hz
Hence we can conclude that the Difference in frequency Δf = 147.4 Hz and
Expression for Δf in terms of the relevant frequencies ; Δf = fL[tex]_{r}[/tex] - fL[tex]_{s}[/tex]
Learn more about frequency differences : https://brainly.com/question/615051
A 100.0 gram sample of Polonium-210 is contained for 552 days. How many half-lives occur during this period of time, if the half-life is 138 days?
Answer:
4 half-lives will occur during this period of time.
Explanation:
Formula used :
[tex]a_o=a\times e^{-\lambda t}[/tex]
[tex]\lambda =\frac{0.693}{t_{1/2}}[/tex]
[tex]a=\frac{a_o}{2^n}[/tex]
where,
a = amount of reactant left after n-half lives and time t
[tex]a_o[/tex] = Initial amount of the reactant.
[tex]\lambda = [/tex] decay constant
[tex]t_{1\2}[/tex] = half life of an isotope
n = number of half lives
We have :
[tex]a_o=100.0 g[/tex]
a = ?
t = 552 days
[tex]t_{1/2}=138 days[/tex]
[tex]a=100.0 g\times e^{-\frac{0.693}{138}\times 552}[/tex]
[tex]a=6.254 g[/tex]
[tex]6.254 g=\frac{100.0 g}{2^n}[/tex]
[tex]2^n=\frac{100.0 g}{6.254 g}[/tex]
n = 4
4 half-lives will occur during this period of time.
By dividing the total time of 552 days by the half-life of Polonium-210 of 138 days, we find that 4 half-lives occur in this period.
Explanation:The number of half-lives that occur during a given period of time can be found by dividing the total amount of time by the period of one half-life. Given that we are asked to find out the number of half-lives for a 552-day period and the half-life of Polonium-210 is 138 days, we can use this approach. So, the calculation would be 552 days ÷ 138 days/half-life = 4 half-lives. Therefore, 4 half-lives of Polonium-210 would occur in a 552-day period.
Learn more about Half-life here:https://brainly.com/question/31375996
#SPJ3
A proton accelerates from rest in a uniform electric field of 650 N/C. At one later moment, its speed is 1.40 Mm/s (nonrelativistic because v is much less than the speed of light).
Answer:
(a) the acceleration a = 6.23 x 10^10 m/s²
(b) the time interview required to reach that velocity is t = 22.5microseconds
(c) the distance traveled is 15.7m
(d) K.E = 1.64 x 10^-15 J
Explanation:
Answer:
(a) the acceleration a = 6.23 x 10^10 m/s²
(b) the time interview required to reach that velocity is t = 22.5microseconds
(c) the distance traveled is 15.7m
(d) K.E = 1.64 x 10^-15 J
Explanation:
The detailed step by step solution to this problem can be forced below. The electric force on the charge is equal in magnitude to (Eq) front columb's law. The electric force on the charge gives it an acceleration of magnitude a. The force is also equal in magnitude to (ma) from newton's second law.
The acceleration of the charge in the electric field is constant and as a result the equations for constant acceleration motion applies to its motion.
KE = 1/2(MV²)
The complete solution can be found in the attachment below.
Acceleration a velocity v and displacement s can be related to each other without the use of time as :
Answer:
The acceleration and velocity of a body can be related as
V² = U² + 2aS
Where V = the final velocity of the body in (m/s or ft/s)
U = initial velocity of the body (m/s or ft/s)
a = acceleration of the body in (m/s² or ft/s²)
Distance covered by the during that time interval of acceleration in (m or ft)
Explanation:
This equation is very useful in situations where the time interval of motion is not given.
The equation relates the quantities that are along the same axis (x or y).
That is the velocities (initial and final velocities), acceleration and the distance covered must be on the same axis for it to be used correctly. If some of the parameters are on different axis and used together it will lead to errors.
When dealing with multidimensional problems, care should be taken to treat parameters that are along the same axis together and a vector summation be done later to get the requested quantity. Thank you for reading.
A parallel-plate capacitor is constructed with circular plates of radius 5.10×10−2 m . The plates are separated by 0.23 mm , and the space between the plates is filled with a dielectric with dielectric constant κ. When the charge on the capacitor is 1.3 μC the potential difference between the plates is 1120 V . Part A Find the value of the dielectric constant, κ. Express your answer using two significant figures.
Answer:
3.7
Explanation:
[tex]\epsilon_0[/tex] = Permittivity of free space = [tex]8.85\times 10^{-12}\ F/m[/tex]
r = Radius = [tex]5.1\times 10^{-2}\ m[/tex]
A = Area = [tex]\pi r^2[/tex]
V = Voltage = 1120 V
d = Distance of plate seperation = 0.23 mm
Charge is given by
[tex]Q=CV\\\Rightarrow Q=\dfrac{k\epsilon_0 A}{d}\times V\\\Rightarrow k=\dfrac{Qd}{\epsilon_0 AV}\\\Rightarrow k=\dfrac{1.3\times 10^{-6}\times 0.23\times 10^{-3}}{8.85\times 10^{-12}\times \pi (5.1\times 10^{-2})^2\times 1120}\\\Rightarrow k=3.69164\\\Rightarrow k=3.7[/tex]
The value of dielectric constant is 3.7
Final answer:
To find the dielectric constant (κ) for a parallel-plate capacitor, given its physical dimensions and charge-potential difference, we calculate the capacitance with and without the dielectric and then solve for κ using the relation between charge, capacitance, and potential difference.
Explanation:
The question involves finding the dielectric constant (κ) of the material placed between the plates of a parallel-plate capacitor given the radius of the plates, the separation between them, the charge on the capacitor, and the potential difference across it. The capacitance of a parallel-plate capacitor is given by C = ε_0 κ A / d, where ε_0 is the permittivity of free space, κ is the dielectric constant, A is the area of the plates, and d is the separation between them. The charge (Q) on a capacitor is related to the capacitance (C) and the potential difference (V) across it by Q = CV. From the given information, we can calculate the area of the plates from their radius, and using the given separation, charge, and potential difference, solve for the dielectric constant, κ.
Given:
Radius of the plates, r = 5.10×10−2 m
Separation between the plates, d = 0.23 mm = 0.23×10−3 m
Charge on the capacitor, Q = 1.3 μC = 1.3×10−6 C
Potential difference, V = 1120 V
We can first calculate the area (A) of the plates using the formula for the area of a circle, A = πr2, substitute the value of A and the given values into the formula for C, and then use the relationship Q = CV to solve for κ.
A regulation basketball has a 32 cm diameter
and may be approximated as a thin spherical
shell.
How long will it take a basketball starting
from rest to roll without slipping 4.8 m down
an incline that makes an angle of 39.4◦ with
the horizontal? The acceleration of gravity is
9.81 m/s^2
Answer in units of s
Answer:
1.8 s
Explanation:
Potential energy = kinetic energy + rotational energy
mgh = ½ mv² + ½ Iω²
For a thin spherical shell, I = ⅔ mr².
mgh = ½ mv² + ½ (⅔ mr²) ω²
mgh = ½ mv² + ⅓ mr²ω²
For rolling without slipping, v = ωr.
mgh = ½ mv² + ⅓ mv²
mgh = ⅚ mv²
gh = ⅚ v²
v = √(1.2gh)
v = √(1.2 × 9.81 m/s² × 4.8 m sin 39.4°)
v = 5.47 m/s
The acceleration down the incline is constant, so given:
Δx = 4.8 m
v₀ = 0 m/s
v = 5.47 m/s
Find: t
Δx = ½ (v + v₀) t
t = 2Δx / (v + v₀)
t = 2 (4.8 m) / (5.47 m/s + 0 m/s)
t = 1.76 s
Rounding to two significant figures, it takes 1.8 seconds.
To determine the time it takes for a basketball to roll without slipping down an incline, we use the motion formula as well as the formula for acceleration. With the given values, the time is approximately 1.243 seconds.
Explanation:SolutionTo solve this problem, first consider the formula that describes the motion of an object rolling down an incline without slipping. The formula is d = (1/2) * a * t^2, where d is the distance, a is the acceleration, and t is the time. We can rearrange this to solve for t, giving us t = sqrt(2 * d / a).
Next, we need to find the acceleration a. This is given by the formula a = g * sin(theta), where g is the acceleration due to gravity (9.81 m/s^2) and theta is the angle of the incline (39.4 degrees). Plugging these values in, we find that a = 9.81 * sin(39.4) = 6.24 m/s^2.
Finally, we can plug these values into our first formula to find the time it takes for the basketball to roll down the incline. This gives us t = sqrt(2 * 4.8 / 6.24) = 1.243 seconds.
Learn more about Motion on Incline here:https://brainly.com/question/35874790
#SPJ3
Draw a circuit that contains a 5Ω resistance, a 10V independent voltage source, and a 2-AA independent current source. Connect all three elements in series.
Answer: I have attached the circuit diagram.
Explanation: NOTE that an independent voltage or current source is denoted in a circle. That is how you identify an independent source.
It simply means that the voltage and current source value does not depend on the value of voltage and current elsewhere in the circuit.
It highly utilised when using Mesh analysis on an electric circuit.
Please I have attached the circuit diagram connected in series.
Check it out!