Can someone help me on this?? I'm stuck!

Find the total area for the regular pyramid.

T. A. =

Can Someone Help Me On This?? I'm Stuck!Find The Total Area For The Regular Pyramid.T. A. =
Can Someone Help Me On This?? I'm Stuck!Find The Total Area For The Regular Pyramid.T. A. =

Answers

Answer 1

Answer:

[tex]TA=(144+36\sqrt{3})\ units^2[/tex]

Step-by-step explanation:

we know that

The total area or surface area of the regular pyramid is equal to the area of the triangular base plus the area of its three lateral triangular faces

so

step 1

Find the area of the triangular base B

Is an equilateral triangle

Applying the law of sines

[tex]B=\frac{1}{2}(12^2)sin(60^o)[/tex]

[tex]B=\frac{1}{2}(144)\frac{\sqrt{3}}{2}[/tex]

[tex]B=36\sqrt{3}\ units^2[/tex]

step 2

Find the area of the lateral triangular faces

[tex]A=3[\frac{1}{2}(12)h][/tex]

Find the height

Applying the Pythagorean Theorem

[tex]10^2=6^2+h^2[/tex]

[tex]h^2=100-36\\h^2=64\\h=8\ units[/tex]

Find the area of the lateral triangular faces

[tex]A=3[\frac{1}{2}(12)8]=144\ units^2[/tex]

therefore

The total area is

[tex]TA=(144+36\sqrt{3})\ units^2[/tex]


Related Questions

(04.01)

Which of the following shows the correct steps to find the value of 16 to the power of 1 over 4 ? (1 point)

Group of answer choices

16 to the power of 1 over 4 equals 2 to the power of 4 to the power of 1 over 4 equals 2 to the power of 4 multiplied by 1 over 4 equals 2

16 to the power of 1 over 4 equals 4 to the power of 4 to the power of 1 over 4 equals 4 to the power of 4 multiplied by 1 over 4 equals 4

16 to the power of 1 over 4 equals 2 to the power of 8 to the power of 1 over 4 equals 8 to the power of 8 multiplied by 1 over 4 equals 4

16 to the power of 1 over 4 equals 8 to the power of 2 to the power of 1 over 4 equals 2 to the power of 2 multiplied by 1 over 4 equals 8

Answers

Answer:

16 to the power of 1 over 4 equals 2 to the power of 4 to the power of 1 over 4 equals 2 to the power of 4 multiplied by 1 over 4 equals 2

Step-by-step explanation:

16 to the power of 1 over 4 equals 2 to the power of 4 to the power of 1 over 4 equals 2 to the power of 4 multiplied by 1 over 4 equals 2

(16)^1/4 = (2^4)^1/4

4 cancels 4

2^1 = 2

Answer:

Step-by-step explanation:

The answer is the first one.

[tex]16^{\frac{1}{4}}[/tex]  simplifies down to

[tex](2^4)^{\frac{1}{4}}[/tex]  The power to power rule is that you multiply the exponents together:

[tex]2^{\frac{4}{4}}[/tex]  which is [tex]2^1[/tex]  which is 2

I'm assuming that you are also working with radicals (since radicals and exponents are inverses of each other).  The way to write this is as a radical and simplify it is:

[tex]16^{\frac{1}{4}[/tex]  as a radical is

[tex]\sqrt[4]{16^1}[/tex]

To simplify, try to write the radicand (the number under the square root) so it's a number with a power that matches the index (the number in the "arm" of the radical sign.  Our index is a 4).  

16 is the same as 2⁴:

[tex]\sqrt[4]{2^4}[/tex]

The power on the 2 is a 4, which is the same as the index.  When the power matches the index, you pull out the base as a single number:

[tex]\sqrt[4]{2^4}=2[/tex]

Trevor Once to buy a car that cost 23600 he has 5000 for down payment how much more will Trevor O the car right solve and create an equation for his situation define the variable

Answers

Answer:

5000 + x = 23600  

Step-by-step explanation:

a car that cost = 23600

down payment = 5000

So he needs to pay: 23600 - 5000 = 18600 more to get the car

Let x represent the amount he needs to pay more, an equation for his situation:

5000 + x = 23600  

a bag contains 6 red jelly beans 4 green jelly beans 4 blue jelly beans

Answers

Answer:

12/91

Explanation:

The question is incomplete. The complete question is:

A bag contains 6 red jelly beans, 4 green jelly beans, and 4 blue jelly beans.

If we choose a jelly bean, then another jelly bean without putting the first one back in the bag, what is the probability that the first jelly bean will be green and the second will be red?

Solution

The probability that the first jelly bean will be green is the number of green jelly beans divided by the total number of jelly beans:

4/14

After chosing the first green jelly bean, there will be 13 jelly beans, from which 6 are red. Thus, the probability that the second jelly bean will be red is:

6/13

The probability of the joint events is the product of the two consecutive events:

(4/14) × (6/13) =12/91 ← answer

The probability that the first jelly bean will be green and the second will be red is 12/91.

We start by determining the total number of jelly beans in the bag, which is:

6 red + 4 green + 4 blue = 14 jelly beans.

Step 1: Probability of the first jelly bean being green

The probability of drawing a green jelly bean first is the number of green jelly beans divided by the total number of jelly beans:

P(Green first) = 4/14 = 2/7.

Step 2: Probability of the second jelly bean being red

Once the first green jelly bean is chosen, there are now 13 jelly beans left in the bag, with 6 being red:

P(Red second | Green first) = 6/13.

Step 3: Combined probability

The combined probability of both events happening (first green, then red) is given by multiplying their individual probabilities:

P(Green first and Red second) = (2/7) * (6/13) = 12/91.

Thus, the combined probability is 12/91.

Complete question: A bag contains 6 red jelly beans, 4 green jelly beans, and 4 blue jelly beans. If we choose a jelly bean, then another jelly bean without putting the first one back in the bag, what is the probability that the first jelly bean will be green and the second will be red?

(1 point) A rock is thrown into a still pond and causes a circular ripple. If the radius of the ripple is increasing at a rate of 4 feet per second, how fast is the circumference changing when the radius is 18 feet?

Answers

Answer:

8pi feet per second

Or, 25.1 feet per second (3 sf)

Step-by-step explanation:

C = 2pi×r

dC/dr = 2pi

dC/dt = dC/dr × dr/dt

= 2pi × 4 = 8pi feet per second

dC/dt = 25.1327412287

A right cylindrical solid is cut in half to form the figure shown. If the length is 20 cm and the diameter is 8 cm, what is the surface area?

(80π + 160) cm2
(96π + 160) cm2
320π cm2
(320π + 160) cm2

Answers

Answer:

(96π + 160) cm2

Step-by-step explanation:

Tierra rode in a bike-a-thon. Her sponsors donated $7 for every 5 miles she biked. At the end of the bike-a-thon, Tierra had raised $147. How many miles did she ride?

Answers

Answer:

105 miles

Step-by-step explanation:

The question seeks to know the number of miles traveled by Tiera given that she received a certain amount of money in payment.

The total amount of money she received is $147. She receives $7 for every 5 miles traveled. The number of 5 miles traveled is calculated as 147/7 = 21

This means she traveled 5 miles 21 times.

Thus, the total number of miles she had traveled would be 21 * 5 = 105 miles in total

Brainliest & 15 pts to whoever helps pls!!

You are comparing the heights of contemporary males and eighteenth-century males. The sample mean for a sample of 30 contemporary males is 70.1 inches with a sample standard deviation of 2.52 inches. The sample mean for eighteenth century males was 65.2 inches with a sample standard deviation of 3.51 inches. Is there sufficient data to conclude that contemporary males are taller than eighteenth-century males?
a. The P-value is less than 0.00001. There is insufficient data to reject the null hypothesis.
b. The P-value is greater than 0.00001. There is sufficient data to reject the null hypothesis.
c. The P-value is greater than 0.00001. There is insufficient data to reject the null hypothesis.
d. The P-value is less than 0.00001. There is sufficient data to reject the null hypothesis.

Answers

Answer:

D

Step-by-step explanation:

A scoop of ice cream has a 3 inch radius. How tall should the ice cream cone of the same radius be in order to contain all of the ice cream inside the cone?

Answers

Answer:

12cm

Step-by-step explanation:

The scoop of Ice Cream is in the shape of a circular solid which is a Sphere.

For the ice cream to fit into the cone, the volume of the cone must be equal to that of the sphere.

Radius of the Sphere=3cm

Volume of a Sphere = [tex]\frac{4}{3}\pi r^3[/tex]

Volume of a Cone=[tex]\frac{1}{3}\pi r^2h[/tex]

[tex]\frac{1}{3}\pi X 3^2h=\frac{4}{3}\pi X 3^3\\\frac{1}{3}h=\frac{4}{3} X 3\\\frac{1}{3}h=4\\h=4 X 3=12cm[/tex]

The Cone of same radius must be 12cm tall.

What are the solutions to the system of equations?




{y=2x2−8x+5
{y=x−2

Answers

Final answer:

To find the solutions to the system of equations, use the substitution method. The solutions are (1/2, -3/2) and (7, 5).

Explanation:

To find the solutions to the system of equations, we can use the substitution method. First, solve one of the equations for y in terms of x. Let's solve the second equation for y:

y = x - 2

Now substitute this expression for y into the first equation:

x - 2 = 2x^2 - 8x + 5

Now we have a quadratic equation. Rearrange it into standard form:

2x^2 - 9x + 7 = 0

Next, factor the quadratic equation:

(2x - 1)(x - 7) = 0

Set each factor equal to zero and solve for x:

2x - 1 = 0, x - 7 = 0

x = 1/2, x = 7

Now substitute these values of x back into either of the original equations to find the corresponding values of y:

For x = 1/2: y = 1/2 - 2 = -3/2

For x = 7: y = 7 - 2 = 5

So the solutions to the system of equations are (1/2, -3/2) and (7, 5).

A pure acid measuring x liters is added to 300 liters of a 20% acidic solution. The concentration of acid, f(x), in the new substance is equal to the liters of pure acid divided by the liters of the new substance, or . Which statement describes the meaning of the horizontal asymptote? The greater the amount of acid added to the new substance, the more rapid the increase in acid concentration. The greater the amount of acid added to the new substance, the closer the acid concentration is to one-fifth. As more pure acid is added, the concentration of acid approaches 0. As more pure acid is added, the concentration of acid approaches 1.

Answers

Answer:

the answer is d

Step-by-step explanation:

Tara bought Three boxes of dog treats with 40 truth in each box two boxes of cat treats with 20 trees in each box simplify the expression below to find the total number of trees are bought

Answers

Answer:

Tara bought a total of 160 treats.

Step-by-step explanation:

We are given the following in the question:

Number of boxes of dog treats = 3

Number of treats in each dog box = 40

Total number of treats in dog box =

[tex]40 \times 3 = 120[/tex]

Number of boxes of cat treats = 2

Number of treats in each cat box = 20

Total number of treats in cat box =

[tex]20\times 2 = 40[/tex]

Total number of treats Tara brought =

Total number of treats in dog box + Total number of treats in cat box

[tex](40\times 3)+(20\times 2)\\= 120 + 40\\=160[/tex]

Thus, Tara bought a total of 160 treats.

What do you know about the solution(s) to the system of equations?

A. There is no solution.


B. The solution is (2,0).


C. The solution is (0,−1).


D. There are infinitely many solutions.

Answers

Answer:

A because the linesnever cross.

Step-by-step explanation:

Answer:

There is no solution

Step-by-step explanation:

If Naomi were to paint her living room alone, it would take 5 hours. Her sister Jackie could do the job in 8 hours. How many hours would it take them working together? Express your answer as a fraction reduced to lowest terms, if needed.

Answers

Answer:

40/13

The decimal form is going to be 3.076

Which inequality can Josh use to determine x, the minimum number of visits he needs to earn his first free movie ticket?

Answers

Answer:

3.5x + 15 ≥ 55

Step-by-step explanation:

I think the question below contains the missing information.

Josh has a rewards card for a movie theater. - He receives 15 points for becoming a rewards card holder. - He earns 3.5 points for each visit to the movie theatre. - He needs at least 55 points to earn a free movie ticket. Which inequality can Josh use to determine x, the minimum number of visits he needs to earn his firs free movie ticket?

My answer:

Becoming a member = 15 pointsVisiting the moving theater = 3.5 pointsTotal points needed for a free movie ticket = 55

Let x is the number of times he visits = 3.5x

Total points = Points received on becoming a member + Points received on x visits

So,

Total Points = 15 + 3.5x

We know the total points must be at least 55 for a free movie ticket.  This can be expressed as:

3.5x + 15 ≥ 55

Look at the proof. Name the postulate you would use to prove the two triangles are congruent.


A. AAA Postulate

B. SSS Postulate SAS

C. SAS Postulate

Answers

Answer:

Option C, SAS Postulate

Step-by-step explanation:

I think that it is option C because it does not give you 3 angles or 3 sides, it gives you 2 angles and 1 side.

Answer:  Option C, SAS Postulate

When I count as a principal of $1000 and earns 4% simple interest per year and other account as a principal $1000 and earns 4% interest compounded annually which account has the greater balance at the end of four years

Answers

Answer: the account that earned compound interest has the greater balance at the end of four years.

Step-by-step explanation:

The formula for determining simple interest is expressed as

I = PRT/100

Where

I represents interest paid on the amount invested.

P represents the principal or amount invested.

R represents interest rate

T represents the duration of the investment in years.

From the information given,

P = 1000

R = 4%

T = 4 years

I = (1000 × 4 × 4)/100 = 160

Total amount earned is

1000 + 160 = $1160

The formula for determining compound interest is expressed as

A = P(1+r/n)^nt

Where

A = total amount in the account at the end of t years

r represents the interest rate.

n represents the periodic interval at which it was compounded.

P represents the principal or initial amount deposited

From the information given,

P = 1000

r = 4% = 4/100 = 0.04

n = 1 because it was compounded once in a year.

t = 4 years

Therefore,.

A = 1000(1+0.04/1)^1 × 4

A = 1000(1.04)^4

A = $1170

What is the volume of a cylinder, in cubic m, with a height of 5m and a base diameter of 20m? Round to the nearest tenths place

Answers

What is the volume of a cylinder, in cubic m, with a height of 5m and a base diameter of 20m? Round to the nearest tenths place.

Answer: 1570.8

The volume of a cylinder with a height of 5m and a base diameter of 20m is approximately 1,570.8 cubic meters when rounded to the nearest tenths place.

To find the volume of a cylinder with a height of 5m and a base diameter of 20m, we will use the formula for the volume of a cylinder: V = πr²h , where V is volume, r is the radius of the base, and h is the height of the cylinder. The radius is half of the diameter, so for a diameter of 20m, the radius is 10m. Substituting these values into the formula gives us V = (π × 10² × 5), which we can calculate as V = 3.1416 × 100 × 5 = 1,570.8 cubic meters, rounded to the nearest tenths place.

Select the correct answer. Solve -9 2/7 -(-10 3/7) . A. -1 1/7 B. 1 1/7 C. 19 1/7 D. 19 5/7

Answers

Answer:

B. 1 1/7

Step-by-step explanation:

-9 2/7-(-10 3/7)

=-9 2/7+10 3/7

=1 1/7

Therefore, B. 1 1/7

Answer:

The answer is B

Step-by-step explanation:

B. 1 1/7

A scientist measured the exact distance between two points on a map and came up with the following number: 0.04000 km.
Which digits are the significant figures in this measurement?
Explain your answer.

Answers

Answer:

The first zero after decimal point and 4 only

Step-by-step explanation:

Despite having 5 decimal points, the rules of significant figures dictate that unless there is a digit other than zero after, the only significant numbers are those that come before zero. For this case, the significant digits are only 0.04 but if it was 0.0400005 then all the other zeros would have also be considered significant.

Power (denoted by PPP) can be defined as a function of work (denoted by WWW) and time (denoted by ttt) using this formula: P=\dfrac{W}{t}P= t W ​ P, equals, start fraction, W, divided by, t, end fraction Work is measured in \dfrac{\text{kg}\cdot\text{m}^2}{\text{s}^2} s 2 kg⋅m 2 ​ start fraction, start text, k, g, end text, dot, start text, m, end text, squared, divided by, start text, s, end text, squared, end fraction, and time is measured in \text{s}sstart text, s, end text.

Answers

Answer: kg*m^2 / s^3

Answer:

Answer: kg*m^2 / s^3

Step-by-step explanation:

HELP HOW DO I FIND THE B VALUE OF THIS

Answers

Answer:

b = [tex]\frac{8}{3}[/tex]

Step-by-step explanation:

period = [tex]\frac{2\pi }{b}[/tex], that is

b = [tex]\frac{2\pi }{period}[/tex] = [tex]\frac{2\pi }{\frac{3\pi }{4} }[/tex] = 2π × [tex]\frac{4}{3\pi }[/tex] = [tex]\frac{8}{3}[/tex]

Answer:

f(x) = 4cos(8/3)x - 3.

The missing space is 8/3.

Step-by-step explanation:

The general form is  f(x) = Acosfx + B    where A = the amplitude, f = frequency and B is the vertical shift..

Here A is given as  4,  B is - 3 and the frequency f = 2 π / period  =

2π / (3π/4)

= 8/3.

So the answer is f(x) = 4cos(8/3)x - 3.

Find a degree 3 polynomial with real coefficients having zeros 3 and 3−3i and a lead coefficient of 1. Write P in expanded form.

Answers

Answer:

P =  x³ − 9x² + 36x − 54

Step-by-step explanation:

Complex roots come in conjugate pairs.  So if 3−3i is a zero, then 3+3i is also a zero.

P = (x − 3) (x − (3−3i)) (x − (3+3i))

P = (x − 3) (x − 3 + 3i) (x − 3 − 3i)

P = (x − 3) ((x − 3)² − (3i)²)

P = (x − 3) ((x − 3)² + 9)

P =  (x − 3)³ + 9 (x − 3)

P =  x³ − 9x² + 27x − 27 + 9x − 27

P =  x³ − 9x² + 36x − 54

Why is the law of cosines a stronger statement than the pythagorean theorem?

Answers

Answer:

Answer in explanation

Step-by-step explanation:

The two laws are mathematical laws which are used in navigating problems which involves triangles. While the Pythagorean theorem is used primarily and exclusively for right angled triangle, the cosine rule is used for any type of triangle.

So, why is the cosine rule a stronger statement? The reason is not far fetched. As said earlier, the cosine rule can be used to resolve any triangle type while the Pythagorean theorem only works for right angled triangle. In fact, we can say the Pythagorean theorem is a special case of cosine rule. The reason why the expression is different is that, for the expression, cos 90 is zero, which thus makes our expression bend towards the Pythagorean expression view.

The explanation regarding the law of cosines is the stronger statement if compared with the Pythagorean theorem is explained below.

Difference between the law of cosines be the stronger statement if compared with the  Pythagorean theorem:

The Pythagorean theorem is used when there is the right-angled triangle, while on the other hand, the cosine rule is used for any type of triangle. Here the Pythagorean theorem should be considered for the special case of cosine rule. Due to this the cosine law should be stronger if we compared it with the Pythagorean theorem.

Learn more about cosine here;https://brainly.com/question/16299322

My Notes Determine the longest interval in which the given initial value problem is certain to have a unique twice-differentiable solution. Do not attempt to find the solution. (Enter your answer using interval notation.)t(t−4)y"+3ty'+4y=2,y(3)=0,y'(3)=−1

Answers

Answer:

The answer to the question is

The longest interval in which the given initial value problem is certain to have a unique twice-differentiable solution is  (-∞, 4)

Step-by-step explanation:

To apply look for the interval, we divide the ordinary differential equation by (t-4) to

y'' + [tex]\frac{3t}{t-4}[/tex] y' + [tex]\frac{4}{t-4}[/tex]y = [tex]\frac{2}{t-4}[/tex]

Using theorem 3.2.1 we have p(t) =  [tex]\frac{3t}{t-4}[/tex], q(t) =  [tex]\frac{4}{t-4}[/tex], g(t) = [tex]\frac{2}{t-4}[/tex]

Which are undefined at 4. Therefore the longest interval in which the given initial value problem is certain to have a unique twice-differentiable solution, that is where p, q and g are continuous and defined is (-∞, 4) whereby theorem 3.2.1 guarantees unique solution satisfying the initial value problem in this interval.

Final answer:

The existence and uniqueness theorems for ODEs determine that the longest interval where the initial value problem has a unique and twice-differentiable solution is (0, 4), avoiding discontinuities at t=0 and t=4.

Explanation:

The initial value problem provided is a second-order linear ordinary differential equation (ODE) of the form:

t(t-4)y"+3ty'+4y=2, with initial conditions y(3)=0 and y'(3)=-1.

To determine the longest interval in which the solution is guaranteed to be unique and twice-differentiable, we need to consider the existence and uniqueness theorems for ODE's, which are predicated on the functions of the equation being continuous over the interval considered. Here, the coefficients of y" and y' are t(t-4) and 3t respectively. The problematic points occur where the coefficient of y" is zero because it will make the equation not well-defined, which occurs at t=0 and t=4. Therefore, the longest interval around the initial condition t=3 that avoids these points is (0, 4). Within this interval, the coefficients are continuous, and hence, the conditions for the existence and uniqueness of the solution are satisfied.

The paraboloid z = 6 − x − x2 − 5y2 intersects the plane x = 2 in a parabola. Find parametric equations in terms of t for the tangent line to this parabola at the point (2, 2, −20).

Answers

Answer:

x = 2

y = 2 +  t

z = -20 -20t

Step-by-step explanation:

First, we are going to find the equation for this parabola. We replace x = 2 in the equation of the paraboloid, thus:

[tex]z = 6-x-x^{2} -5y^{2}[/tex]

if x = 2, then

[tex]z = 6-(2)-2^{2}-5y^{2}[/tex]

[tex]z = -5y^{2}[/tex]

Now, we calculate the tangent line to this parabola at the point (2,2,-20)

The parametrization of the parabola is:

x = 2

y = t  

[tex]z = -5t^{2}[/tex]  since [tex]z = -5y^{2}[/tex]

We calculate the derivative

[tex]\frac{dx}{dt}= 0[/tex]

[tex]\frac{dy}{dt}= 1[/tex]

[tex]\frac{dz}{dt}= -10t[/tex]

we evaluate the derivative in t=2, since at the point (2,2,-20) y = 2 and y = t

Thus:

[tex]\frac{dx}{dt}= 0[/tex]

[tex]\frac{dy}{dt}= 1[/tex]

[tex]\frac{dz}{dt}= -10(2)= -20[/tex]

Then, the director vector for the tangent line is (0,1,-20)

and the parametric equation for this line is:

x = 2

y = 2 +  t

z = -20 -20t

The parametric equation of the tangent line is [tex]L(t)=(2,2+t,-20-20t)[/tex]

Parabola :

The equation of Paraboloid is,

                 [tex]z =6-x-x^{2} -5y^{2}[/tex]

Equation of parabola when [tex]x = 2[/tex] is,

       [tex]z=6-2-2^{2} -5y^{2} \\\\z=-5y^{2}[/tex]

The parametric equation of parabola will be,

     [tex]r(t)=(2,t,-5t^{2} )[/tex]

Now, we have to find Tangent vector to this parabola is,

    [tex]T(t)=\frac{dr(t)}{dt}=(0,1,-10t)[/tex]

We get, the point [tex](2, 2, -20)[/tex] when [tex]t=2[/tex]

The tangent vector will be,

 [tex]T(2)=(0,1,-20)[/tex]

The tangent line to this parabola at the point (2, 2, −20) will be,

     [tex]L(t)=(2,2,-20)+t(0,1,-20)\\\\L(t)=(2,2+t,-20-20t)[/tex]

Learn more about the Parametric equation here:

https://brainly.com/question/21845570

100 pyramid shaped chocolate candies with a square base of 12 mm size and height of 15 mm are melted in a cylinder coil pot if the part has a radius of 75 mm what is the height of the melted candies in the pot.

Answers

Answer: the height of the melted candies in the pot is 12.2 mm

Step-by-step explanation:

The formula for determining the volume of a square base pyramid is expressed as

Volume = area of base × height

Area of the square base = 12² = 144 mm²

Volume of each pyramid = 15 × 144 = 2160 mm³

The volume of 100 pyramid shaped chocolate candies is

2160 × 100 = 216000 mm³

The formula for determining the volume of a cylinder is expressed as

Volume = πr²h

Since the pyramids was melted in the cylindrical pot whose radius is 75 mm, it means that

216000 = 3.14 × 75² × h

17662.5h = 216000

h = 216000/17662.5

h = 12.2 mm

Answer:

The height of the melted candies in the pot is 4.07mm

Step-by-step explanation:

H= 100*1/3(12)^2(15)/π(75)^2=64/5π=4.07

The average number of field mice per acre in a 5​-acre wheat field is estimated to be 14. ​(a) Find the probability that fewer than 12 field mice are found on a given acre. ​(b) Find the probability that fewer than 12 field mice are found on 2 of the next 3 acres inspected.

Answers

Answer:

(a) [tex]P(X < 12)=0.26[/tex]

(b) [tex]P(X=2)=0.15[/tex]

Step-by-step explanation:

Question a

This is a Poisson distribution. The average/mean, μ = 14

So, probability that fewer than 12 field mice are found on a given acre is:

[tex]P(X < 12) = e^{-14}(\frac{14^{0}}{0!} +\frac{14^{1}}{1!} + \frac{14^{2}}{2!} + \frac{14^{3}}{3!} +\frac{14^{4}}{4!} + \frac{14^{5}}{5!} +\frac{14^{6}}{6!}+\frac{14^{7}}{7!}+\frac{14^{8}}{8!} +\frac{14^{9}}{9!}+\frac{14^{10}}{10!}+\frac{14^{11}}{11!})\\ \\P(X < 12) = e^{-14}(1+14+98+457.33+1600.67+4481.87+10457.69+20915.38+36601.91+56936.31+79710.83+101450.15)\\\\P(X < 12) = 8.315*10^{-7}(312725.1248)=0.26 \\\\P(X < 12)=0.26[/tex]

Question b

This is a Binomial distribution with:

Probability of success, p = 0.26

n = 3

[tex]P(X=2)= (3C2)p^{2}(1-p)=\frac{3!}{2!(3-2)!}*(0.26^{2})*(1-0.26)\\ \\P(X=2)=3(0.0676)(0.74)=0.15\\\\P(X=2)=0.15[/tex]

Final answer:

To find the probability that fewer than 12 field mice are found on a given acre and on 2 of the next 3 acres inspected, use the cumulative distribution function (CDF) of the Poisson distribution and the binomial distribution.

Explanation:

To find the probability that fewer than 12 field mice are found on a given acre, we need to use the cumulative distribution function (CDF) of the Poisson distribution. The average number of field mice per acre is 14, so the parameter of the Poisson distribution is also 14.

(a) To find the probability that fewer than 12 field mice are found on a given acre, we calculate P(X < 12) = P(X = 0) + P(X = 1) + P(X = 2) + ... + P(X = 11), where X is the number of field mice found on a given acre

(b) To find the probability that fewer than 12 field mice are found on 2 of the next 3 acres inspected, we calculate P(X < 12) for each acre and use the binomial distribution to determine the probability of 2 successes out of 3 trials.

PLEASE HELP!!!!
ERGF is inscribed in a circle.
Find the measure of angle E.

Answers

In a cyclic quadrilateral ( a quadrilateral that is inscribed in a circle),

opposite angles add up to 180 degrees. So you can form an equation and solve for x, and thus angle E.

Therefore:

(-2 + 6x) + (7x - 13) = 180

13x - 15 = 180

13x = 195

x = 15

So angle E = 5x

                 = 5 (15)

                 = 75 degrees

Last month 15 homes were sold in Town X. The average (arithmetic mean) sale price of the homes was $150,000 and the median sale price was $130,000. Which of the following statements must be true?
I. At least one of the homes was sold for more than $165,000.
II. At least one of the homes was sold for more than $130,0000 and less than $150,000
III. At least one of the homes was sold for less than $130,000.
A. I only
B. II only
C. III only
D. I and II
E. I and III

Answers

Answer:

A. I Only.

Step-by-step explanation:

To begin, we must first be clear that it is the median and that it is the arithmetic mean:

Median is the middle value of a sequence of ordered numbers, for example:

{4,4,4,4,4}, the median is 4 despite being the same numbers.

Now the arithmetic mean is the average value of the samples and is independent of the amplitudes of the intervals.

Then let's analyze each of our options:

I. At least one of the homes was sold for more than $ 165,000.

We know through the flushed:

X1 + X2 +. . . + X7 + (X8 = $130,000) + X9 +. . . + X15 = 15 ∗ 150,000 = $ 2,250,000

Now we will assume the lowest possible value from X1 to X8 = $ 130,000 and from X9 to X15 = X, which is what we want to calculate. That is to say:

X1 = X2 = X3 = X4 = X5 = X6 = X7 = X8 = 130 and X9 = X10 = X11 = X12 = X13 = X14 = X15 = X,

knowing that the total value must be the average of 15, which is equal to $ 2250000 , we have the following equation:

8 ∗ $ 130,000 + 7X = $ 2,250,000

Rearranging:

X = ($ 2,250,000 $ - $ 1,040,000) / 7

X = $ 172,857

Therefore the first statement is true, because at least one house was sold at $ 172,857 which is more than $ 165,000

Evaluating the second option

II. At least one of the homes was sold for more than $ 130,0000 and less than $ 150,000

As the example of the median in the previous case you could have 8 houses that were sold for $ 130,000 or less, therefore here it loses validity, statement II is false.

Evaluating the third option

III. At least one of the homes was sold for less than $ 130,000.

We know that the eighth house sold for $ 130,000, but houses 1 to 7 may also have been sold for that same price. The statement III is false.

Therefore the answer is A. I Only.

dont skip just help plz

Answers

(1,-3) is your answer

Answer:

(1,-3)

Step-by-step explanation:

the x-axis for A is positive and the y-axis is negative. point A's X value is 1 because it is 1 point away from the origin and the value of the Y is 3 units away from the origin and it has to be negative.

Other Questions
Matrix multiplication was used to encode a message using the given encoding matrix: [i 47 A=1 |-1 -3] The original message was converted to row matrices of size: 1x 2 and each was multiplied by A. sp 0 A 1 B 2 C 3 D 4 E F G H I J K L M N O P Q R 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 14 | 15 | 16 | 17 | 18 S T U V W X Y Z 19 20 21 22 23 24 25 26 Coded message: 11 52 -8 -9 -13 -39 5 20 12 56 5 20 -2 7 9 41 25 100 Find A and use it to decode the message After Shipra got a job, the first thing she bought was a new car. She took out an amortized loan for $20,000with no ($0) down payment. She agreed to pay off the loan by making annual payments for the next four years at the end of each year. Her bank is charging her an interest rate of 6% per year. Yesterday, she called to ask that you help her compute the annual payments necessary to repay her loan. If there is one heart available for transplant and healthcare professionals must make the decision as to who gets the heart by treating everyone fairly, which ethical principle is involved? EWEYUIU Problems DVA florist has 9 tulips and 18 carnations. If the florist wants to create identical bouquetswithout any leftover flowers, what is the greatest number of bouquets the florist can make? Which of the following best explains social Darwinism?A. the idea that only the most fit animal will survive in natureB. the idea that people compete for survival using their natural abilities to obtainwealthC. the idea that wealth should be shared by every member of societyD. the idea that every man, women, and child can achieve happiness in America Which of the following defines various colors by blending certain amounts of red green and blue.A. ColorB hexadecimalC. HTML color codesD. Rgb color models Joshua will be referred to an outpatient asthma education program; however, some key asthma survival skills must be taught on the acute care unit since the hospitalized child is most vulnerable for exacerbations in the immediate post hospital period. What are the client education priorities during the acute care phase? Select all that apply What are the client education priorities during the acute care phase? a.How to use the inhaler with spacer. b.Parental recognition of early warning signs. c.Eliminating triggers from the home. d.Reducing the risk of upper respiratory tract infections. e.Preventing exercise-induced asthma. What are the advantages of having the 3rd Amendment? Some renewable energy resources, such as solar energy and hydropower, have several important advantages over nonrenewable resources. Which is an advantage of renewable energy resources? 2. If you have 10 ft3 of an ideal gas stored at 75 F and at 12 psia that is expanded to 15 ft3 , what is the resulting pressure? 3. The atmospheric pressure is 14.3 psi. How many inches of mercury (s=13.6) does the National Weather Service report this pressure as? Pressure = __________________ The basic activities that comprise marketing include the following: A. Financial ratio analysis B. Marketing research and target market analysis C. Cost/benefit analysis D. Benchmarking E. Pricing, distribution, and human resource management (HRM) A client in the client's 50s has contacted the care provider because of concerns for the client's spouse, who has suddenly begun behaving uncharacteristically in recent days. Most recently, the spouse became lost while driving to the spouse's home of 30 years and temporarily forgot the name of the spouse's child. Diagnostic testing has ruled out delirium and the spouse had been previously healthy. What is the most likely cause of the spouse's cognitive changes? nderstanding the high-temperature formation and breakdown of the nitrogen oxides is essential for controlling the pollutants generated by car engines. The second-order reaction for the breakdown of nitric oxide to its elements has rate constants of 0.0796 L/mol-s at 737C and 0.0815 L/mol-s at 947C. What is the activation energy of this reaction? Give your answer in scientific notation. Which factor occurred in Europe during the 1920s that brought about fascism?OA. a decline in unemploymentOB. a focus on national unity and militarismOC. the growth of European economiesD. an increase in agricultural prices Which added to severe us economic problems in 1971 Prepare the adjusting journal entries for the following transactions. (If no entry is required for a transaction/event, select "No Journal Entry Required" in the first account field.)Supplies for office use were purchased during the year for $800, of which $250 remained on hand (unused) at year-end. Interest of $400 on a note receivable was earned at year-end, although collection of the interest is not due until the following year. At year-end, salaries and wages payable of $5,100 had not been recorded or paid. At year-end, one-half of a $3,500 advertising project had been completed for a client, but nothing had been billed or collected. Redeemed a gift card for $750 of services. She is going away in Spanish fill in the blanksa ---48=-1 how is mr.hollembeak demonstrating appropiate behavior for participating in this discussion?select three options When powdered zinc is heated with sulfur, a violent reaction occurs, and zinc sulfide forms: Some of the reactants also combine with oxygen in air to form zinc oxide and sulfur dioxide. When 83.2 g of Zn reacts with 52.4 g of S8, 104.4 g of ZnS forms. (a) What is the percent yield of ZnS? (b) If all the remaining reactants combine with oxygen, how many grams of each of the two oxides form?