By comparing the Waxing Crescent and Waxing Gibbous lunar phases, it can be seen that the Waxing Crescent is more illuminated while the Waxing Gibbous is less illuminated. Hence option A is correct.
What is Waxing Crescent ?The second stage of the cycle of phases is the Waxing Crescent. Once a month, this Moon phase lasts for 7.38 days before transitioning into the First Quarter phase. It rises at 9 AM and sets at 9 PM. The reason this phase is known as the Waxing Crescent is because the region of the Moon's surface that is lit resembles the shape of a crescent, and waxing refers to growth. The Earth, Moon, and Sun are practically perpendicular at this phase because it is one cycle away from the First Quarter phase. This indicates that the gravitational attraction of the tides from the Sun and Moon cancels out, resulting in a smaller tidal pull. At this time, the Earth's tides are practically at neap tide.
Hence option A is correct.
To know more about Waxing Gibbous :
https://brainly.com/question/18214862
#SPJ3.
The correct answer to compare the lunar phase of the Waxing Crescent to the Waxing Gibbous is D: The Waxing Crescent is less than half illuminated and the Waxing Gibbous is more than half illuminated.
Both phases are increasing in illumination as the visible portion of the moon grows. During the Waxing Crescent, there is a growing small portion, about 1/4, on the right side of the moon that is lit. As the moon moves towards the Waxing Gibbous phase, the illuminated portion increases to more than half, approximately 3/4, on the right side of the moon.
In both waxing phases, the angle formed by pointing one arm at the Moon and one arm at the Sun demonstrates an increase in the lit portion of the moon we see. In the Waxing Crescent phase, this angle is acute, and it becomes obtuse during the Waxing Gibbous phase, indicating the moon's journey towards a full moon, when the angle is 180°, and the entire near side of the moon, as viewed from Earth, is illuminated.
A basketball has a mass of 1 kg and is traveling 12 m / s . How fast would a 6 kg bowling ball have to travel to have the same momentum ?
a. 1 m/s
b. 2 m/s
c. 3 m/s
d. 4 m/s
The internal kinetic energy of molecules produces ...?
Find the equilibrium concentrations of A, B, and C for a=1, b=1, and c=2. Assume that the initial concentrations of A and B are each 1.0 M and that no product is present at the beginning of the reaction.
Consider the following reaction and associated equilibrium constant:
aA(g)+bB(g)⇌cC(g), Kc = 4.0
The equilibrium concentration of A is [tex]\boxed{\frac{1}{3}}[/tex].
The equilibrium concentration of B is [tex]\boxed{\frac{1}{3}}[/tex].
The equilibrium concentration of C is [tex]\boxed{\frac{2}{3}}[/tex].
Further explanation:
Chemical equilibrium is the state in which the concentration of reactants and products become constant and do not change with time. This is because the rate of forward and backward direction becomes equal. The general equilibrium reaction is as follows:
[tex]{\text{A(g)}}+{\text{B(g)}}\rightleftharpoons{\text{C(g)}}+{\text{D(g)}}[/tex]
The equilibrium constant is the constant that relates the concentration of product and reactant at equilibrium. The formula to calculate the equilibrium constant for the general reaction is as follows:
[tex]{\text{K}}=\dfrac{{\left[ {\text{D}}\right]\left[{\text{C}}\right]}}{{\left[{\text{A}} \right]\left[{\text{B}}\right]}}[/tex]
Here, K is the equilibrium constant.
The given reaction is,
[tex]{\text{aA}}\left( g \right)+{\text{bB}}\left( g \right) \rightleftharpoons{\text{cC}}\left( g \right)[/tex]
Here,
A and B are the two reactants.
C is the product formed.
a and b are the stoichiometric coefficients of A and B respectively.
c is the stoichiometric coefficient of C.
The expression of [tex]{{\text{K}}_{\text{c}}}[/tex] for the above reaction is as follows:
[tex]{{\text{K}}_{\text{c}}}=\dfrac{{{{\left[{\text{C}}\right]}^{\text{c}}}}}{{{{\left[{\text{A}} \right]}^{\text{a}}}{{\left[{\text{B}}\right]}^{\text{b}}}}}[/tex] ...... (1)
Here,
[tex]{{\text{K}}_{\text{c}}}[/tex] is the equilibrium constant that is concentration-dependent.
Let the change in concentration at equilibrium is x. Therefore, the concentration of C becomes x at equilibrium. The concentration of A and B become 1-x at equilibrium.
Substitute x for [C] , 1-x for [A] and 0.57-x for [B], 1 for a, 1 for b and 2 for c in equation (1).
[tex]{{\text{K}}_{\text{c}}}=\dfrac{{{{\left[ {\text{x}} \right]}^2}}}{{{{\left[{{\text{1 - x}}} \right]}^{\text{1}}}{{\left[{{\text{1 - x}}}\right]}^{\text{1}}}}}[/tex] ...... (2)
Rearrange equation (2) and substitute 4 for [tex]{{\text{K}}_{\text{c}}}[/tex] to calculate the value of x.
[tex]{{\text{x}}^2}=\dfrac{{{\text{8x}} - 4}}{3}[/tex]
The final quadratic equation is,
[tex]{\text{3}}{{\text{x}}^2}-8{\text{x}}+4=0[/tex]
Solve for x,
[tex]{\text{x}}={\text{2 , }}\dfrac{2}{3}[/tex]
The value of x equal to 2 is not accepted as it would make the equilibrium concentration of A and B negative, which is not possible. So the value of x comes out to be 2/3.
The equilibrium concentration of [C] is equal to 2/3.
The equilibrium concentration of A is calculated as follows:
[tex]\begin{aligned}\left[ {\text{A}}\right]&=1-\frac{2}{3}\\&=\frac{1}{3}\\\end{aligned}[/tex]
The equilibrium concentration of B is calculated as follows:
[tex]\begin{aligned}\left[ {\text{B}}\right]&=1-\frac{2}{3}\\&=\frac{1}{3}\\\end{aligned}[/tex]
So the equilibrium concentrations of A, B and C are 1/3, 1/3 and 2/3 respectively.
Learn more:
1. Calculation of equilibrium constant of pure water at 25°c: https://brainly.com/question/3467841
2. Complete equation for the dissociation of (aq): https://brainly.com/question/5425813
Answer details:
Grade: Senior School
Subject: Chemistry
Chapter: Equilibrium
Keywords: equilibrium constant, A, B, C, a, b, c, 1, 1, 2, 1/3, 1/3, 2/3, Kc, concentration dependent.
Which of the following materials is likely to be the best conductor?
iron
sulfur
carbon
tin
Answer: Option (a) is the correct answer.
Explanation:
Metals are the substance which have excess of electrons. Therefore, they are good conductors of heat and electricity as they have mobile electrons.
Out of the given options, iron is a transition metal which are good conductors of heat and electricity.
Sulfur and carbon are non-metals, therefore, they are bad conductors of heat and electricity.
Tin is a poor metal so it will not conduct electricity effectively as compared to iron.
Thus, we can conclude that out of the given options, iron is likely to be the best conductor.
how might building a new highway affect the cycles of matter?
A potassium atom (atomic number 19) and a bromine atom (atomic number 35) can form a chemical bond through a transfer of one electron. The potassium ion that forms has 18 electrons. What best describes the bromide ion that forms?
A It is a negative ion that has one less valence electron than a neutral bromine atom.
B It is a positive ion that has one less valence electron than a neutral bromine atom.
C It is a negative ion that has one more valence electron than a neutral bromine atom.
D It is a positive ion that has one more valence electron than a neutral bromine atom.
Correct answer choice is :
C) It is a negative ion that has one more valence electron than a neutral bromine atom.
Explanation:
A bromide is a synthetic composite including a bromide ion or ligand. Potassium bromide (KBr) is a salt, usually selected as an anticonvulsant and a drug in the late 19th and early 20th centuries, with over the stand value increasing to 1975 in the US. Potassium bromide is applied as a veterinary drug, as an antiepileptic medicine for dogs.
C. It is a negative ion that has one more valence electron than a neutral bromine atom.
Explanation;Potassium atom and a bromine atom may form a chemical bond called ionic bond. Ionic bond is formed between a metal and a non-metal and involves the transfer of electrons from one atom to another,During the formation of an ionic bond the metal atom looses electrons to form a positively charged ion called a cation, and the non-metal gains electrons to form a negatively charged ion called ion. In this case, a neutral potassium atom with 19 electrons looses 1 electron to form a potassium cation with 18 electrons. On the other hand, a neutral bromine atom with 35 electrons gains 1 electron to form an anion (negatively charged ion) with 36 electrons.Which voice can produce a pitch that has a speed of 343 m/s and a wavelength of 0.68m?
What is the torque about the center of the sun due to the gravitational force of attraction of the sun on the planet?
Final answer:
The torque about the center of the Sun due to the Sun's gravitational force on a planet is effectively zero, as the force provides centripetal force for the planet's orbit, not rotational force.
Explanation:
The question asked relates to the field of Classical Mechanics within Physics, particularly regarding the calculation of torque due to gravitational forces. In classical mechanics, torque is the measure of the force that can cause an object to rotate about an axis. The torque (τ) can be calculated by the cross product of the radius vector (r) from the axis of rotation to the point of force application and the force vector (F), τ = r x F. However, in the context of a planet orbiting the Sun, the force of gravity provides centripetal force causing the planet to move in a circular path and does not contribute to the planet spinning or rotating about its own axis. Therefore, the torque about the center of the Sun due to the Sun's gravitational force on a planet is effectively zero.
Most of the Earth's volcanoes occuWhen fossils or minerals form, certain unstable elements are sometimes locked into them. The proportion of these unstable elements gradually decreases over time as they decay into other materials in a predictable way. Scientists use the rate at which such unstable elements decay to determine when the fossils or minerals formed. The technique described above is known as as
Radioactive dating, is your answer.
5 minerals used to make phones
A cold beer initially at 35ºF warms up to 40ºF in 3 min while sitting in a room of temperature 70ºF. How warm will the beer be if left out for 20 min
Final answer:
Using Newton's law of cooling, we can calculate that the beer will be approximately 60.4ºF if left out for 20 minutes.
Explanation:
To calculate the final temperature of the beer after being left out for 20 minutes, we can use Newton's law of cooling. This law states that the rate of heat loss of an object is proportional to the temperature difference between the object and its surroundings. In this case, the initial temperature of the beer is 40ºF and the room temperature is 70ºF. Let's determine the constant of proportionality, k, first:
k = (T2 - T1) / t = (70 - 40) / 3 = 10
Now we can use the formula to find the final temperature, T3, after 20 minutes:
[tex]T3 - 70 = (40 - 70)e^(-10(20/3))[/tex]
[tex]T3 - 70 = -30e^(-20/3)[/tex]
[tex]T3 = 70 - 30e^(-20/3)[/tex]
Using a calculator, we can find that T3 is approximately 60.4ºF.
___ acceleration occurs when an object speeds up
Explanation:
Acceleration is defined as the change in velocity over time.
When there is an increment or increase in the magnitude of velocity of a moving body then it is known as positive acceleration.
Whereas when there is a decrease in magnitude of velocity of a moving body then it is known as negative acceleration.
Thus, we can conclude that positive acceleration occurs when an object speeds up.
The acceleration that leads to the increase in the speed of the object is called as Positive acceleration.
Explanation:
The acceleration of a body is defined as the amount of change taking place in the magnitude of the velocity of the body in every second. The acceleration of the body is a vector quantity as it requires the direction along with the magnitude of change in the speed of the body.
If the acceleration of the body is acting in the direction opposite to the direction of motion of the body, then the acceleration tends to decrease the speed of the body and it is called as deceleration.
Whereas if the acceleration of a body is in the direction same as that of the direction of motion of the body, then the acceleration of the body increases the speed of the body and this acceleration is termed as the positive acceleration of the body.
Therefore, the acceleration of an object that tends to speed up the object must be acting in the direction same as the direction of motion of the body and therefore it is termed as the positive acceleration of the body.
Thus, The acceleration that leads to the increase in the speed of the object is called as Positive acceleration.
Learn More:
1. Transnational kinetic energy brainly.com/question/9078768.
2. Motion under friction brainly.com/question/7031524.
3. Conservation of momentum brainly.com/question/9484203
Answer Details:
Grade: High School
Subject: Physics
Chapter: Acceleration
Keywords:
acceleration, rate of change, velocity, speed, increase, per second, direction, opposite, motion, along, speed up.
A football is kicked at an 50 degree angle to the horizontal , travels a horizontal distance of 20m before hitting the ground. what is the initial speed?
Answer:
Initial speed of football=14.11m/s
Explanation:
Range is the horizontal distance travelled. Therefore using formular for Range,R to determine the speed.
R=V^2Sin2theta/g
Given: R=20m
Theta=50°
20= V^2 Sin(2×50)°/ 9.8
Cross multiply
20×9.8 = V^2 Sin100°
196= V^2×0.9848
V=Sqrt(196/0.9848)
V= 14.11m/s
True or fase
a force is always required to move an object from rest.
...?
Which type of radiation is used to make images of bones inside the body?
SI is considered a consistent system because it
SI (International System of Units) is a consistent system in mathematics because it provides standard and consistent measurements based on fundamental constants of nature.
Explanation:In mathematics, SI (International System of Units) is considered a consistent system because it provides a standard and consistent way of measuring physical quantities such as length, mass, time, and temperature.
SI units are based on fundamental constants of nature and are internationally recognized and used. For example, the meter is defined as the distance traveled by light in a vacuum during a specific time interval.
Consistency in SI units allows for easy comparisons, calculations, and communication across different scientific disciplines and countries.
Learn more about SI (International System of Units) here:https://brainly.com/question/30404877
#SPJ2
A 12 g bullet is fired into a 9.0 kg wood block that is at rest on a wood table. The block, with the bullet embedded, slides 5.0 cm across the table. The coefficient of kinetic friction for wood sliding on wood is 0.20.
What was the speed of the bullet?
The initial speed of the bullet can be determined using the principles of conservation of momentum and the work-energy theorem. Conservation of momentum gives us the velocity of the block and bullet after collision, and the work-energy theorem using the friction force and the distance gives us the velocity.
Explanation:This question can be solved using the principles of conservation of momentum and the work-energy theorem. Using conservation of momentum before and after the collision, we can put: Momentum before = Momentum after. Therefore, (mass of bullet * velocity of bullet) = (total mass * velocity after). This gives us the velocity of the block and bullet together. From the work-energy theorem, work done = change in kinetic energy. Or, friction force * distance = 1/2 * mass * (velocity)^2. But friction force = mass * gravity * coefficient of friction, which gives us the equation 0.20 * 9.01 * 9.81 * 0.05 = 1/2 * 9.01 * (velocity)^2. Solving the equations together will give you the initial speed of the bullet.
Learn more about conservation of momentum here:https://brainly.com/question/33316833
#SPJ3
A bullet is fired horizontally from the top of a building with a muzzle velocity of 150 m/s.A similar bullet dropped from the top of the same building, takes 4 sec to reach the ground. How far forward does the first bullet go before it hits the ground?
Final answer:
The horizontal distance traveled by the bullet before hitting the ground is 600 meters.
Explanation:
To determine how far forward the bullet goes before it hits the ground, we can use the fact that both the horizontally fired bullet and the dropped bullet hit the ground after a certain time. The dropped bullet takes 4 seconds to reach the ground, so we can consider its vertical motion using the equation h = 0.5 * g * t^2, where h is the height, g is the acceleration due to gravity, and t is the time. Plugging in the values, we get 0 = 0.5 * 9.8 * 4^2, which gives us h = 78.4 meters.
Since the horizontally fired bullet has the same horizontal velocity as the dropped bullet, it would take the same time to reach the ground. This means that the horizontally fired bullet travels a horizontal distance equal to its horizontal velocity multiplied by the time it takes to reach the ground. Plugging in the values, we get d = 150 * 4 = 600 meters.
Therefore, the first bullet travels 600 meters forward before hitting the ground.
The bullet fired horizontally travels 600 meters before hitting the ground because it takes the same 4 seconds as the dropped bullet to reach the ground, and it travels at a horizontal velocity of 150 m/s.
Step-by-Step Explanation:
Calculate the horizontal distance using the formula: distance = velocity x time.Here, the muzzle velocity of the bullet is 150 m/s and the time is 4 seconds.Distance = 150 m/s * 4 s = 600 meters.Conclusion:
The bullet fired horizontally travels 600 meters before it hits the ground.
How does the strength of an electromagnet depend on the current and the number of turns in the coil?
Strength of Electromagnet increases when either the "Current" or "Number of turns in a coil" increases.
They are directly proportional to strength of Electromagnet.
Explanation:
To compile, the power or intensity of a coils magnetic field depends on the following circumstances. The number of turns of wire within the coil. The amount of current running in the coil. An electromagnet is a temporary magnet; the magnetic field only survives when an electric current is running through it. The power of the electromagnet depends on how many coils you wind around and how great the voltage is.
Conceptual Question 8.09osama wadi
Part A
In a perfectly ELASTIC collision between two perfectly rigid objects
the momentum of each object is conserved.
both the momentum and the kinetic energy of the system are conserved.
the kinetic energy of the system is conserved, but the momentum of the system is not conserved.
the kinetic energy of each object is conserved.
the momentum of the system is conserved but the kinetic energy of the system is not conserved.
...?
Q1. After three half-lives of an isotope, 1 billion of the original isotope's atoms still remain in a certain amount of this element. How many atoms of the daughter product would you expect to be present?
Q2. By measuring the amounts of parent isotope and daughter product in the minerals contained in a rock, and by knowing the half-life of the parent isotope, a geologist can calculate the absolute age of the rock. A rock contains 125 g of a radioisotope with a half-life of 150 000 years and 875 g of its daughter product. How old is the rock according to the radiometric dating method?
a baseball pitcher throws a fastball at 42 meters per second. if the batter is 18 meters from the pitcher, approximately how much time does it take for the ball to reach the batter?
The time taken by the ball to reach the batter is 0.42 seconds
The baseball pitcher throws a fastball at 42 m/s
The batter is about 18 meters from the pitcher
Therefore the time for the ball to reach the batter can be calculated as follows;
= 18/42
= 0.42 secs
Hence the time taken by the ball to reach the batter is 0.42 seconds
Please see the link below for more information
https://brainly.com/question/13719636?referrer=searchResults
Two charged objects of +2Q and +1Q are placed a distance d from one another. The force between the objects in measured as 2F. If the charge on BOTH objects id doubled, what will the force between them be?
When the charge on both the given objects is doubled, Coulomb's Law indicates that the electrostatic force will become four times greater, resulting in a new force of 8F.
The original question asks about the effect on electrostatic force between two charged objects if both of their charges are doubled.
In the given situation, if we double the charge on both objects (from +2Q to +4Q and from +1Q to +2Q), then the product of the charges becomes 4 times greater because (4Q * 2Q) is 4 times (2Q * 1Q).
Therefore, if the force was initially measured as 2F, after doubling both charges, the force will become 4 times bigger, which is 8F.
This is represented by the option: c.
A 17,000-kg airplane lands with a speed of 82 m/s on a stationary aircraft carrier deck that is 115 m long. find the work done by nonconservative forces in stopping the plane
The work done by nonconservative forces in stopping the 17,000-kilogram airplane landing at a speed of 82 m/s is 57,062,000 Joules. This is calculated by the change in kinetic energy of the airplane when it lands and comes to a stop.
Explanation:The question refers to the concept of work-energy theorem in Physics, especially involving non-conservative forces. The airplane is initially moving and finally comes to rest. Its initial kinetic energy (KE) gets transferred to work done by nonconservative forces, which in this scenario includes friction due to the aircraft carrier deck and air resistance.
The initial kinetic energy of the plane is calculated using the formula 1/2 * m * v^2 where 'm' is the mass of the plane and 'v' is its speed. So, the initial kinetic energy of the plane is 1/2 * 17,000 kg * (82 m/s)^2 = 57,062,000 Joules. When the plane comes to rest, its final kinetic energy is 0. As per the work-energy theorem, the work done by nonconservative forces is equal to the change in the kinetic energy. Therefore, the work done by nonconservative forces in stopping the plane = Initial KE - Final KE = 57,062,000 Joules - 0 = 57,062,000 Joules.
Learn more about Work-energy theorem here:https://brainly.com/question/30560150
#SPJ12
The work done by nonconservative forces in stopping the airplane is [tex]{57,154,000 \, \text{J}}[/tex].
To find the work done by nonconservative forces (like friction and air resistance) in stopping the airplane, we can use the work-energy principle. The work done by the nonconservative forces is equal to the change in the kinetic energy of the airplane.
Step-by-Step Solution
1. Calculate the initial kinetic energy ([tex]KE_{\text{initial}}[/tex]):
[tex]KE_{\text{initial}} = \frac{1}{2} m v^2[/tex]
where:
- m is the mass of the airplane (17,000 kg),
- v is the initial speed (82 m/s).
[tex]KE_{\text{initial}} = \frac{1}{2} \times 17,000 \, \text{kg} \times (82 \, \text{m/s})^2 \\\\KE_{\text{initial}} = \frac{1}{2} \times 17,000 \times 6,724 \\\\KE_{\text{initial}} = 57,154,000 \, \text{J}[/tex]
2. Calculate the final kinetic energy ([tex]KE_{\text{final}}[/tex]):
Since the airplane comes to a stop, its final speed is 0 m/s.
[tex]KE_{\text{final}} = \frac{1}{2} m (0)^2 = 0 \, \text{J}[/tex]
3. Calculate the change in kinetic energy (ΔKE):
[tex]\Delta KE = KE_{\text{final}} - KE_{\text{initial}} \\\\\Delta KE = 0 \, \text{J} - 57,154,000 \, \text{J} \\\\\Delta KE = -57,154,000 \, \text{J}[/tex]
4. The work done by nonconservative forces (W):
The work done by nonconservative forces is equal to the negative of the change in kinetic energy (since they are doing work to stop the airplane).
[tex]W = -\Delta KE \\\\W = -(-57,154,000 \, \text{J}) \\\\W = 57,154,000 \, \text{J}[/tex]
Therefore, the work done by nonconservative forces in stopping the airplane is [tex]{57,154,000 \, \text{J}}[/tex] .
Which example provides the most complete description of an object's motion?
1. The ballerina rotated 10 times in 2 minutes.
2. Bobby threw a Frisbee 10 m through the hoop.
3. The turtle took 20 minutes to make it to the other side of the road.
4. The hiker followed a road heading north for 2 miles in 30 minutes.
Answer:
The hiker followed a road heading north for 2 miles in 30 minutes.
Explanation:
In order to describe the motion of an object, distance covered and time taken must be required. The total path covered by an object is called the distance travelled.
The hiker followed a road heading north for 2 miles in 30 minutes. This describes the motion of hiker. The motion shows how fast the hiker is moving.
Distance, d = 2 miles = 3218.6 m
times, t = 30 minutes = 1800 seconds
So, we can say that the hiker is moving with a speed of 1.78 m/s in north direction.
Hence, this is the required solution.
Answer:
In this case in option 4:
The hiker followed a northbound road for 2 miles in 30 minutes.
Explanation:
Hello ! Let's solve this!
To know the description of a movement we have to know the distance it travels and the time it takes to travel it.
In this case in option 4:
The hiker followed a northbound road for 2 miles in 30 minutes.
Distance: 2 miles
time: 30min
Then we can calculate the speed of the hiker
A rectangular pool has a volume of 375 m3. the pool is 10 m long and 5 m wide. how deep is the pool? 7.5 m 3,750 m 75 m
In 1831, Michael Faraday was the first to realize that an electric current could be induced by passing a magnet through a coil of copper wire. Which factor is MOST essential for the induction of the electric current?
Answer:
D
Explanation:
it is the correct answer on usa test prep
What is the sound intensity level if the intensity of the sound is doubled??
Which best supports the idea that the surface of the moon has changed very little?
a) If photographs of the moon were taken millions of years ago, the surface would look the same.
b) Because the moon does not have a large iron core, it is not possible for geologic events to occur on the moon.
c) Because the moon has no atmosphere, it is not possible for geologic events to occur on the moon.
d) If one considers the history of the moon, there is only one distinct phase of its development.
Geothermal energy is generated by the sun.
True
False ...?