Charles factors the expression 4/3xy+1/3x using a factor of 1/3x. He writes the factored expression 1/3x(4y+1). Which best describes the accuracy of Charles solution?

A. His solution is accurate

B. His solution is inaccurate. The factor does not divide evenly into both terms.

C. His solution is inaccurate. The factoring of 4/3xy using the given GCF is incorrect.

D. His solution is inaccurate. The factoring of 1/3x using the given GCF is incorrect.

Answers

Answer 1

A. His solution is accurate

You can verify this by expanding his factored expression: 1/3x(4y+1), which gives you back the original expression 4/3xy+1/3x

Answer 2

Charles' solution is accurate because expression after factorization  is similar to Charles factor's of expression option (A) is correct.

What is an expression?

It is defined as the combination of constants and variables with mathematical operators.

We have an expression:

[tex]\rm = \dfrac{4}{3}xy+\dfrac{1}{3}x[/tex]

Taking common as (1/3)x

[tex]\rm = \dfrac{1}{3}x(4y+1)[/tex]

The above expression is similar to Charles factor's of expression.

Thus, Charles solution is accurate because expression after factorization  is similar to Charles factor's of expression option (A) is correct.

Learn more about the expression here:

brainly.com/question/14083225


#SPJ2


Related Questions

Sketch the graph of y=2(x-2)2+5 and identify the axis of symmetry.

Answers

Answer:

x=2

Step-by-step explanation:

Please help last question

Answers

Find the total of male students:

4 + 6 + 2 + 2 = 14 total males.

There are 2 male juniors.

The probability of a male being a junior is 2/14 = 1/7 = 0.143 = 14.3 = 14%

Find the total of male students:

4 + 6 + 2 + 2 = 14 total males.

There are 2 male juniors.

The probability of a male being a junior is 2/14 = 1/7 = 0.143 = 14.3 = 14%

A cone with volume 5000 m^3 is dilated by a scale factor of 1/5

Answers

ANSWER

The volume of the dilated cone is

[tex]40 {m}^{3}[/tex]

EXPLANATION

The volume of the given cone is

[tex]5000 {m}^{3} [/tex]

When this cone is dilated with a scale factor of 1/5, the volume of the dilated cone becomes,

[tex] ({ \frac{1}{5} })^{3} \times 5000 {m}^{3} [/tex]

We simplify to obtain:

[tex] { \frac{1}{125} }\times 5000 {m}^{3} [/tex]

This gives us:

[tex]40 {m}^{3} [/tex]

Final answer:

When a cone is scaled down by a factor of 1/5, its new volume is 40 m³, calculated by cubing the scale factor and multiplying it by the original volume.

Explanation:

When a cone is dilated by a scale factor, its volume changes according to the cube of that scale factor.

Since the original volume of the cone is 5000 m³ and the scale factor is 1/5, we use the proportionality principle which states that the volume of a shape is proportional to the cube of its linear dimensions (V ∝ L3).

Therefore, if we dilate the cone by a scale factor of 1/5, the new volume (V1) would be:

V1 = V-original × (scale factor)³
= 5000 m³ × (1/5)³
= 5000 m³ × 1/125
= 40 m³

This calculation shows that, as a result of applying the scale factor, the volume of the cone has been reduced significantly.

Find an equation of the tangent to the curve x =5+lnt, y=t2+5 at the point (5,6) by both eliminating the parameter and without eliminating the parameter.

Answers

ANSWER

[tex]y = 2x -4[/tex]

EXPLANATION

Part a)

Eliminating the parameter:

The parametric equation is

[tex]x = 5 + ln(t) [/tex]

[tex]y = {t}^{2} + 5[/tex]

From the first equation we make t the subject to get;

[tex]x - 5 = ln(t) [/tex]

[tex]t = {e}^{x - 5} [/tex]

We put it into the second equation.

[tex]y = { ({e}^{x - 5}) }^{2} + 5[/tex]

[tex]y = { ({e}^{2(x - 5)}) } + 5[/tex]

We differentiate to get;

[tex] \frac{dy}{dx} = 2 {e}^{2(x - 5)} [/tex]

At x=5,

[tex] \frac{dy}{dx} = 2 {e}^{2(5 - 5)} [/tex]

[tex]\frac{dy}{dx} = 2 {e}^{0} = 2[/tex]

The slope of the tangent is 2.

The equation of the tangent through

(5,6) is given by

[tex]y-y_1=m(x-x_1)[/tex]

[tex]y - 6 = 2(x - 5)[/tex]

[tex]y = 2x - 10 + 6[/tex]

[tex]y = 2x -4[/tex]

Without eliminating the parameter,

[tex] \frac{dy}{dx} = \frac{ \frac{dy}{dt} }{ \frac{dx}{dt} } [/tex]

[tex]\frac{dy}{dx} = \frac{ 2t}{ \frac{1}{t} } [/tex]

[tex]\frac{dy}{dx} = 2 {t}^{2} [/tex]

At x=5,

[tex]5 = 5 + ln(t) [/tex]

[tex] ln(t) = 0[/tex]

[tex]t = {e}^{0} = 1[/tex]

This implies that,

[tex]\frac{dy}{dx} = 2 {(1)}^{2} = 2[/tex]

The slope of the tangent is 2.

The equation of the tangent through

(5,6) is given by

[tex]y-y_1=m(x-x_1)[/tex]

[tex]y - 6 = 2(x - 5) =[/tex]

[tex]y = 2x -4[/tex]

The equation of the tangent to the curve at the point (5,6) is [tex]\(y = 2x - 4\)[/tex].

To find the equation of the tangent to the curve given by the parametric equations [tex]\(x = 5 + \ln(t)\)[/tex] and [tex]\(y = t^2 + 5\)[/tex] at the point (5,6), we can approach this problem in two ways: by eliminating the parameter \(t\) and without eliminating the parameter.

Method 1: Eliminating the Parameter

Step 1: Express (t) in terms of (x)

[tex]\[ x = 5 + \ln(t) \implies \ln(t) = x - 5 \implies t = e^{x-5} \][/tex]

Step 2: Substitute (t) into (y)

[tex]\[ y = t^2 + 5 \implies y = (e^{x-5})^2 + 5 \implies y = e^{2(x-5)} + 5 \][/tex]

Step 3: Find [tex]\(\frac{dy}{dx}\)[/tex]

[tex]\[ y = e^{2(x-5)} + 5 \][/tex]

[tex]\[ \frac{dy}{dx} = 2e^{2(x-5)} \][/tex]

Step 4: Evaluate [tex]\(\frac{dy}{dx}\)[/tex] at (x = 5)

[tex]\[ \frac{dy}{dx}\bigg|_{x=5} = 2e^{2(5-5)} = 2e^0 = 2 \][/tex]

Step 5: Equation of the tangent line

The slope (m = 2). The tangent line at (5,6) is:

[tex]\[ y - 6 = 2(x - 5) \][/tex]

[tex]\[ y = 2x - 10 + 6 \][/tex]

[tex]\[ y = 2x - 4 \][/tex]

Method 2: Without Eliminating the Parameter

Step 1: Find [tex]\(\frac{dx}{dt}\)[/tex] and [tex]\(\frac{dy}{dt}\)[/tex]

[tex]\[ x = 5 + \ln(t) \implies \frac{dx}{dt} = \frac{1}{t} \][/tex]

[tex]\[ y = t^2 + 5 \implies \frac{dy}{dt} = 2t \][/tex]

Step 2: Find [tex]\(\frac{dy}{dx}\)[/tex]

[tex]\[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2t}{\frac{1}{t}} = 2t^2 \][/tex]

Step 3: Find (t) at the point (5,6)

From [tex]\(x = 5 + \ln(t)\)[/tex]:

[tex]\[ 5 = 5 + \ln(t) \implies \ln(t) = 0 \implies t = e^0 = 1 \][/tex]

Step 4: Evaluate [tex]\(\frac{dy}{dx}\)[/tex] at (t = 1)

[tex]\[ \frac{dy}{dx}\bigg|_{t=1} = 2(1)^2 = 2 \][/tex]

Step 5: Equation of the tangent line

The slope (m = 2). The tangent line at (5,6) is:

[tex]\[ y - 6 = 2(x - 5) \][/tex]

[tex]\[ y = 2x - 10 + 6 \][/tex]

[tex]\[ y = 2x - 4 \][/tex]

Thus, using both methods, the equation of the tangent to the curve at the point (5,6) is [tex]\(y = 2x - 4\)[/tex].

The pep squad sold c, cheeseburgers and h, hothogs at the friday night football game. A total of 220 were sold. There were 3 times more hotdogs sold than cheeseburgers. Write a system of equations for this situation.

Answers

Answer:

c + h = 220h = 3c

Step-by-step explanation:

The total sold is the sum of the individual numbers sold, hence c+h.

We assume "3 times more" means "3 times as many", so the number of hotdogs sold (h) is 3 times the number of cheeseburgers sold (c), hence 3c.

  c + h = 220

  h = 3c

_____

55 cheeseburgers and 165 hotdogs were sold.

Which is a solution to (x – 3)(x + 9) = –27?

x = –9
x = –3
x = 0
x = 6

Answers

Answer:

x = 0

Step-by-step explanation:

Since the product is not equal zero, we need to multiply both parenthesis first:

[tex](x-3)(x+9) =-27[/tex]

[tex]x*x+x*9+(-3)*x+(-3)*9=27[/tex]

[tex]x^2+9x-3x-27=27[/tex]

[tex]x^2+6x-27=27[/tex]

Add 27 from both sides:

[tex]x^2+6x-27+27=-27+27[/tex]

[tex]x^2-6x=0[/tex]

Factor [tex]x[/tex] out:

[tex]x(x+6)=0[/tex]

Apply the zero product:

[tex]x=0,x+6=0[/tex]

[tex]x=0,x=-6[/tex]

The solutions of the equation are [tex]x=0[/tex] and [tex]x=-6[/tex].

We can conclude that the correct answer is x = 0.

Answer:

C: x = 0

There is no solution.

The area of a rectangle is 144 square centimeters. The width is 9 centimeters. Which of the following statements is true? Select all that apply. A. The length is 3 times the width. B. The length is 63 centimeters. C. The length is less than 2 times the width. D. The perimeter is 50 centimeters. E. The rectangle is a square since its length and width are equal.

Answers

Answer:

Option C and D are correct.

Step-by-step explanation:

Area of rectangle = 144 cm^2

Width of rectangle = 9 cm

Length of rectangle = ?

We know,

Area of rectangle = Length * Width

144 = Length * 9

144/9 = Length

=> length = 16 cm

Option A is incorrect as 3 times width = 3* 9 = 27 but our length = 16 cm

Option B is incorrect as length = 16 cm and not 63 cm

Option C is correct as Length < 2(Width)

=> 16 < 2(9) => 16 < 18 which is true.

Option D is correct.

Perimeter = 2(Length + Width)

Perimeter = 2(16+9)

Perimeter = 50 cm

Option E is incorrect as Length ≠ Width

Answer:

C. The length is less than 2 times the width.

D. The perimeter is 50 centimeters.

Step-by-step explanation:

The area of the rectangle is given as 144 square centimeters and its width is 9 centimeters. The formula for the area of a rectangle is given as;

Area = length*width

144 = length*9

length = 144/9

length = 16 centimeters

A. The length is 3 times the width.

3 times the width; 3*9 = 27 cm which is not equal to 16. Hence this statement is false.

B.The length is 63 centimeters.

This statement is also false since the length is 16 cm

C.The length is less than 2 times the width.


The lengths of two sides of a parallelogram are 24 cm and 15 cm. One angle measures 120°. Find the length of the longer diagonal.
A) 13.3 cm
B) 34.1 cm
C) 177.5 cm
D) 1161 cm

Answers

Answer:

B) 34.1 cm

Step-by-step explanation:

The longer diagonal is longer than either side, but shorter than their sum. The only answer choice in the range of 24–39 cm is choice B.

_____

You are given sufficient information to use the Law of Cosines to find the diagonal length. If we call it "c", then the angle opposite that diagonal is the larger of the angles in the parallelogram: 120°. The law of cosines tells you ...

c^2 = a^2 +b^2 -2ab·cos(C)

Here, we have a=24, b=15, C=120°, so ...

c^2 = 24^2 +15^2 -2·24·15·cos(120°) = 576 +225 +360 = 1161

c = √1161 ≈ 34.073 . . . . cm

Rounded to tenths, the diagonal length is 34.1 cm.

For the following system, use the second equation to make a substitution for x in the first equation. x + 2y = 7 x + 5 = 3y What is the resulting equation? 3y - 5 - 2y = 7 3y + 5 + 2y = 7 3y - 5 + 2y = 7

Answers

Answer:

  3y - 5 + 2y = 7

Step-by-step explanation:

Subtracting 5 from the second equation gives ...

  x = 3y -5

Using the expression on the right for x in the first equation gives ...

  x + 2y = 7 . . . . . . . . first equation

  (3y -5) +2y = 7 . . . . with expression substituted for x

  3y - 5 + 2y = 7 . . . . with parentheses removed

If Sally can make 10 free throws in one minute or 3 three-point baskets in one minute, while Jesse can make 8 free throws in one minute or 1 three-point basket in one minute, ___ has an absolute advantage in free throws and ___ has a comparative advantage in free throws. Sally; Sally Sally; Jesse Jesse; Sally Jesse; Jesse

Answers

Answer:

Sally; Sally

Step-by-step explanation:

For the free throws... let's see the stats:

Sally: 10 free throws

Jesse: 8 free throws.

Advantage?: Sally

For the three-points baskets:

Sally: 3

Jesse: 1

Advantage: Sally

Sally dominates in both categories, sorry Jesse.

Answer:

sally sally

Step-by-step explanation:

the numbers are just greater for both stats for her

What transformation has changed the parent function f(x) = log2x to its new appearance shown in the graph below?

logarithmic graph passing through point 2, 4.

f(x + 3)
f(x − 3)
f(x) + 3
f(x) − 3

Answers

Answer: Third Option

[tex]f(x) +3[/tex]

Step-by-step explanation:

The function [tex]y=log_2(x)[/tex] passes through point (2, 1) because the exponential function [tex]2 ^ x = 2[/tex] when [tex]x = 1[/tex].

Then, if the transformed function passes through point (2, 4) then this means that the graph of [tex]y=log_2(x)[/tex] was moved vertically 3 units up.

The transformation that vertically displaces the graph of a function k units upwards is:

[tex]y = f (x) + k[/tex]

Where k is a positive number. In this case [tex]k = 3[/tex]

Then the transformation is:

[tex]f(x) +3[/tex]

and the transformed function is:

[tex]y = log_2 (x) +3[/tex]

Each player rolls two six sided die once each and the sum of the highest roll wins. The first player rolls a 3 and 4 so that his sum is 7, what is the probability that the secon player will win

Answers

Answer:

5/12 or 41.66%

Step-by-step explanation:

When throwing two six-sided dice, you have 36 possible outcomes:

{1,1} {1,2} {1,3} {1,4} {1,5} {1,6} {2,1} {2,2} {2,3} {2,4} {2,5} {2,6} {3,1} {3,2} {3,3} {3,4} {3,5} {3,6} {4,1} {4,2} {4,3} {4,4} {4,5} {4,6} {5,1} {5,2} {5,3} {5,4} {5,5} {5,6} {6,1} {6,2} {6,3} {6,4} {6,5} {6,6}

To find what is the probability the second player will win, we need to see how many of those 36 possibilities have a combined total of 8 or more (to beat the 7 of the first player):

These 15 combinations have a total of 8 or more:

{2,6} {3,5} {3,6} {4,4} {4,5} {4,6} {5,3} {5,4} {5,5} {5,6} {6,2} {6,3} {6,4} {6,5} {6,6}

So, the probability the second player gets 8 or more and wins is:

15/36 or 5/12 or 41.66%

The last answer choice is 15/2, 10


Helppp

Answers

Find the points of Midtown and Downtown then use the midpoint formula.

Midtown = (6,12)

Downtown = (12,4)

Midpoint = X2+X1 /2 , Y2+Y1 /2

Midpoint = 12+6 /2 , 4+12 /2

Midpoint = 18/2 , 16,2

Midpoint = (9,8)

Casie jumped off of a cliff into the ocean while on vacation. Her height as a function of time is modeled by the equation h = −16t2 +16t + 140, where t is the time in seconds and h is the height in feet. How long does it take Casie to hit the water?
A) 3 seconds
B) 3.5 seconds
C) 4 seconds
D) 4.5 seconds

Answers

Answer:

3.5 seconds, B

Step-by-step explanation:

This is an upside down parabola, a function that is extremetly useful in helping us to understand position and velocity and time and how they are all related.  Her upwards velocity is 16 ft/sec and she starts from a height of 140 feet, according to the problem.  The h is the height she ends up at after a certain amount of time has gone by.  You want to know how long it will take her to hit the water.  When she hits the water, she has no more height.  Therefore, her height above the water when she hits the water is 0.  Plug in a 0 for h and factor the quadratic to get t = -2.5 seconds and t = 3.5 seconds.  The only two things in math that will never ever be negative is a distance measure and time, so we can disregard the -2.5 and go with 3.5 seconds as our answer.

Answer:

B

Step-by-step explanation:

Plz help ASAP!! Explain your answer! I will mark at brainliest!!! And don’t copy anybody else’s answer

Answers

Answer:

No. Anna is incorrect.

Step-by-step explanation:

In order to find if the answer is right, just find the diagonals using the pythogorean theorem.

a² + b² = c²

For the rectangle, the base is 14 and the height is 7. We will have to find the hypotenuse.

14² + 7² = c²

196 + 49 = c²

245 = c²

c = √245

c = √49 × √5

c = 7√5

For the square, the base is 7 and the height is 7. We will have to find the hypotenuse.

7² + 7² = c²

49 + 49 = c²

98 = c²

c = √98

c = √49 × √2

c = 7√2

Now compare :

7√5 and 7√2

Clearly, 7√5 is not the double of 7√2

Prove that for all whole values of n the value of the expression:
n(n–1)–(n+3)(n+2) is divisible by 6.

Answers

Expand:

[tex]n(n-1)-(n+3)(n+2)=(n^2-n)-(n^2+5n+6)=-6n-6[/tex]

Then we can write

[tex]n(n-1)-(n+3)(n+2)=6\boxed{(-n-1)}[/tex]

which means [tex]6\mid n(n-1)-(n+3)(n+2)[/tex] as required.

A diner has collected data about customer coffee-drinking habits. They have calculated that P(cream) = 0.5, P(sugar) = 0.6, and P(cream or sugar) = 0.7. Determine the P(cream and sugar). (2 points)

Answers

Answer:

P(cream and sugar) = 0.4

Step-by-step explanation:

* Lets study the meaning of or , and on probability

- The use of the word or means that you are calculating the probability

 that either event A or event B happened

-  Both events do not have to happen

- The use the word and, means that both event A and B have to happen

* The addition rules are:

# P(A or B) = P(A) + P(B) ⇒ mutually exclusive (events cannot happen

 at the same time)

# P(A or B) = P(A) + P(B) - P(A and B) ⇒ non-mutually exclusive (if they

 have at least one outcome in common)

- The union is written as A∪B or “A or B”.

- The intersection is written as A∩B or “A and B

* Lets solve the question

∵ P(cream) = 0.5

∵ P(sugar) = 0.6

∵ P(cream or sugar) = 0.7

- To find P(cream and sugar) lets use the rule of non-mutually exclusive

∵ P(A or B) = P(A) + P(B) - P(A and B)

∴ P(cream or sugar) = P(cream) + P(sugar) - P(cream and sugar)

- Lets substitute the values of P(cream) , P(sugar) , P(cream or sugar)

 in the rule

∵ 0.7 = 0.5 + 0.6 - P(cream and sugar) ⇒ add the like terms

∴ 0.7 = 1.1 - P(cream and sugar) ⇒ subtract 1.1 from both sides

∴ 0.7 - 1.1 = - P(cream and sugar)

∴ - 0.4 = - P(cream and sugar) ⇒ multiply both sides by -1

∴ 0.4 = P(cream and sugar)

* P(cream and sugar) = 0.4

Answer:

0.4

Step-by-step explanation:

What transformation has changed the parent function f(x) = (.5)x to its new appearance shown in the graph below?

exponential graph passing through point negative 1, negative 2 and point 0, negative 1.

f(x) − 2
2 • f(x)
f(x) + 1
−1 • f(x)

Answers

Answer:

Last option

−1 • f(x)

Step-by-step explanation:

The function [tex]f(x) = (0.5) ^ x[/tex] passes through point (-1, 2) because:

[tex]f(-1) = (0.5) ^ {-1}= \frac{1}{(0.5)} = 2[/tex]

and also goes through the point (0, 1)

Because:

[tex]f(0) = (0.5)^0 = 1[/tex]

Then, if the transformed function passes through the point (0, -1) and passes through the point (-1, -2) then this means that the graph of [tex]f(x) = (0.5) ^ x[/tex] reflected on the axis x. This means that if the point [tex](x_0, y_0)[/tex] belongs to f(x), then the point [tex](x_0, -y_0)[/tex] belongs to the transformed function

The transformation that reflects the graph of a function on the x-axis is.

[tex]y = cf(x)[/tex]

Where c is a negative number. In this case [tex]c = -1[/tex]

Then the transformation is:

[tex]y = -1*f(x)[/tex]

and the transformed function is:

[tex]f (x) = - (0.5) ^ x[/tex]

Observe the attached image.

Answer:

f(x) -2 is the correct answer.

Step-by-step explanation:

Just took the test!

Find the area of the shaded regions:

Answers

Final answer:

The area of shaded regions can be found using geometric principles or methods of integration depending on the actual shape and context. In most cases, area is proportional to the square of the distances. Integration techniques would be used if the shaded region is under a curve on a graph.

Explanation:

To find the area of the shaded regions, depending upon the shape and complexity of the region, you'd typically use geometric principles and calculations, potentially including those related to rectangles, triangles, circles, and/or other shapes. In some cases, these calculations might include figuring out the area of a larger shape and then subtracting the area of a smaller, non-shaded shape. For example, the area of a disc could be found by using the equation А = лr², and placing limits of integration from r = 0 to r = R in case the shaded area is comprised of thin rings of different radii. In other cases, you might be using principles of integration if the shaded region is under a curve on a graph, integrating the function f(x) from a certain lower limit x₁ to upper limit x₂. Also, keep in mind that the area is usually proportional to the square of the distances in a certain set-up.

Learn more about Area Calculation here:

https://brainly.com/question/34380164

#SPJ12

Find the value of x in the figure below. Show all your work.

Answers

Answer:

x = 52/9

Step-by-step explanation:

The exterior angle is half the difference of the intercepted arcs, so we have ...

9x -5 = (158 -64)/2

9x = 52 . . . . . . . . . . . add 5

x = 52/9 = 5 7/9

Consider the functions f(x) = 3x2, g(x)=1/3x , and h(x) = 3x. Which statements accurately compare the domain and range of the functions? Select two options.

1All of the functions have a unique range.

2The range of all three functions is all real numbers.

3 The domain of all three functions is all real numbers.

4The range of f(x) and h(x) is all real numbers, but the range of g(x) is all real numbers except 0.

5 The domain of f(x) and h(x) is all real numbers, but the domain of g(x) is all real numbers except 0.

Answers

Final answer:

The domain of all three functions is all real numbers. The range of f(x) and h(x) is all real numbers, but the range of g(x) is all real numbers except 0.

Explanation:

The statements that accurately compare the domain and range of the functions are:

The domain of all three functions is all real numbers.The range of f(x) and h(x) is all real numbers, but the range of g(x) is all real numbers except 0.

For the functions f(x) = 3x^2, g(x) = 1/3x, and h(x) = 3x:

The domain of all three functions is all real numbers because x can take any real value.The range of f(x) and h(x) is all real numbers because the function values can be positive or negative for any real value of x.The range of g(x) is all real numbers except 0 because division by 0 is undefined.

Learn more about Functions here:

https://brainly.com/question/21145944

#SPJ3

Answer:c and d

Step-by-step explanation:

i got it right

please help me asap 12 PTS

Answers

Answer:

D.

Step-by-step explanation:

I also haven't learned this yet but i could tell that in the second image if A.F = 1/2AC and DE = A.F, therefore DE = 1/2AC. The problem is that i don't know if it is B or D.

Sorry .-.

14/30÷14.00 show all work

Answers

1 Simplify \frac{14}{30}

​30

​14

​​  to \frac{7}{15}

​15

​7

​​ .

\frac{7}{15}\div 14.00

​15

​7

​​ ÷14.00

2 Use this rule: a\div \frac{b}{c}=a\times \frac{c}{b}a÷

​c

​b

​​ =a×

​b

​c

​​ .

\frac{7}{15}\times \frac{1}{14.00}

​15

​7

​​ ×

​14.00

​1

​​  

3 Use this rule: \frac{a}{b}\times \frac{c}{d}=\frac{ac}{bd}

​b

​a

​​ ×

​d

​c

​​ =

​bd

​ac

​​ .

\frac{7\times 1}{15\times 14.00}

​15×14.00

​7×1

​​  

4 Simplify 7\times 17×1 to 77.

\frac{7}{15\times 14.00}

​15×14.00

​7

​​  

5 Simplify 15\times 14.0015×14.00 to 210210.

\frac{7}{210}

​210

​7

​​  

6 Simplify.

1/30

need help with this one

Answers

Answer:

68

Step-by-step explanation:

∠DPG and ∠EPF are vertical angles, so they are equal.

7x = 4x + 48

3x = 48

x = 16

So ∠DPG is:

∠DPG = 7x

∠DPG = 112

∠DPE and ∠DPG are supplementary, so they add up to 180:

∠DPE + ∠DPG = 180

∠DPE + 112 = 180

∠DPE = 68

Nickola swam at a rate of 2 km/hr and ran at a rate of 15 km/hr for a total distance traveled of 90.5 km. If he completed the race in 9.5 hours, how long did he take to
complete each part of the race?

The time Nickola spent swimming is______? hours, and the time he spent running is_____? hours.


I NEED HELP PLEASE

Answers

Answer:

Nickola swam for 4 hours and ran for 5.5 hours

Step-by-step explanation:

To solve this, we can use a system of equations.

First we can set up a system of equations like this

[tex]2s+15r=90.5[/tex] and

[tex]s+r=9.5[/tex]

Next we will use substitution to solve for one of the values. We can solve the second equation such that

[tex]s=9.5-r[/tex]

Now we can substitute this into the first equation for s

[tex]2(9.5-r)+15r=90.5[/tex]

Now we can solve for r

[tex]19-2r+15r=90.5[/tex]

[tex]19+13r=90.5[/tex]

[tex]13r=71.5[/tex]

[tex]r=5.5[/tex]

Now we can plug this value into the second equation to get the value for s

[tex]s+5.5=9.5[/tex]

[tex]s=4[/tex]

Now we can plug these values into the first equation to make sure we have the right values

[tex]2(4)+15(5.5)=90.5[/tex]

[tex]90.5=90.5[/tex]

find 2(cos 240+isin 240) ^4 (answer choices below)

Answers

1. C. -512√3+512i

2. B. 16(cos240°+i sin240°)

3. D. 3√2+3√6i, -3√2-3√6i

4. A. cos60°+i sin60°, cos180°+i sin180°, cos300°+i sin300°

5. D. 2√3(cos π/6+i sin π/6), 2√3(cos 7π/6+i sin 7π/6)

We will see that the equivalent expression is:

[tex]8*(cos(240\°) + i*sin(240\°))[/tex]

So the correct option is the first one.

How to rewrite the given expression?

We have the expression:

[2*(cos(240°) + i*sin(240°))]^4

Remember that Euler's formula says that:

[tex]e^{ix} = cos(x) + i*sin(x)[/tex]

Then we can rewrite our expression as:

[tex][2*(cos(240\°) + i*sin(240\°)]^4 = [2*e^{i*240\°}]^4[/tex]

Now we distribute the exponent:

[tex]2^4*e^{4*i*240\°} = 8*e^{i*960\°}[/tex]

Now, we need to find an angle equivalent to 960°.

Remember that the period of the trigonometric functions is 360°, then we can rewrite:

960° - 2*360° = 240°

This means that 960° is equivalent to 240°. Then we can write:

[tex]8*e^{i*960\°} = 8*e^{i*240\°} = 8*(cos(240\°) + i*sin(240\°))[/tex]

So the correct option is the first one.

If you want to learn more about complex numbers, you can read:

https://brainly.com/question/10662770

Which statement describes what these four powers have in common?

Answers

The correct answer is B. Anything to the power of 0 is 1.

Answer:

b

Step-by-step explanation:

Which of the following is not an equation of a simple, even polynomial function? y = | x | y = x2 y = x3 y = -x2

Answers

Answer:

y = | x |y = x^3

Step-by-step explanation:

The absolute value function prevents the expression from being a polynomial. The degree of 3 in y^3 is an odd number so that polynomial function will not be even.

Answer:

The equation [tex]y=x^3[/tex] is not an equation of a simple , even polynomial function.

Step-by-step explanation:

Even  function : A function  is even when its graph is symmetric with respect to y-axis.

Algebrically , the function f is even if and only if

f(-x)=f(x) for all x in the domain of f.

When the function does not satisfied the above condition then the function is called non even function.

f(x)[tex]\neq[/tex] f(-x)

Now , we check given function is even or not

A. y= [tex]\mid x\mid[/tex]

If x is replaced by -x

Then we get the function

f(-x)=[tex]\mid -x \mid[/tex]

f(-x)=[tex]\mid x \mid[/tex]

Hence, f(-x)=f(x)

Therefore , it is even  polynomial function.

B. [tex]y=x^2[/tex]

If x is replace by -x

Then we get

f(-x)=[tex](-x)^2[/tex]

f(-x)=[tex]x^2[/tex]

Hence, f(-x)=f(x)

Therefore, it is even polynomial function.

C. [tex]y=x^3[/tex]

If x is replace by -x

Then we get

f(-x)=[tex](-x)^3[/tex]

f(-x)=[tex]-x^3[/tex]

Hence, f(-x)[tex]\neq[/tex] f(x)

Therefore, it is not even polynomial function.

D.[tex]y= -x^2[/tex]

If x is replace by -x

Then we get

f(-x)= - [tex](-x)^2[/tex]

f(-x)=-[tex]x^2[/tex]

Hence, f(-x)=f(x)

Therefore, it is even polynomial function.

Answer: C. [tex]y=x^3[/tex] is not simple , even polynomial function.

Solve this gear problem.

Gear 1 = 30 teeth
Speed, gear 1 = 150 r.p.m.
Speed, gear 2 = 50 r.p.m.
Teeth, gear 2 = ?

Answers

Hello!

The answer is:

The number of teeth of Gear 2 is 90 teeth.

[tex]N_{2}=90teeth[/tex]

Why?

To calculate the number of teeth for the Gear 2, we need to use the following formula that establishes a relation between the number of RPM and the number of teeth of two or more gears.

[tex]N_{1}Z_{1}=N_{2}Z_{2}[/tex]

Where,

N, are the rpm of the gears

Z, are the teeth of the gears.

We are given the following information:

[tex]Z_{1}=30teeth\\N_{1}=150RPM\\N_{2}=50RPM[/tex]

Then, substituting and calculating we have:

[tex]N_{1}Z_{1}=N_{2}Z_{2}[/tex]

[tex]150RPM*30teeth=N_{2}50RPM[/tex]

[tex]N_{2}=\frac{150RPM*30teeth}{50RPM}=90teeth[/tex]

[tex]N_{2}=90teeth[/tex]

Hence, we have that the number of teeth of Gear 2 is 90 teeth.

Have a nice day!

....Help Please.......

Answers

Answer:

y = 2x+3

Step-by-step explanation:

The slope is "what happens to the graph when you move one unit to the right in x-direction". As you can check, if you move 1 to the right, the y value increases by 2. Therefore the slope is 2.

The intercept is the graph's y value when x=0, ie., when it passes the y axis. This is at y=3.

Now we have our two ingredients, so y = slope * x + intercept, so 2x+3

Other Questions
Question is shown below Need help with math question ABC has vertices A(-4, 4), B(6, 0), and C(-4, 0). Is ABC a right triangle? PLEASE HELPwrite a short poem about volleyball When ATP is broken down in cells, __________ and __________ are the products.A. adenosine diphosphate; a phosphate groupB. adenosine monophosphate; three phosphate groupsC. adenosine triphosphate; a phosphate groupD. adenosine diphosphate; three phosphate groups PLEASE HELP!!! Solve -(6)^x-1+5=(2/3)^2-x by graphing. Round to the nearest tenth.X = 1.8 We have learned that the geologic time units are eons, eras, periods, and epochs. What are some ordinary time units that we use everyday? How do ordinary time units relate to geological time units?? Frank has devised a formula for his catering business that calculates the number of meat balls he needs to prepare the formula is m=4a+2c where c= the number of children m=the number of meat balls a= the number of adults. how many meatballs are required for a party of 20 adults and 8 children? how many meatballs are required for a party of 20 adults and 8 children Solve the right triangle What is the equivalent resistance for a parallel circuit that has two resistors: 18.0 ohms and 23.5 ohms?A. 10.2 ohmsB. 20.8 ohmsC. 5.5 ohmsD. 41.5 ohms 2x-3y=04x + 6y = 4which of the following is the solution to this system? (a) ; (3,2)(b) ; 1/2 , 1/3 )(c) ; all the points on the line 2x-3y=0(d) ; there is no solution pick one please, thank you ! PLZ HELP. ILL GIVE BRAINLIEST!!!Which word and punctuation mark corrects the punctuation error in this sentence? The girl, who wore a green shirt is my sister's friend. A. girl; B. shirt, C. sister's, What role has the Mediterranean Sea played in the development of Europe and Africa the reverse of adding 3 is If the mass of the earth and all objects on it were suddenly doubled, but the size remained the same, the acceleration due to gravity at the surface would becomeA) 1/2 of what it now is.B) 2 times what it now is.C) 1/4 of what it now is.D) the same as it now is.E) 4 times what it now is. A quadratic function and an exponential function are graphed below. Which graph most likely represents the quadratic function?*PIC*f(x), because an increasing exponential function will eventually exceed an increasing quadratic functiong(x), because an increasing quadratic function will eventually exceed an increasing exponential functiong(x), because an increasing exponential function will always exceed an increasing quadratic function until their graphs intersectf(x), because an increasing quadratic function will always exceed an increasing exponential function until their graphs intersect HELP ME PLEASE I NEED TO GET THIS DONERead the excerpt from "The Gift of the Magi" by O. Henry. What is the tone of the opening passage?One dollar and eighty-seven cents. That was all. And sixty cents of it was in pennies. Pennies saved one and two at a time by bulldozing the grocer and the vegetable man and the butcher until one's cheeks burned with the silent imputation of parsimony that such close dealing implied. Three times Della counted it. One dollar and eighty- seven cents. And the next day would be Christmas.There was clearly nothing to do but flop down on the shabby little couch and howl. So Della did it. Which instigates the moral reflection that life is made up of sobs, sniffles, and smiles, with sniffles predominating.While the mistress of the home is gradually subsiding from the first stage to the second, take a look at the home. A furnished flat at $8 per week. It did not exactly beggar description, but it certainly had that word on the lookout for the mendicancy squad.In the vestibule below was a letter-box into which no letter would go, and an electric button from which no mortal finger could coax a ring. Also appertaining thereunto was a card bearing the name "Mr. James Dillingham Young. "The "Dillingham" had been flung to the breeze during a former period of prosperity when its possessor was being paid $30 per week. Now, when the income was shrunk to $20, though, they were thinking seriously of contracting to a modest and unassuming D. But whenever Mr. James Dillingham Young came home and reached his flat above he was called "Jim" and greatly hugged by Mrs. James Dillingham Young, already introduced to you as Della. Which is all very good.A. dissatisfiedB. humorousC. sarcasticD. unhappy What can you infer from the statement "As a woman, she had not been raised to rule Austria." What was the main issue for why possible delegates didn't go to the Constitutional Convention? A. Outlawing slavery B. Increasing power of the national government C. Arresting debtors D. Making George Washington the king of the United States According to the scale, which of these substances is the strongest acid?A)NaOHB)bloodC)bleachD)lemon juice Steam Workshop Downloader