Consider a pond that initially contains 10 million gallons of fresh water. Water containing a chemical pollutant flows into the pond at the rate of 5 million gallons per year (gal/yr), and the mixture in the pond flows out at the same rate. The concentration c=c(t) of the chemical in the incoming water varies periodically with time to the expression c(t) = 2 + sin(2t) grams per gallon (g/gal).

Construct a mathematical model of this flow process and determine the amount of chemical in the pond at any time t. Then, plot the solution using Maple and describe in words the effect of the variation in the incoming chemical.

Answers

Answer 1

Answer:

kindly find attachment for detailed answer

Explanation

Consider a pond that initially contains 10 million gallons of fresh water. Water containing a chemical pollutant flows into the pond at the rate of 5 million gallons per year (gal/yr), and the mixture in the pond flows out at the same rate. The concentration c=c(t) of the chemical in the incoming water varies periodically with time to the expression c(t) = 2 + sin(2t) grams per gallon (g/gal).

Construct a mathematical model of this flow process and determine the amount of chemical in the pond at any time t. Then, plot the solution using Maple and describe in words the effect of the variation in the incoming chemical.

Consider A Pond That Initially Contains 10 Million Gallons Of Fresh Water. Water Containing A Chemical
Consider A Pond That Initially Contains 10 Million Gallons Of Fresh Water. Water Containing A Chemical
Consider A Pond That Initially Contains 10 Million Gallons Of Fresh Water. Water Containing A Chemical

Related Questions

5) A 80-kg man has a total foot imprint area of 480 cm2. Determine the pressure this man exerts on the ground if (a) he stands on both feet and (b) he stands on one foot.

Answers

Answer:

The pressure exerted by this man on ground

(a) if he stands on both feet is 8.17 KPa

(b) if he stands on one foot is 16.33 KPa

Explanation:

(a)

When the man stand on both feet, the weight of his body is uniformly distributed around the foot imprint of both feet. Thus, total area in this case will be:

Area = A = 2 x 480 cm²

A = 960 cm²

A = 0.096 m²

The force exerted by man on his area will be equal to his weight.

Force = F = Weight

F = mg

F = (80 kg)(9.8 m/s²)

F = 784 N

Now, the pressure exerted by man on ground will be:

Pressure = P = F/A

P = 784 N/0.096 m²

P = 8166.67 Pa = 8.17 KPa

(b)

When the man stand on one foot, the weight of his body is uniformly distributed around the foot imprint of that foot only. Thus, total area in this case will be:

Area = A = 480 cm²

A = 0.048 m²

The force exerted by man on his area will be equal to his weight, in this case, as well.

Force = F = Weight

F = mg

F = (80 kg)(9.8 m/s²)

F = 784 N

Now, the pressure exerted by man on ground will be:

Pressure = P = F/A

P = 784 N/0.048 m²

P = 16333.33 Pa = 16.33 KPa

Previously , you wrote a program named Hurricane that classified hurricanes into five categories using the Saffir-Simpson Hurricane Scale. Now, create a modified version named Hurricane Modularized that passes a user’s input wind speed to a method that returns the hurricane category.

Answers

Answer:

Answer  of the Java class explained below with appropriate comments

Explanation:

using System;

class MainClass {

 public static void Main (string[] args) {

//entering wind speed of the hurricane

   Console.WriteLine ("Enter wind speed in mph: ");

   int windSpeed = Convert.ToInt32(Console.ReadLine());

//checking for the category with the credited wind speed

   int category = GetCategory(windSpeed);

   Console.WriteLine ("Category: " + category);

 }

 public static int GetCategory(int wind) {

     //function for classifying the wind speeds

     if(wind >= 157) {

         

     return 5;

     }

     if(wind >= 130) {

         return 4;

     }

     if(wind >= 111) {

         return 3;

     }

     if(wind >= 96) {

         return 2 ;

     }

     return 1;

 }

}

A branched molecular structure is stronger in the solid-state and more viscous in the molten state than a linear structure for the same polymer.
True or False?

Answers

Answer:

True

Explanation:

Consider as a system the gas in a vertical cylinder; the cylinder is fitted with a piston onwhich a number of small weights are placed. The initial pressure is 200 kPa, and the initial volume ofthe gas is 0.04 m^3. Let a bunsen burner be placed under the cylinder, and let thevolume of the gas increase 0.1m^3 while the pressure remainsconstant.
A. Calculate the work done by the system during this process.

Answers

Answer:

Work done = 12,000J = 12KJ

Explanation:

This process is an Isobaric one i.e a process at constant pressure

P = 200KPa = 200 x 1000 Pa = 200,000PaVi = 0.04m3Vf = 0.1m3

From the formula for Workdone = Integral (PdV)

Work done = P ( Vf - Vi)

Plugging the values in the equation,

Work done = 200,000 ( 0.1 - 0.04)

Work done = 12,000J = 12KJ

A hydraulic cylinder has a 125-mm diameter piston with hydraulic fluid inside the cylinder and an ambient pressure of 1 bar. Assuming standard gravity, find the piston mass that will create a pressure inside of 2500 kPa.

Answers

Answer: 3002.86kg

Explanation:

Hydraulic cylinder diameter =125mm

Ambient pressure =1bar

Pressure =2500kpa

Piston Mass (MP) =?

F|(when it moves upward )=PA=F|(when it moves downward) =PoA+Mpg

Po=1 bar=100kpa

A=(π/4)D^2=(π/4)*0.125^2=0.01227m^2

Mp=(P-Po) A/g=(2500-100)*1000*0.01227/9.80665

Mp=3002.86kg.

Which of the following has nothing to do with insulating glass? Group of answer choices

a. triple glazing
b. double glazing
c. low emissivity coatings
d. low conductivity
e. gas between sheets of glass
f. tempered glass

Answers

Answer:

Tempered glass

Explanation:

Tempered or toughened glass is a type of safety glass processed by controlled

thermal or chemical treatments to increase its strength compared with normal glass. Tempering puts the outer surfaces into compression and the interior into tension . Such stresses cause the glass, when broken, to crumble into small granular chunks instead of splintering into jagged shards as plate glass (a.k.a. annealed glass) does. The granular chunks are less likely to cause injury.

Answer: tempered glass

The characteristics listed in the options are the characteristics of an insulating glass, a type of glass with double or more panes used to reduce heat loss within a building.

Explanation:

A tempered glass is also known as a toughened glass. It is a type of glass that is produced through controlled thermal or chemical treatment which helps to increase its quality in terms of toughness. A tempered glass is a safety glass and as a result of this, its surface is four times toughened than that of a normal glass.

Real resistors can only be manufactured to a specific tolerance, so that in effect the value of the resistance is uncertain. For example, a 1Ω resistor specified as 5% tolerance could in practice be found to have a value anywhere in the range of 0.95 to 1.05Ω. Calculate the potential voltage range across a 2.2 kΩ 10% tolerance resistor if the current flowing through the element is 4 sin 44t mA.

Answers

Answer:

The potential voltage range across a 2.2 kΩ 10% tolerance resistor when current of  4 sin 44t mA is flowing through the element is between a range of 7.92sin44t and 9.68sin44t volts.

Explanation:

Given that there is 10% tolerance for the 2.2 kΩ resistor, this implies that the resistance would range between 2,200 — 10% of 2,200 and 2,200 + 10% of 2,200, which is:

(i) 2,200 — 10% of 2,200 = 2,200 — 220 = 1,980 Ω, and

(ii) 2,200 + 10% of 2,200 = 2,200 + 220 = 2,420 Ω

Therefore, we will calculate the potential voltage for 1,980 Ω and 2,420 Ω if the current flowing through the element is 4sin44t mA:

(a) The potential voltage for a resistance of 1,980 Ω: we will use the formula: potential voltage v = i × R

Where i = 4sin44t mA = 0.004sin44t A, and R = 1,980 Ω

The potential voltage = v = 1,980 × 0.004sin44t = 7.92sin44t (in volts)

(b) The potential voltage for a resistance of 2,420 Ω: we will use the formula: potential voltage v = i × R

Where i = 4sin44t mA = 0.004sin44t A, and R = 2,420 Ω

The potential voltage = v = 2,420 × 0.004sin44t = 9.68sin44t (in volts)

The speed of an aircraft is given to be 260 m/s in air. If the speed of sound at that location is 330 m/s, the flight of the aircraft is _____.

Answers

Answer:

[tex]Ma=\frac{260}{330} \\Ma=0.7878[/tex]

So, Ma < 1  Flow is Subsonic

Explanation:

Mach Number:

Mach Number is the ratio of speed of the object to the speed of the sound. It is used to categorize the speed of the object on the basis of mach number as sonic, supersonic and hyper sonic. (It is a unit less quantity)

Mach < 1       Subsonic

Mach > 1       Supersonic

Ma= Speed of the object/Speed of the sound

[tex]Ma=\frac{260}{330} \\Ma=0.7878[/tex]

So, Ma < 1 Flow is Subsonic

For H2O, determine the specified property at the indicated state.

(a) T = 140°C, v = 0.5 m3/kg. Find p, in bar.
(b) p = 30 MPa, T = 80°C. Find v, in m3/kg.
(c) p = 10 MPa, T = 600°C. Find v, in m3/kg.
(d) T = 80°C, x = 0.4. Find p, in bar, and v, in m3/kg.

For H2O, determine the specific volume at the indicated state, in m3/kg.

(a) T = 440°C, p = 20 MPa.
(b) T = 160°C, p = 20 MPa.
(c) T = 40°C, p = 2 MPa.

Answers

The properties of water and steam used to do work can be determined from the steam table, given input of the temperature, pressure, specific volume, as well as other thermodynamic variables

The responses to the required values of pressure and specific volume are as follows;

Part I

(a) Given T = 140°C, v = 0.5 m³/kg, to find p

From the steam tables, we have, at 140°, [tex]v_f[/tex] = 0.00107976, [tex]v_g[/tex] = 0.508519, [tex]p_s[/tex] = 3.61501

Given that the [tex]v_f[/tex] < v < [tex]v_g[/tex], the fluid has two phases and the experienced pressure [tex]p_s[/tex] = 3.61501 bar

(b) Given that at 30 MPa, and 80°C the steam is in the superheated heated region

From the single phase region of the steam tables, we have;

v = 1.01553 × 10⁻³ m³/kg

(c) Given that at p = 10 MPa = 100 bar, and T = 600°C, we have from the single phase region of the  steam table

v = 3.83775 × 10⁻² m³/kg

(d) At T = 80°C, and x = 0.4, we have;

v = 0.00102904 + 0.4 × (3.40527 - 0.00102904) ≈ 1.363

v = 1.363 m³/kg

Part II

(a) At T = 440 °C, p = 20 MPa. from the single phase region of the steam table, we have;

v = 1·22459 × 10⁻² m³/kg

(b) At T = 160°C, p = 20 MPa = 200 bar, the steam is in the superheated region, and we have;

v = 1.08865 × 10⁻³ m³/kg

(c) At T = 40°C and p = 2 MPa = 20 bar, we have

v = 0.00100700 m³/kg = 1.007 × 10⁻³ m³/kg

Learn more about the steam tables here;

https://brainly.com/question/13794937

Write a program with total change amount as an integer input, and output the change using the fewest coins, one coin type per line. The coin types are Dollars, Quarters, Dimes, Nickels, and Pennies. Use singular and plural coin names as appropriate, like 1 Penny vs. 2 Pennies.

Answers

A program with total change amount as an integer input, and output the change using the fewest coins, one coin type per line is in the explanation part below.

Python program that outputs the change using the fewest coins after receiving the entire amount of change as an integer input:

def calculate_change(change_amount):

   coin_types = {

       "Dollar": 100,

       "Quarter": 25,

       "Dime": 10,

       "Nickel": 5,

       "Penny": 1

   }

   print("Change breakdown:")

   for coin_name, coin_value in coin_types.items():

       if change_amount >= coin_value:

           num_coins = change_amount // coin_value

           change_amount -= num_coins * coin_value

           coin_name_plural = coin_name + "s" if num_coins > 1 else coin_name

           print(f"{num_coins} {coin_name_plural}")

# Input the total change amount

total_change = int(input("Enter total change amount: "))

calculate_change(total_change)

Thus, this is the Python program asked.

For more details regarding Python, visit:

https://brainly.com/question/30391554

#SPJ12

Assess the capabilities of a hydroelectric power plant from the following field data: Estimated water flow rate, 40 m3/s River inlet at 1 atm, 10 oC Discharge at 1 atm, 10.2 oC, 200 m below the intake?

Answers

Answer:

This hydroelectric power plant has the capability of producing around 78.4 MW of electric energy.

Explanation:

First, we calculate the pressure the water exerts or gains when it travels 200 m below the intake. W have the data:

Density of water = ρ = 1000 kg/m^3

Acceleration due to gravity = g = 9.8 m/s²

Height lost = h = 200 m

Volume flow rate = 40 m^3/s

The pressure difference, is now given as:

ΔP = ρgh

ΔP = (1000 kg/m^3)(9.8 m/s²)(200 m)

ΔP = 1960000 Pa = 1.96 MPa

Now, we calculate the power capacity of this flow:

Power = ΔP(Volume flow rate)

Power = (1960000 N/m²)(40 m^3/s)

Power = 78400000 Watt

Power = 78.4 MW

Thus, this plant can produce at max 78.4 MW. The actual power produced will be slightly less than this due of the losses and efficiency of turbine system used.

The concentration of carbon monoxide (co) in an exhaust gas is 1x10^4 ppmv. what is the concentration in mg/m^3 at 25 and 1 atm

Answers

Answer:

1.1451 x 104 (11451.13)mg/m3

Explanation:

1 ppmv is defined as one volume of a contaminant or solid(CO)(mL) in 1 x 106 volume of solvent/water.

1ppmv = 1mL/m3

Concentration in mg/m3 = volume in ppm x molecular weight x pressure(kPa)/( gas constant x temperature(K)

Molecular weight of CO = 12 + 16

= 28g/mol

Temperature = 273.15 + 25

= 298.15K

Pressure = 1 x 101.325kPa

= 101.325kPa

Ppmv = 1 x 10-4ppmv

Gas constant, R = 8.3144 L.kPa/mol.K

Concentration in mg/m3 = (1 x 104 * 28 * 101.325)/(8.3144 * 298)

= 1.1451 x 104mg/m3

= 11451.13 mg/m3

The motion of a particle is defined by the relation x = t3 – 6t2 + 9t + 3, where x and t are expressed in feet and seconds, respectively. Determine When the velocity is zero The position, acceleration and total distance traveled when t= 5 sec

Answers

Final answer:

The displacement of a particle when its velocity is zero can be found by differentiating the displacement function to get the velocity function, then determining when this velocity is zero. By substituting the corresponding time back into the displacement equation, we calculate the displacement at that time. Additionally, for acceleration, we can integrate to find velocity and displacement with given initial conditions.

Explanation:Finding the Displacement When Velocity is Zero

The question involves determining the displacement of a particle when its velocity is zero. Since velocity is the derivative of displacement with respect to time, we first need to find the velocity function by differentiating the displacement function x = t3
- 6t2 + 9t + 3. Once we have the velocity function, we can locate the time t at which the velocity is zero. The displacement at this time will be our required value. Similarly, if given an acceleration function, a(t) = t - 1, and initial conditions for velocity and position, we integrate the acceleration to find the velocity, and again to find the displacement.

To address the specific question of the student regarding the particle's position, acceleration, and total distance traveled at t = 5 seconds, we would substitute t into our established functions for position and acceleration accordingly.

If the initial acceleration of a particle is to be calculated from the provided differential equation dv(t)/dt = 6.0 - 3v(t), with the initial condition of the particle being at rest, we would substitute t = 0 into this equation to find the initial acceleration.

A six- lane freeway ( three lanes in each direction) in a scenic area has a measured free- flow speed of 55 mi/ h. The peak- hour factor is 0.80, and there are 8% large trucks and buses and 6% recreational vehicles in the traffic stream. One upgrade is 5% and 0.5 mi long. An analyst has determined that the freeway is operating at capacity on this upgrade during the peak hour. If the peak- hour traffic volume is 3900 vehicles, what value for the driver population factor was used?

Answers

Answer:

0.867

Explanation:

The driver population factor ([tex]f_{p}[/tex])can be estimated using the equation below:

[tex]f_{p} = \frac{V}{PHF*N*f_{HV}*v_{p}}[/tex]

The value of the heavy vehicle factor ([tex]f_{HV}[/tex]) is determined below:

The values of the [tex]E_{T}[/tex] = 2 and [tex]E_{R}[/tex] = 3 are gotten from the tables for the RVs, trucks and buses upgrades for passenger-car equivalents. Therefore:

[tex]f_{HV}[/tex] = 1/[1+0.08(2-1)+0.06(3-1)] = 1/[1+0.08+0.12] = 1/1.2 = 0.833

Furthermore, the vp is taken as 2250 pc/(h*In) from the table of LOS criteria for lane freeway using the 15 minutes flow rate. Therefore:

[tex]f_{p}[/tex] = 3900/[0.8*3*0.833*2250] = 3900/4498.2 = 0.867

Write a program that adds the numbers 1 through 5 into the numbers ArrayList and then prints out the first element in the list.

Answers

Answer:

Answer code is given below along with comments to explain each step

Explanation:

Method 1:

// size of the array numbers to store 1 to 5 integers

int Size = 5;  

// here we have initialized our array numbers, the type of array is integers and size is 5, right now it is empty.

ArrayList<Integer> numbers = new ArrayList<Integer>(Size);

// lets store values into the array numbers one by one

numbers.add(1)

numbers.add(2)

numbers.add(3)

numbers.add(4)

numbers.add(5)

// here we are finding the first element in the array numbers by get() function, the first element is at the 0th position

int firstElement = numbers.get(0);

// to print the first element in the array numbers

System.out.println(firstElement);  

Method 2:

int Size = 5;  

ArrayList<Integer> numbers = new ArrayList<Integer>(Size);

// here we are using a for loop instead of adding manually one by one to store the values from 1 to 5

for (int i = 0; i < Size; i++)  

{

// adding the values 1 to 5 into array numbers

  numbers.add(i);  

}

//here we are finding the first element in the array numbers

int firstElement = numbers.get(0);  

// to print the first element in the array

System.out.println(firstElement);  

Why is the contractor normally required to submit a bid bond when making a proposal to an owner on a competitively bid contract?

Answers

Answer:

It serves as a guarantee that the contractor who wins the bid will honor the terms of the bid after the contract is signed.

Explanation:

A bid bond is a type of construction bond that protects the obligee in a  construction bidding process.

A bid bond typically involves three parties:

The obligee; the owner or developer of the construction project under bid. The principal; the bidder or proposed contractor.

The surety; the agency that issues the bid bond to the principal example insurance company or bank.

A bid bond generally serves as a guarantee that the contractor who wins the bid will honor the terms of the bid after the contract is signed.

Final answer:

Contractors are required to submit a bid bond to ensure they are financially able and willing to complete the project they bid on, preserving the integrity of the bidding process by preventing cost overruns, favoritism, and corruption.

Explanation:

A contractor is normally required to submit a bid bond when making a proposal to an owner on a competitively bid contract to ensure that the contractor is serious and financially able to carry out the project. The bid bond is a form of guarantee that the contractor will enter into the contract at the bid price if awarded the project and provides a financial penalty if the contractor fails to do so. Municipalities and other entities require this bond to prevent situations where a contractor might win a bid and then refuse to complete the work or ask for additional funds to finish the project (“cost overruns”). This is significant in a competitive bidding environment where fairness and the avoidance of favoritism or corruption are essential, as it stops anyone from being favored over others and ensures the project will be completed at the bid price.

Tenders, which are bid documents that outline the project plan and cost, play a crucial role in the construction industry. A well-prepared tender demonstrates that the projected cost reflects a balance between safety, environmental friendliness, and profitability. In contrast, a sealed-bid auction often used in these processes, requires strategic bidding and is susceptible to collusion or bribery to uncover competitor's bid details. Hence, a bid bond safeguards the process by providing a financial deterrent against such unethical practices.

Assume that the number of seeds a plant produces is proportional to its aboveground biomass. Find an equation that relates number of seeds and above ground biomass if a plant that weighs 225 g has 26 seeds. Use the variables s for number of seeds and w for weight in grams.

Answers

Answer:

s= 0.1156 * w or

s= 0.115*(q+p) in terms of Top Biomass and Root Biomass

Explanation:

Since s (number of seeds) is proportional to biomass (w), and above ground biomass also increases with total plant biomass.

s α w

s= 26

w= 225

k= constant

Thus s = k * w

s/w= k

26/225= k

0.1156= k

The equation showing the relationship between seeds and plant biomass is:

s= 0.1156 * w

Assume q= Top Biomass, and p= Root Biomass

w= q+p

Our equation now becomes

s= 0.115*(q+p)

The displacement of an oscillating mass is 0.004*sin(7t) meters. What is the peak amplitude of its velocity in meters/second?

Answers

Answer:

The peak amplitude velocity is found to be 0.028 m/s.

Explanation:

Given that the displacement of an oscillating mass is:

Displacement = x = 0.004 Sin(7t)

Now, to find out the velocity of this particle, me have to take derivative of 'x' with respect to 't'.

Velocity = V = dx/dt = (7)(0.004)Cos (7t)

V = 0.028 Cos (7t)

Now, for the maximum displacement, the value of the Cos function must be maximum. And we know that the maximum value of Cos function is 1. Thus, to get maximum displacement, we set the value of Cos (7t) to be equal to 1.

Vmax = 0.028(1)

Vmax = 0.028 m/s (Peak Amplitude of Velocity)

A 4.60 L vessel contains 24.5 g of PCl3 and 3.00 g of O2 at 15.0 ⁰C. The vessel is heated to 195 ⁰C, and the contents react to give POCl3.What is the final pressure in the vessel,assuming that the reaction goes to completion and that all reactants and products are in the gas phase?

Answers

Answer:

The final pressure in the vessel is 2.270atm

Explanation:

Mass of PCl3 = 24.5g, MW of PCl3 = 137.5g/mole, number of moles of PCl3 = 24.5/137.5 = 0.178mole

Mass of O2 = 3g, MW of O2 = 32g/mole, number of moles of O2 = 3/32 = 0.094moles

Total moles of rectant (n) = 0.178mole + 0.094mole = 0.272mole

From ideal gas equation

PV = nRT

P (pressure of reactants) = nRT/V

n = 0.272mole, R = 82.057cm^3.atm/gmol.K, T = 15°C = 15+273K = 288K, V = 4.6L = 4.6×1000cm^3 = 4600cm^3

P = 0.272×82.057×288/4600 = 1.397atm

From pressure law

P1/T1 = P2/T2

P2 (final pressure in the vessel) = P1T2/T1

P1 = 1.397atm, T1 = 288K, T2 = 195°C = 195+273K = 468K

P2 = 1.397×468/288 = 2.270atm

The real power delivered by a source to two impedances, ????1=4+????5⁡Ω and ????2=10⁡Ω connected in parallel, is 1000 W. Determine (a) the real power absorbed by each of the impedances and (b) the source current.

Answers

Answer:

The question is incomplete, below is the complete question

"The real power delivered by a source to two impedance, Z1=4+j5⁡Ω and Z2=10⁡Ω connected in parallel, is 1000 W. Determine (a) the real power absorbed by each of the impedances and (b) the source current."

answer:

a. 615W, 384.4W

b. 17.4A

Explanation:

To determine the real power absorbed by the impedance, we need to find first the equivalent admittance for each impedance.

recall that the symbol for admittance is Y and express as

[tex]Y=\frac{1}{Z}[/tex]

Hence for each we have,  

[tex]Y_{1} =1/Zx_{1}\\Y_{1} =\frac{1}{4+j5}\\converting to polar \\ Y_{1} =\frac{1}{6.4\leq 51.3}\\ Y_{1} =(0.16 \leq -51.3)S[/tex]

for the second impedance we have

[tex]Y_{2}=\frac{1}{10}\\Y_{2}=0.1S[/tex]

we also determine the voltage cross the impedance,

P=V^2(Y1 +Y2)

[tex]V=\sqrt{\frac{P}{Y_{1}+Y_{2}}}\\[/tex]

[tex]V=\sqrt{\frac{1000}{0.16+0.1}}\\ V=62v[/tex]

The real power in the impedance is calculated as

[tex]P_{1}=v^{2}G_{1}\\P_{1}=62*62*0.16\\ P_{1}=615W[/tex]

for the second impedance

[tex]P_{2}=v^{2}*G_{2}\\ P_{2}=62*62*0.1\\384.4w[/tex]

b. We determine the equivalent admittance

[tex]Y_{total}=Y_{1}+Y_{2}\\Y_{total}=(0.16\leq -51.3 )+0.1\\Y_{total}=(0.16-j1.0)+0.1\\Y_{total}=0.26-J1.0\\[/tex]

We convert the equivalent admittance back into the polar form

[tex]Y_{total}=0.28\leq -19.65\\[/tex]

the source current flows is

[tex]I_{s}=VY_{total}\\I_{s}=62*0.28\\I_{s}=17.4A[/tex]

Using Pascal’s Law and a hydraulic jack, you want to lift a 4,000 lbm rock. The large cylinder has a diameter of 6 inches.
a. What would the diameter of the small cylinder need to be if the amount of forceyou could apply was limited to your weight (120 lbf) ? (neglect the leveragegained by using a handle)

Answers

Answer:

a diameter of D₂ = 0.183 inches would be required

Explanation:

appyling pascal's law

P applied to the hydraulic jack = P required to lift the rock

F₁*A₁ = F₂*A₂

since A₁= π*D₁²/4 ,  A₂= π*D₂²/4

F₁*π*D₁²/4 = F₂* π*D₂²/4

F₁*D₁²=F₂*D₂²

D₂ = D₁ *√(F₁/F₂)

replacing values

D₂ = D₁ *√(F₁/F₂) =  6 in * √(120 lbf/(4000 lbm * 32.174 (lbf/lbm)) = 0.183 inches

The pressure in a water line is 1500 kPa. What is the line pressure in (a) lb/ft2units and (b) lbf/in2(psi) units?

Answers

Answer:

Part A:

[tex]1500\ KPa= 31328.145 \frac{lb}{ft^2}[/tex]

Part B:

[tex]1500 KPa=217.55656 \frac{lb}{in^2}[/tex](Psi)

Explanation:

Part A:

Line Pressure is 1500 KPa

We need a conversion factor which converts KPa to lb/ft^2.

[tex]20.88543 \frac{lb}{ft^2}= 1\ KPa[/tex]

In order to convert 1500 KPa to lb/ft^2, we proceed as:

[tex]1\ KPa=20.88543 \frac{lb}{ft^2} \\1500\ KPa= 1500 KPa*20.88543 \frac{lb}{ft^2.KPa}\\1500\ KPa= 31328.145 \frac{lb}{ft^2}[/tex]

1500 KPa is 31328.145 lb/ft^2

Part B:

We will use the same procedure we did in Part A:

1 ft= 12 in

[tex](1\ ft)^2=(12\ in)^2\\1 ft^2=144 in^2[/tex]

Converting [tex]1500 KPa\ into\ \frac{lb}{in^2}[/tex]

[tex]1500\ KPa= 1500 KPa*20.88543 \frac{lb}{ft^2.KPa} * \frac{ft^2}{144\ in^2}[/tex]

[tex]1500 KPa=217.55656 \frac{lb}{in^2}[/tex](Psi)

1500 KPa is 217.55656 lb/in^2 (psi)

You are provided with a fuel cell that is designed to operate at j = 3 A∕cm2 and P = 1.5 W∕cm2. How much fuel cell active area (in cm2) is required to deliver 2 kW of electrical power? (This is approximately enough to provide power to the average American home.)
(a) 296.3 cm2
(b) 1333.3 cm2
(c) 444.4cm2
(d) 666.6 cm2

Answers

Final answer:

To provide 2 kW of electrical power, the fuel cell requires an active area of approximately 1333.3 cm2, calculated by dividing the total power required by the fuel cell's power density.

Explanation:

The question involves calculating the area of a fuel cell required to deliver a specific power output, given its operational parameters. This problem is grounded in the principles of electrochemical engineering and requires an understanding of how power density influences the design and performance of fuel cells. Given that the fuel cell operates at a current density (j) of 3 A/cm2 and a power density (P) of 1.5 W/cm2, we are tasked with determining the active area needed to supply 2 kW of electrical power.

The formula to calculate the area is straightforward:

Start by identifying the total power output required, which is 2 kW or 2000 W.Use the provided power density of the fuel cell, 1.5 W/cm2.Calculate the area by dividing the total power by the power density: Area = 2000 W / 1.5 W/cm2 = 1333.3 cm2.

Therefore, to deliver 2 kW of electrical power, a fuel cell with an active area of approximately 1333.3 cm2 is required.

Water is the working fluid in an ideal Rankine cycle. The condenser pressure is 8 kPa, and saturated vapor enters the turbine at (a) 18 MPa and (b) 4 MPa. The net power output of the cycle is 100 MW.

Determine for each case a) the mass flow rate of steam, in kg/h, b) the heat transfer rates for the working fluid passing through the boiler and condenser, each in kW, and c) the thermal efficiency.

Answers

Explanation:

The obtained data from water properties tables are:

Point 1 (condenser exit) @ 8 KPa, saturated fluid

[tex]h_{f} = 173.358 \\h_{fg} = 2402.522[/tex]

Point 2 (Pump exit) @ 18 MPa, saturated fluid & @ 4 MPa, saturated fluid

[tex]h_{2a} = 489.752\\h_{2b} = 313.2[/tex]

Point 3 (Boiler exit) @ 18 MPa, saturated steam & @ 4 MPa, saturated steam

[tex]h_{3a} = 2701.26 \\s_{3a} = 7.1656\\h_{3b} = 2634.14\\s_{3b} = 7.6876[/tex]

Point 4 (Turbine exit) @ 8 KPa, mixed fluid

[tex]x_{a} = 0.8608\\h_{4a} = 2241.448938\\x_{b} = 0.9291\\h_{4b} = 2405.54119[/tex]

Calculate mass flow rates

Part a) @ 18 MPa

mass flow

[tex]\frac{100*10^6 }{w_{T} - w_{P}} = \frac{100*10^3 }{(h_{3a} - h_{4a}) - (h_{2a} - h_{f})}\\\\= \frac{100*10^ 3}{(2701.26 - 2241.448938 ) - (489.752 - 173.358)}\\\\= 697.2671076 \frac{kg}{s} = 2510161.587 \frac{kg}{hr}[/tex]

Heat transfer rate through boiler

[tex]Q_{in} = mass flow * (h_{3a} - h_{2a})\\Q_{in} = (697.2671076)*(2701.26-489.752)\\\\Q_{in} = 1542011.787 W[/tex]

Heat transfer rate through condenser

[tex]Q_{out} = mass flow * (h_{4a} - h_{f})\\Q_{out} = (697.2671076)*(2241.448938-173.358)\\\\Q_{out} = 1442011.787 W[/tex]

Thermal Efficiency

[tex]n = \frac{W_{net} }{Q_{in} } = \frac{100*10^3}{1542011.787} \\\\n = 0.06485[/tex]

Part b) @ 4 MPa

mass flow

[tex]\frac{100*10^6 }{w_{T} - w_{P}} = \frac{100*10^3 }{(h_{3b} - h_{4b}) - (h_{2b} - h_{f})}\\\\= \frac{100*10^ 3}{(2634.14 - 2405.54119 ) - (313.12 - 173.358)}\\\\= 1125 \frac{kg}{s} = 4052374.235 \frac{kg}{hr}[/tex]

Heat transfer rate through boiler

[tex]Q_{in} = mass flow * (h_{3b} - h_{2b})\\Q_{in} = (1125.65951)*(2634.14-313.12)\\\\Q_{in} = 2612678.236 W[/tex]

Heat transfer rate through condenser

[tex]Q_{out} = mass flow * (h_{4b} - h_{f})\\Q_{out} = (1125)*(2405.54119-173.358)\\\\Q_{out} = 2511206.089 W[/tex]

Thermal Efficiency

[tex]n = \frac{W_{net} }{Q_{in} } = \frac{100*10^3}{1542011.787} \\\\n = 0.038275[/tex]

For (a) 18 MPa:

- The mass flow rate of steam is approximately 238,050 kg/h.

- The heat transfer rates are approximately 674,970 kW (boiler) and 481,360 kW (condenser).

- The thermal efficiency is approximately 14.81%.

For (b) 4 MPa:

- The mass flow rate of steam is approximately 187,320 kg/h.

- The heat transfer rates are approximately 480,040 kW (boiler) and 380,450 kW (condenser).

- The thermal efficiency is approximately 20.83%.

Explanation and Calculation

To analyze the ideal Rankine cycle, we need to follow these steps for each case:

Case (a): 18 MPa

1. Determine Specific Enthalpies

- Condenser exit: Saturated liquid at 8 kPa.

 From steam tables: [tex]\( h_1 \approx 191.81 \, \text{kJ/kg} \)[/tex]

-Pump exit: Compressed liquid at 18 MPa.

 Using [tex]\( h_2 = h_1 + v_1 \Delta P \)[/tex]

 [tex]\[ v_1 \approx 0.001 \, \text{m}^3/\text{kg} \][/tex]

 [tex]\[ h_2 \approx 191.81 + 0.001 \times (18000 - 8) \approx 209.81 \, \text{kJ/kg} \][/tex]

- Boiler exit: Saturated vapor at 18 MPa.

 From steam tables: [tex]\( h_3 \approx 2821.6 \, \text{kJ/kg} \)[/tex]

-Turbine exit: Expanding to 8 kPa.

 From steam tables: [tex]\( h_4 \approx 2201.4 \, \text{kJ/kg} \)[/tex]

2. Mass Flow Rate of Steam

Using the power output:

[tex]\[ \dot{W}_{\text{net}} = \dot{m} (h_3 - h_4 - (h_2 - h_1)) \][/tex]

[tex]\[ 100 \times 10^6 = \dot{m} (2821.6 - 2201.4 - (209.81 - 191.81)) \][/tex]

[tex]\[ 100 \times 10^6 = \dot{m} \times 420.2 \][/tex]

[tex]\[ \dot{m} \approx 238050 \, \text{kg/h} \][/tex]

3. Heat Transfer Rates

- Boiler:

 [tex]\[ \dot{Q}_{\text{in}} = \dot{m} (h_3 - h_2) \][/tex]

 [tex]\[ \dot{Q}_{\text{in}} = 238050 \times (2821.6 - 209.81) \approx 674.97 \times 10^3 \, \text{kW} \][/tex]

- Condenser:

 [tex]\[ \dot{Q}_{\text{out}} = \dot{m} (h_4 - h_1) \][/tex]

 [tex]\[ \dot{Q}_{\text{out}} = 238050 \times (2201.4 - 191.81) \approx 481.36 \times 10^3 \, \text{kW} \][/tex]

4. Thermal Efficiency

[tex]\[ \eta = \frac{\dot{W}_{\text{net}}}{\dot{Q}_{\text{in}}} \][/tex]

[tex]\[ \eta = \frac{100 \times 10^3}{674.97 \times 10^3} \approx 14.81\% \][/tex]

Case (b): 4 MPa

1. Determine Specific Enthalpies

- Condenser exit: Saturated liquid at 8 kPa.

 From steam tables: [tex]\( h_1 \approx 191.81 \, \text{kJ/kg} \)[/tex]

- Pump exit: Compressed liquid at 4 MPa.

 Using [tex]\( h_2 = h_1 + v_1 \Delta P \)[/tex]

 [tex]\[ v_1 \approx 0.001 \, \text{m}^3/\text{kg} \][/tex]

 [tex]\[ h_2 \approx 191.81 + 0.001 \times (4000 - 8) \approx 195.81 \, \text{kJ/kg} \][/tex]

- Boiler exit: Saturated vapor at 4 MPa.

 From steam tables: [tex]\( h_3 \approx 2749.7 \, \text{kJ/kg} \)[/tex]

- Turbine exit: Expanding to 8 kPa.

 From steam tables: [tex]\( h_4 \approx 2222.0 \, \text{kJ/kg} \)[/tex]

2. Mass Flow Rate of Steam

Using the power output:

[tex]\[ \dot{W}_{\text{net}} = \dot{m} (h_3 - h_4 - (h_2 - h_1)) \][/tex]

[tex]\[ 100 \times 10^6 = \dot{m} (2749.7 - 2222.0 - (195.81 - 191.81)) \][/tex]

[tex]\[ 100 \times 10^6 = \dot{m} \times 531.9 \][/tex]

[tex]\[ \dot{m} \approx 187320 \, \text{kg/h} \][/tex]

3. Heat Transfer Rates

- Boiler:

 [tex]\[ \dot{Q}_{\text{in}} = \dot{m} (h_3 - h_2) \][/tex]

 [tex]\[ \dot{Q}_{\text{in}} = 187320 \times (2749.7 - 195.81) \approx 480.04 \times 10^3 \, \text{kW} \][/tex]

- Condenser:

[tex]\[ \dot{Q}_{\text{out}} = \dot{m} (h_4 - h_1) \][/tex]

 [tex]\[ \dot{Q}_{\text{out}} = 187320 \times (2222.0 - 191.81) \approx 380.45 \times 10^3 \, \text{kW} \][/tex]

4. Thermal Efficiency

[tex]\[ \eta = \frac{\dot{W}_{\text{net}}}{\dot{Q}_{\text{in}}} \][/tex]

[tex]\[ \eta = \frac{100 \times 10^3}{480.04 \times 10^3} \approx 20.83\% \][/tex]

Given a Pane object appPane and a TextField object nameField, write a statement that adds nameField to the pane.

Answers

Answer:

appPane.getChildren().add(nameField);

Explanation:

The question is related to JavaFx which is a set of packages used for making interactive graphical user interface that contains graphical components for better user experience.

Pane is a JavaFx component which is used for adjusting the position and size of a graphical component for a given scene.

We can create a pane object by appPane = new Pane(); command.

TextField is a JavaFx object that is used for displaying a line of text. We have various functions available to set properties of TextField object.

We can create a TextField object by  nameField = new TextField(); command.

A pane can have multiple set of graphical components for various parts of an application. These are called children.

Hence we can write the following statement to add a TextField object nameField to a Pane object appPane.

appPane.getChildren().add(nameField);

What is the peak runoff discharge for a 1.3 in/hr storm event from a 9.4-acre concrete-paved parking lot (C

Answers

Answer:

331809.5gallon/hr or 92.16gallon/s

Explanation:

What is the peak runoff discharge for a 1.3 in/hr storm event from a 9.4-acre concrete-paved parking lot (C

convert 9.4 acre to inches we have=5.896*10^7

How to calculate Peak runoff discharge

1. take the dimension of the roof

2. multiply the dimension by the n umber of inches of rainfall

3. Divide by 231 to get gallon equivalence (because 1 gallon = 231 cubic inches)

5.896*10^7*1.3

7.66*10^7 cubic inches/hr

1 gallon=231 cubic inches

7.66*10^7 cubic inches=331809.5gallon/hr or 92.16gallon/s

this is gotten by converting 1 hr to seconds

331809.5gallon/hr /3600s=92.16gallon/s

A signalized intersection approach has an upgrade of 4%. The total width of the cross street at this intersection is 60 feet. The average vehicle length of approaching traffic is 16 feet. The speed of approaching traffic is 40 mi/h. Determine the sum of the minimum necessary change and clearance intervals.

Answers

Answer:

change interval is 3.93 sec

clearance interval is 1.477 sec

Explanation:

Given data:

upgrade of intersection 4%

street total width at intersection is 60 ft

vehicle length of approaching traffic = 16 ft

speed of approaching traffic =40 mi/hr

85th percentile speed is calculated as

S_{85} = S +5

S_{ 85} = 40 + 5  = 45 mi/h

15th Percentile speed

[tex]S_{15} =S-5[/tex]

          = 40 - 5 = 35 mi/hr

change in interval is calculated as

[tex]y = t + \frac{1.47 S_{85}}{2a +(64.4\times 0.01 G}[/tex]

t is reaction time is 1.0,

deceleration rate is given as 10 ft/s^2

[tex]y = 1.0 +\frac{1.47\times 45}{2a +(64.4\times 0.01\times 4}[/tex]

y = 3.93 s

clearance interval is calculated as

[tex]a_r = \frac{W+ L}{1.47\times S_{15}}[/tex]

[tex]a_r = \frac{60+16}{1.47\times 35} = 1.477 s[/tex]

Because assembly language is so close in nature to machine language, it is referred to as a ____________.
low-level language

Answers

Answer:

symbolic machine code.

Explanation:

The instructions in the language are closely linked to the machine's architecture.

A 1000 KVA three phase transformer has a secondary voltage of 208/120. What is the secondary full load amperage?

Answers

Answer:

The three phase full load secondary amperage is 2775.7 A

Explanation:

Following data is given,

S = Apparent Power = 1000 kVA

No. of phases = 3

Secondary Voltage: 208 V/120 V (Here 208 V is three phase voltage and 120 V is single phase voltage)

Since,

[tex]V_{1ph} =\frac{ V_{3ph}}{\sqrt{3} }\\V_{1ph) = \frac{208}{\sqrt{3} }\\[/tex]

[tex]V_{1ph} = 120 V[/tex]

The formula for apparent power in three phase system is given as:

[tex]S = \sqrt{3} VI[/tex]

Where:

S = Apparent Power

V = Line Voltage

I = Line Current

In order to calculate the Current on Secondary Side, substituting values in above formula,

[tex]1000 kVA = \sqrt{3} * (208) * (I)\\1000 * 1000 = \sqrt{3} * (208) * (I)\\I = \frac{1000 * 1000}{\sqrt{3} * (208) }\\ I = 2775.7 A[/tex]

 

Calculate the resulting power factor if a synchronous motor rated at 500 hp with 90% efficiency operating at rated load and at unity power factor is added to the plant instead of the capacitor.
Assume constant voltage (1 hp = 0.746 kW).

Answers

Answer:

The question is incomplete. Below is the complete question

"An industrial plant consisting primarily of induction motor loads absorbs 500 kW at 0.6 power factor lagging. (a) Compute the required kVA rating of a shunt capacitor to improve the power factor to 0.9 lagging. (b) Calculate the resulting power factor if a synchronous motor rated 500 hp with 90% efficiency operating at rated load and at unity power factor is added to the plant instead of the capacitor. Assume constant voltage. (1 hp = 0.746 kW)"

Answer:

a. 424.5KVA

b. 0.808 lagging.

Explanation:

Let's first determine the real power, reactive and the apparent power delivered.

Ql= Ptan(the real power angle)

Ql=500*tan53.13°

Ql=666.7 Kvar

The reactive angle is

Arccos(0.9)=25.84°

Now we calculate the reactive power

Qs=Ptan25. 84°

Qs=242.4KVAR

Hence the apparent power is

Qc=Ql-Qs

Qc=666.7-242.2

Qc=424.5KVAR

The required KVA rating of the shunt capacitor is 424.5KVA

b. To calculate the resulting power factor we first determine the power absorbs by the synchronous motor.

Pm=(500*0.746)/0.9

Pm=414.4KW

The total reactive power is

Ps=P+Pm

Ps=414.4+500=914.4KW

Hence we compute the source power factor as

PF=cos[arctan(Qs/Ps)]

PF=cos[arctan(666.7/914.4)

From careful calculation, we arrive at

PF=0.808.

Note this power factor will be lagging.

Other Questions
In 1968, John met Yoko Ono at ____________, and the two began having a very public affair.a. the premier of the Beatles' film Help!b. an after party held when the Revolver album was releasedc. the home of manager, Brian Epstein, during a lavish dinner partyd. a London art gallery where she was showing her worke. London's Heathrow airport, where they were both booked on the same flight What name was given to the political competition between Western democracies and communist nations after World War Il? What is the function of proteins and carbohydrates that are embedded in a cell membrane? They help control what enters and leaves the cell. They direct the reproduction process for the cell. They act as storage molecules for water. They provide nutrients that the cell needs. collins middle school has 264 sixth grade students. if the sixth grade is 40% of the total school, how many students are in the middle school? please help !!! GDP (gross domestic product) is supposed to indicate economic health because it is supposed to rise when A) inflation is low. B) prices are falling. C) wealth is being created. D) unemployment levels are falling. A system in which a child's main education is undertaken by a parent. Children in a tree house lift a small dog in a basket 4.90m up to their house. If it takes 201J of work to do this, what is the combined mass of the dog and basket? Which map projection class has longitude lines appearing as straight, equally spaced parallel lines and latitude lines appearing as parallel lines that intersect the meridians at right angles? The nurse manager is discussing therapeutic communication with a group of staff nurses. The nurse manager asks the staff nurses, "What is the purpose of using therapeutic communication?" Which statement by the nurse identifies the purpose of using therapeutic communication? In the eyes of contemporary consumer behavior researchers, "Consumption" refers to a process in which consumers use up the values of products, services, ideas, or experiences.True / False. In cod fishing, older and larger fish are more likely to be retained in nets than younger and smaller fish. Despite the removal of these large breeders, the population is still reproducing. How do you think cod characteristics have changed due to the selection pressure from over-fishing? What type of compound does the formula CuCl2 represent?A) ionic saltB) covalent molecule A 1-month-old boy has a fever to 102.7F (39.3C), is irritable, has diarrhea, and has not been eating well. On examination he has an immobile red TM that has pus behind it. Which of the following is the most appropriate course of action?A. Admission to the hospital with complete evaluation.B. Intramuscular ceftriaxone and close outpatient follow-upC. Oral amoxicillin-clavulanate.D. Oral cefuroximeE. High-dose oral amoxicillin Compare the achievements of the Knights of Labor and the American Federation of Labor. What common ground do they share? What factors help explain their differences? 1. PABLO scar, voy al centro ahora. SCAR A qu hora (1)______ (pensar) volver?2. El partido de ftbol (2) ________(empezar) a las dos. What is the output of the following program? int sum = 0; int k = 1; int val = 1; for (k = 0; k 4a=16, a=10Whats the answer? Marshall McLuhan's "global village" metaphor suggests that the world's cultures are becoming increasingly disconnected and independentA. TrueB. False The Montana Supreme Court rules against Natural Grocery Mart in a case against One Stop 2 Shop Stores, Inc. Natural Grocery asks the United States Supreme Court to review the case. The Court does not hear the case. This:________.a. is a decision on the merits that has value as a precedent.b. indicates agreement with the Montana courts decision.c. means nothing.d. means that the Montana courts decision is the law in Montana. Exercise 12-04 Sosa Company reported net income of $190,000 for 2022. Sosa Company also reported depreciation expense of $35,000 and a loss of $5,000 on the disposal of plant assets. The comparative balance sheets show an increase in accounts receivable of $15,000 for the year, a $17,000 increase in accounts payable, and a $4,000 increase in prepaid expenses. Prepare the operating activities section of the statement of cash flows for 2022. Use the indirect method. Steam Workshop Downloader