Answer:
[tex]\frac{4}{15}[/tex] of the pizza has both pepperoni and onions.
Step-by-step explanation:
As we know, [tex]\frac{2}{5}[/tex] of the pizza has pepperoni and [tex]\frac{1}{3}[/tex] of it is onions.
1. Find the total of the two fractions above.[tex]\frac{2}{5}[/tex] + [tex]\frac{1}{3}[/tex]
= [tex]\frac{6}{15}[/tex] + [tex]\frac{5}{15}[/tex] (because you have to find like denominators when you add)
= [tex]\frac{11}{15}[/tex]
[tex]\frac{11}{15}[/tex] of the pizza have one topping.
2. Subtract [tex]\frac{11}{15}[/tex] from the whole.The whole is 1, or [tex]\frac{15}{15}[/tex]. So,
[tex]\frac{15}{15}[/tex] - [tex]\frac{11}{15}[/tex] = [tex]\frac{4}{15}[/tex].
[tex]\frac{4}{15}[/tex] of the pizza have both pepperoni and onions.
Final answer:
Two-fifths (2/5) of the pizza has just pepperoni and one-third (1/3) has just onions. Since the sum of these portions exceeds one, we find the overlap by subtracting one from the sum (11/15 - 15/15), resulting in 4/15 of the pizza having both pepperoni and onions.
Explanation:
Cindi bought a sheet pizza for a party with some sections having different toppings. To find out what fraction of the pizza has both pepperoni and onions, we'll first consider the fractions of the pizza with individual toppings. Two-fifths (2/5) of the pizza has just pepperoni and one-third (1/3) has just onions. The sum of these fractions exceeds one, indicating an overlap which must be the part with both toppings.
To calculate the overlap, we add the fractions for just pepperoni and just onions:
2/5 + 1/3 = 6/15 + 5/15 = 11/15.
Since the total cannot exceed one whole pizza, the overlap - the portion with both toppings - is the amount that the sum of individual parts exceeds one. Therefore, we subtract one from the combined fraction:
11/15 - 1 (which equals 15/15) equals -4/15. This negative value is indicative of the overlap. Therefore, 4/15 of the pizza has both pepperoni and onions.
What is 4(x2 – 3x) + 12x2 + x simplified?
F 4x2–3x H 16x2–11x G13x2–2x I16x2–12x
Answer:
H 16x2–11x
Step-by-step explanation:
4(x2 – 3x) + 12x2 + x
4x^2-12x + 12x^2+x=
16x^2-11x
H 16x2–11x
The simplified value of 4(x² – 3x) + 12x² + x will be 16x² – 11x, i.e. option H.
What is system of equations?System of equations is a finite set of equations for which common solutions are sought.
We have,
4(x² – 3x) + 12x² + x
Now,
Simplify the given equation by removing brackets,
i.e.
4x² – 12x + 12x² + x
Now,
Add or subtract the like terms,
i.e.
16x² – 11x
So, the simplified value of the given equation is 16x² – 11x .
Hence, we can say that the simplified value of 4(x² – 3x) + 12x² + x will be 16x² – 11x, i.e. option H.
To know more about system of equations click here
https://brainly.com/question/22460711
#SPJ2
There are 30 students in a class. The teacher will choose 2 students at random to represent the class at an assembly. How many groups of 2 students can be chosen? A. 870 B. 435 C. 60 D. 15
Answer:
The answer to this question is D- 15.
Step-by-step explanation:
This is how to solve it
30 students and 2 at random this are the key words
you do 30/2
your answer is equal to 15
Answer: B. 435
Step-by-step explanation: This is a combination problem. The teacher is going to choose two students at random, but the order in which the two students are chosen doesn't matter. (meaning, student A being chosen 1st and student B being chosen 2nd is the same result as Student B being chosen 1st and student A being chosen 2nd) Since this is a combination's problem, we use the combination function nCr.
The nCr function is written as [tex]\frac{n!}{r!(n-r)!}[/tex], where n represents the total number of things to choose from while r represents the number of objects that will be taken from the set. In this case, n=30 since there are 30 total students to choose from while r=2 since the teacher is picking two students from the group of 30. The exclamation marks next to the variables represent a factorial.
A factorial is the product of all positive integers less than or equal to the integer next to the factorial. For example, 6! indicates 6 factorial, which is equal to 6 x 5 x 4 x 3 x 2 x 1 = 720. Therefore, 30! equals 30 x 29 x 28 x 27 x 26......... and so on until its been multiplied by every positive integer less than 30.
Using the nCr function, we plug the values in to get [tex]\frac{30!}{2!(30-2)!}[/tex]. After doing some simplification and factoring, we get the equation [tex]\frac{30 * 29}{2}[/tex], which yields 435 possible combinations. This can be done because 30 factorial and 28 factorial share 28 factors due to the nature of factorials, simplifying 30 factorial to simply 30 multiplied by 29. The equation yields 435 possible combinations, thus meaning that there are 435 possible ways to choose 2 students from 30 students.
Find 3 ordered pair solutions by completing the table
x-y=4
Table:
Blank, 0
2, blank
Blank, -1
What are the blank ones?
Answer:
4 is the first blank
-2 is the second blank
3 is the third blank
Step-by-step explanation:
Table:
x | y
__ 0 So this means we replace y with 0 in x-0=4 which means x=4
4 0
4 is the first blank
Table:
x | y
2 ___ So this means we replace x with 2 in 2-y=4 which means y=-2
2 -2
-2 is the second blank
Table:
x | y
__ -1 So this means we replace y with -1 in x-(-1)=4 which means x=3
3 -1
3 is the third blank
what is the domain of f
Answer:
[ - 6 , 6 ]
Step-by-step explanation:
This is because the value of f(t) for x values only ranges from -6 to 6.
Please mark for Brainliest!! :D Thanks!!
For more questions or more information, please comment below!
Answer:
See attached!
Step-by-step explanation:
Find the value of x for the expression 4(4^x-2^x)+1=0
Answer:
x = -1Step-by-step explanation:
[tex]4(4^x-2^x)+1=0\\\\4\bigg((2^2)^x-2^x\bigg)+1=0\qquad\text{use}\ (a^n)^m=a^{nm}\\\\4(2^{2x}-2^x)+1=0\\\\4\bigg((2^x)^2-2^x\bigg)+1=0\qquad\text{substitute}\ 2^x=t>0\\\\4(t^2-t)+1=0\qquad\text{use the distributive property}\\\\4t^2-4t+1=0\\\\4t^2-2t-2t+1=0\\\\2t(2t-1)-1(2t-1)=0\\\\(2t-1)(2t-1)=0\\\\(2t-1)^2=0\iff2t-1=0\qquad\text{add 1 to both sides}\\\\2t=1\qquad\text{divide both sides by 2}\\\\t=\dfrac{1}{2}[/tex]
[tex]\text{We're going back to substitution}\\\\t=\dfrac{1}{2}\Rightarrow2^x=\dfrac{1}{2}\qquad\text{use}\ a^{-1}=\dfrac{1}{a}\\\\2^x=2^{-1}\iff x=-1[/tex]
What is the mean of this data set
14, 12, 21, 26, 19, 15, 22, 17, 24, 18
The mean of this data set is 18.8
Answer:
The mean of this data set is [tex]\mu = 18.8[/tex]
Step-by-step explanation:
By definition, the mean of a data set [tex]x_1, x_2, x_3, ..., x_n[/tex] is
[tex]\mu = \frac{\sum^n_i x_i}{n}[/tex]
Where n is the total number of data.
In this case we have 10 data
14, 12, 21, 26, 19, 15, 22, 17, 24, 18
So the mean is:
[tex]\mu = \frac{14 +12 +21 +26 +19 +15 +22+ 17 +24 +18}{10}[/tex]
[tex]\mu = 18.8[/tex]
What is the right-hand limit of the function `f(x) = (x^2 + 2x - 3)/(x - 3)` as x approaches 2?
[tex]\displaystyle\\\lim_{x\to 2}\dfrac{x^2+2x-3}{x-3}=\dfrac{2^2+2\cdot2-3}{2-3}=\dfrac{5}{-1}=-5[/tex]
The right-hand limit of the function f(x) = (x^2 + 2x - 3)/(x - 3) as x approaches 2 is -5 after substitution of x = 2 into the function.
The question asks about the right-hand limit of the function f(x) = (x^2 + 2x - 3)/(x - 3) as x approaches 2. The first step in finding this limit is to simplify the function, if possible. In this case, we can factor the numerator to obtain (x - 1)(x + 3). However, since we are looking for a limit as x approaches 2, the denominator x - 3 will not be zero, and the expression does not need further simplification for this purpose. We then substitute x = 2 directly into the simplified function and find the limit.
So, the right-hand limit as x approaches 2 is simply f(2) = ((2)^2 + 2*2 - 3)/(2 - 3) = (4 + 4 - 3)/(-1) = 5/(-1) = -5.
solving quadratic equations using squares
x^2 +6x-7=0
Answer:
x = 1 or x = -7
Step-by-step explanation:
Step-by-step explanation:
Do you mean by completing the square?
x² + 6x - 7 = 0
x² + 6x = 7
Take half of 6, square it, and add to both sides. (6/2)² = 9.
x² + 6x + 9 = 7 + 9
(x + 3)² = 16
x + 3 = ±4
x = -3 ± 4
x = -7, 1
So the roots are x=-7 and x=1.
What is the quotient of 33.32 ÷ 9.8 =
Answer:3.4
Step-by-step explanation:
If it takes 10 men 6 days to build a house how long would it take 4
Answer:
15 days
Step-by-step explanation:
10 men : 6 days
4 men : ? days
? = 15
Harold has typed 14 more pages than Rebecca. Together they have
typed a total of 138 pages. How many pages have each of them typed?
Answer:
Harold typed 76, Rebecca typed 62
Step-by-step explanation:
It's Easy. For the first one, convert 1/5 and 2/3 to the like denominator of 15.
Therefore, you have 3/15 and 10/15. Add these to get 13/15. Now, find 13/15 of 60. To do this you will have to multiply 13 and 15 by 4 to get 52/60. Since the question asks you for how many are left, you subtract 52 from 60 to get 8.
And For the second one, first subtract 14 from 138. You have 124. Divide 124 by 2 to get 62. Then add 14 to Harold's total pages to get 76. 62 +76 = 138.
Find the solution of this system of equations.
Separate the x- and y-values with a comma.
X + 12y = 17
x - y = -9
Enter the correct answer.
Answer:
(-7, 2).
Step-by-step explanation:
x + 12y = 17
x - y = -9
Subtracting:
0 + 13y = 26
y = 2.
Substitute for y in the second equation:
x - 2 = -9
x = -7.
Answer:
{-7,2}
Step-by-step explanation:
Given
x+12y=17 Eqn 1
x-y=-9 Eqn 2
We will use the substitution method to solve the system of equations. So, from eqn 2:
[tex]x-y=-9\\x=y-9[/tex]
Putting the value of x in equation 1:
[tex](y-9)+12y=17\\y-9+12y=17\\y+12y-9=17\\13y=17+9\\13y=26\\\frac{13y}{13}=\frac{26}{13}\\ y=2[/tex]
Putting the value of y in eqn 2:
[tex]x-2=-9\\x=-9+2\\x=-7\\So,\\Solution set = \{-7,2\}[/tex]
Could anyone help me with this
Answer:
A
Step-by-step explanation:
U can already eliminate C and D since the z needs to be with 2. A and B almost look the same but in the radicals the second number goes on top resulting in 5/6 which leads to A.
4log9(3)=log9? I need to make the equation true any help would be much appreciated
[tex]\bf \textit{Logarithm of exponentials} \\\\ \log_a\left( x^b \right)\implies b\cdot \log_a(x) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ 4\log_9(3)=\log_9(x)\implies \log_9(3^4)=\log_9(x)\implies 3^4=x\implies 81=x[/tex]
The value of x will be equal to 81.
What is an expression?Expression in maths is defined as the collection of the numbers variables and functions by using signs like addition, subtraction, multiplication and division
4log₉(3) = log₉x
By using the logarithmic property:-
Log[tex]_a[/tex]( x[tex].^b[/tex]) = b Log[tex]_a[/tex](x)
4log₉(3) = log₉x
log₉ ( 3 )⁴ = log₉ ( x )
3⁴ = x
x = 81
Therefore the value of x will be equal to 81.
To know more about Expression follow
https://brainly.com/question/723406
#SPJ2
Contains the points (-6, -12), (0, -12)
put into slope intercept form ASAP
Answer:
y=-12
Step-by-step explanation:
For the slope of line given two points I like to line up and subtract. Then put 2nd diff/1st diff.
Let's do that:
(-6 , -12 )
(0 , -12)
-----------
-6 0
2nd/1st=0/-6=0 slope should have been obvious as 0 since there is no rise in the points (you can see this from their y-coordinate)
Anyways the y-intercept is when it crosses the y-axis. The y-axis is crossed when the x-coordinate is 0. You have that given here which is -12.
So the equation is y=0x-12 or jusy y=-12
If you already knew that horizontal lines were of the form y=a number
then you could have just skip to y=-12
y=-12 just means all the ordered pairs on this line have the y-coordinate being -12 which is what we have in the set of points you gave
What is the distance from A to A’?
Answer: I think problem 2
Step-by-step explanation: hope this helps
Which is a correct first step in solving the inequality -4(2x-1)>5-3x
Answer:
Apply distributive property that's the first step.Step-by-step explanation:
The given inequality is
[tex]-4(2x-1)>5-3x[/tex]
The first step we need to do is to apply distributive property to relase the binomial inside the parenthesis
[tex]-8x+4>5-3x[/tex]
Then, we move all variables to the left side, and all constants to the right side
[tex]-8x+3x>5-4\\-5x>1[/tex]
Now, we divide the inequality by -5, which changes the sign orientation
[tex]\frac{-5x}{-5} <\frac{1}{-5}\\ x<-\frac{1}{5}[/tex]
Therefore, the solution is a set with all values less than -1/5. The graph attached shows this solution.
Which expression is equivalent to the expression below?
Answer:
[tex]\frac{1}{(m-4)(m-3)}[/tex]
Step-by-step explanation:
The question requires you to simplify using quadratic identities
Re-write the numerator.
[tex]\frac{m+3}{m^2-16} \\\\\\\\=\frac{m+3}{(m+4)+(m-3) }[/tex]
Re-write the denominator as;
[tex]\frac{(m+3) +(m-3)}{m+4}[/tex]
Re-arrange expression
[tex]\frac{m+3}{(m+4)+(m-4)} * \frac{m+4}{(m+3)+(m-3)}[/tex]
cancel the terms that are alike to remain with
[tex]\frac{1}{(m-4)(m-3)}[/tex]
Answer:
The expression which equivalent is 1/[(m - 4)(m - 3)] ⇒ 2nd answer
Step-by-step explanation:
* Lets revise how to divide two fractions
- To divide a/b and c/d change the division operation to multiplication
operation and reciprocal the fraction after the division sign
# a/b ÷ c/d = a/b × d/c
* Lets solve the problem
∵ (m + 3)/(m² - 16) ÷ (m² - 9)/(m + 4)
- Use the factorization to simplify the fractions
∵ m² - 16 is a different of two squares
- The factorization of the different of two squares a² - b² is
∵ a² = a × a , -b² = b × -b
∴ a² - b² = (a + b)(a - b)
- Use this way with m² - 16
∵ m² = m × m
∵ -16 = 4 × -4
∴ m² - 16 = (m + 4)(m - 4)
- Similar factorize m² - 9
∵ m² = m × m
∵ -9 = 3 × -3
∴ m² - 9 = (m + 3)(m - 3)
- Now lets write the fraction and simplify it
∵ (m + 3)/(m² - 16) ÷ (m² - 9)/(m + 4)
∴ (m + 3)/[(m + 4)(m - 4)] ÷ [(m + 3)(m - 3)]/(m + 4)
- Change the division operation to multiplication operation and
reciprocal the fraction after the division sign
∴ (m + 3)/[(m + 4)(m - 4)] × (m + 4)/[(m + 3)(m - 3)]
- We can cancel (m + 4) in the denominator of the first fraction with
(m + 4) in the numerator of the second fraction and cancel (m + 3)
in the numerator of the first fraction with (m + 3) in the denominator
of the second fraction
∴ 1/(m - 4) × 1/(m - 3) ⇒ multiply the two fractions
∴ 1/[(m - 4)(m - 3)]
* The expression which equivalent is 1/[(m - 4)(m - 3)]
What is the intersection of a plane and a solid figure called?
Answer: Cross section
Step-by-step explanation: A cross section sounds just like what it is. It’s a plane that intersects a solid figure. A cross section can happen on any solid figure.
During one day, the value of a stock lost
then gained 7 points (+7) in the after
of the stock's value for that day?
of a stock lost 4 points (4) in the morning and
in the afternoon. What was the overall loss or gain
Giving 20 points please get it right
Answer:
10
Step-by-step explanation:
Leave the 5 , change division to multiplication and turn the fraction upside down.
5 × [tex]\frac{2}{1}[/tex] = 5 × 2 = 10
An air conditioning system can circulate 390 cubic feet of air per minute. How many cubic yards of air can it circulate per minute?
The air conditioning system can circulate approximately 14.44 cubic yards of air per minute.
To convert cubic feet to cubic yards, we need to know that there are 27 cubic feet in one cubic yard. Using this conversion factor, we can find the number of cubic yards of air that the air conditioning system can circulate per minute.
1. Start with the given value of 390 cubic feet per minute.
2. Divide this value by the conversion factor of 27 cubic feet per cubic yard:
390 cubic feet ÷ 27 cubic feet per cubic yard = 14.44 cubic yards
3. Rounding to the nearest hundredth, the air conditioning system can circulate approximately 14.44 cubic yards of air per minute.
In summary, the air conditioning system can circulate approximately 14.44 cubic yards of air per minute.
DBE is obtained by enlarging ABC. If the area of ABC is 3 square units, what is the area of DBE?
Answer:
The area of DBE = 27 square units
Step-by-step explanation:
Area of ABC = 3 square units
In the figure, we can see that ABC was enlarged so that BDE is formed where side BD = 6 and AB was = 2
Hence ABC was enlarged 3 times its size.
We know by formula that:
Area of ABC = 1/2(base x perpendicular)
3 = 1/2(2 x p)
=> p = 3
As ABC was enlarged 3 times its size, the perpendicular of BDE must be 3*p
= 3*3 = 9
AREA OF DBE = 1/2(base*perp)
= 1/2(6*9)
= 27 square units
Answer:
The area of DBE = 27 square units
Step-by-step explanation:
Area of ABC = 3 square units
In the figure, we can see that ABC was enlarged so that BDE is formed where side BD = 6 and AB was = 2
Hence ABC was enlarged 3 times its size.
We know by formula that:
Area of ABC = 1/2(base x perpendicular)
3 = 1/2(2 x p)
=> p = 3
As ABC was enlarged 3 times its size, the perpendicular of BDE must be 3*p
= 3*3 = 9
AREA OF DBE = 1/2(base*perp)
= 1/2(6*9)
= 27 square units
Step-by-step explanation:
What is the slope of the line shown below? (-1,8) and (2,-4)
Answer:
[tex]m = -4[/tex]
Step-by-step explanation:
[tex]\frac{y2 - y1}{x2 - x1}[/tex]
[tex]\frac{-4 - 8}{2-(-1)}[/tex]
[tex]-4 - 8 = -12\\ 2-(-1)=3[/tex]
[tex]\frac{-12}{3} = -4[/tex]
[tex]m = -4[/tex]
Answer:
M=-4
Step-by-step explanation:
The formula for the slope is:
m=[tex]\frac{y^{2} -y^{1} }{x^{2} -x^{1} }[/tex]
You have two points the first one would be: (-1,8)
So [tex]x^{1}= -1 y^{1}= 8 [/tex]
The second point is: (2,4)
So [tex]x^{2}= 2 y^{2}= 4 [/tex]
Now you just have to put the values inside the formula:
m=[tex]\frac{-4-8)}{2-(-1)}[/tex]
m=[tex]\frac{-12}{3}[/tex]
m=-4
238·56+238·34+162·90
238(56)+238(34)+162(90)
=238(56+34) + 162(90)
=238(90) + 162(90)
=90(238+162)
=90(400)
=36000
For this case we must resolve the following expression:
[tex]238 (56) +238 (34) +162 (90) =[/tex]
We multiply term by term:
[tex]13328 + 8092 + 14580 =[/tex]
We add the terms:
[tex]13328 + 8092 + 14580 = 36000[/tex]
Finally, the answer is 36,000.
Answer:
[tex]238 (56) +238 (34) +162 (90) = 36,000.[/tex]
exact value of sin(11pi/12)
The exact value of sin(11π/12) is (√6 - √2)/4.
Explanation:To find the exact value of sin(11π/12), we can use trigonometric identities to determine the value of an equivalent angle in the first quadrant. Since π/12 is the reference angle of 11π/12, which is in the second quadrant, we can find the sine of the equivalent angle in the first quadrant. The reference angle in the first quadrant is π/12. Therefore, the exact value of sin(11π/12) is the same as the exact value of the sine of π/12. Using a trigonometric identity, we find that sin(π/12) = (√6 - √2)/4.
Learn more about Trigonometric Identities here:https://brainly.com/question/24377281
#SPJ12
If (x) = 3х - 2 and g(x) = 2х+ 1, find (f- g)(x).
ОА. х- з
Ов. 3-х
Ос. 5x - 1
OD. 5x - з
Answer:
A
Step-by-step explanation:
f(x) - g(x) = 3x-2 - (2x + 1) Remove the brackets
f(x) - g(x) = 3x - 2 - 2x -1 Combine terms.
f(x) - g(x) = x - 3
The answer is A
Write the point-slope form of the equation for a line that passes through (6, -1) with a slope of 2
ANSWER
[tex]y + 1=2(x-6)[/tex]
EXPLANATION
The point-slope form of a line is given by;
[tex]y-y_1=m(x-x_1)[/tex]
where
[tex]m = 2[/tex]
is the slope of the line and (6,-1) is point.
We substitute the point and the slope into the formula to obtain:
[tex]y + 1=2(x-6)[/tex]
Hence the b point slope form of the line with the given properties is
What is 70% of 420
Hello There!
70% of 420 is 294
You want to divide 70% by 100 and you get a quotient of 0.7
Next, you want to multiply that by 420 because your trying to find 70% of it.
Finally, once you multiply you will get a product of 294.
Have A Great Day!
Which expression gives the distance between the points (4,6) and (7,-3)
Answer:
D = 9.4868
Step-by-step explanation:
The expression is the following
D = √((x2-x1)^2+(y2-y1)^2)
Where
(x1,y1) = (4,6)
(x2,y2) = (7,-3)
D = √((7-4)^2+(-3-6)^2)
D = √((3)^2+(-9)^2)
D = √(9+81)
D = √(90)
D = 9.4868
Answer:
[tex]d = \sqrt{(7-4)^{2}+(-3-6)^{2}}[/tex]
Step-by-step explanation:
The expression used for calculating distance between two points involves the square root of sum of squares of differences of x-intercepts and y-intercepts.
The formula is given by:
[tex]d = \sqrt{(x_{2} -x_{1} )^{2}+(y_{2}- y_{1} )^{2} }[/tex]
Here,
[tex](x_{1},y_{1}) = (4,6)\\ (x_{2},y_{2}) = (7,-3)\\Putting\ the\ values\\d = \sqrt{(7-4)^{2}+(-3-6)^{2}}[/tex]
Hence, the following expression will give the distance between given points
[tex]d = \sqrt{(7-4)^{2}+(-3-6)^{2}}[/tex]
Solving it will give:
[tex]d = \sqrt{(3)^{2}+(-9)^{2}}\\= \sqrt{9+81}\\=\sqrt{90}[/tex]