(a) [tex]2.5\cdot 10^{-6}eV[/tex]
The energy of a photon is given by:
[tex]E=\frac{hc}{\lambda}[/tex]
where
[tex]h=6.63\cdot 10^{-34}Js[/tex] is the Planck constant
[tex]c=3\cdot 10^8 m/s[/tex] is the speed of light
[tex]\lambda[/tex] is the wavelength
For the microwave photon,
[tex]\lambda=50.00 cm = 0.50 m[/tex]
So the energy is
[tex]E=\frac{(6.63\cdot 10^{-34}Js)(3\cdot 10^8 m/s)}{0.50 m}=4.0\cdot 10^{-25} J[/tex]
And converting into electronvolts,
[tex]E=\frac{4.0\cdot 10^{-25}J}{1.6\cdot 10^{-19} J/eV}=2.5\cdot 10^{-6}eV[/tex]
(b) [tex]2.5 eV[/tex]
For the energy of the photon, we can use the same formula:
[tex]E=\frac{hc}{\lambda}[/tex]
For the visible light photon,
[tex]\lambda=500 nm = 5 \cdot 10^{-7}m[/tex]
So the energy is
[tex]E=\frac{(6.63\cdot 10^{-34}Js)(3\cdot 10^8 m/s)}{5\cdot 10^{-7} m}=4.0\cdot 10^{-19} J[/tex]
And converting into electronvolts,
[tex]E=\frac{4.0\cdot 10^{-19}J}{1.6\cdot 10^{-19} J/eV}=2.5 eV[/tex]
(c) [tex]2500 eV[/tex]
For the energy of the photon, we can use the same formula:
[tex]E=\frac{hc}{\lambda}[/tex]
For the x-ray photon,
[tex]\lambda=0.5 nm = 5 \cdot 10^{-10}m[/tex]
So the energy is
[tex]E=\frac{(6.63\cdot 10^{-34}Js)(3\cdot 10^8 m/s)}{5\cdot 10^{-10} m}=4.0\cdot 10^{-16} J[/tex]
And converting into electronvolts,
[tex]E=\frac{4.0\cdot 10^{-16}J}{1.6\cdot 10^{-19} J/eV}=2500 eV[/tex]
Interactive LearningWare 13.1 explores the approach taken in problems such as this one. A composite rod is made from stainless steel and iron and has a length of 0.241 m. The cross section of this composite rod is shown in the drawing and consists of a square within a circle. The square cross section of the steel is 3.76 cm on a side. The temperature at one end of the rod is 88.9 °C, while it is 10.2 °C at the other end. Assuming that no heat exits through the cylindrical outer surface, find the total amount of heat conducted through the rod in two minutes.
Answer:jyjyjjhjh
Explanation:
hjjhjhjhjjh
Which statement correctly describes the current in a circuit that is made up of any two resistors connected in series with a battery
A. The current in the battery is less than the current in either resistor.
B. The current in the battery equals the product of the currents in the resistors.
C. The current in the battery equals the sum of the currents in the resistors.
D. The current in the battery and in each resistor is the same
Answer:
D. The current in the battery and in each resistor is the same
Explanation:
In a series circuit, all the components of the circuit are connected in the same branch of the circuit - this means that the current flowing through each component is the same. Therefore, the current in the battery is equal to the current flowing through each resistor.
The total resistance of a series of n resistors is given by the sum of the individual resistances:
[tex]R=R_1+R_2+...+R_n[/tex]
On the contrary, when the components are connected in parallel to the battery, then each of them has the same voltage of the battery, but not the same current.
Rod cells in the retina of the eye detect light using a photopigment called rhodopsin. 1.8 eV is the lowest photon energy that can trigger a response in rhodopsin.
1. What is the maximum wavelength of electromagnetic radiation that can cause a transition? (in nm)
3. In what part of the spectrum is this? (visible light, infrared, xray, or ultraviolet)
1. 686 nm
The lowest photon energy is
[tex]E=1.8 eV[/tex]
Let's convert this energy into Joules first
[tex]E=(1.8 eV)(1.6\cdot 10^{-19} J/eV)=2.9\cdot 10^{-19} J[/tex]
The energy of the photon is given by
[tex]E=\frac{hc}{\lambda}[/tex]
where
h is the Planck constant
c is the speed of light
[tex]\lambda[/tex] is the wavelength
Re-arranging the equation for [tex]\lambda[/tex], we find the maximum wavelength of the photon that can cause a transition:
[tex]\lambda=\frac{hc}{E}=\frac{(6.63\cdot 10^{-34}Js)(3\cdot 10^8 m/s)}{2.9\cdot 10^{-19} J}=6.86\cdot 10^{-7}m=686 nm[/tex]
2. Visible light
The photon of this light is in the visible light part of the spectrum.
In fact, the range of wavelengths of the visible part of the spectrum is
[380 nm - 750 nm]
In particular, we have that the wavelengths in the range
[640 nm - 750 nm]
corresponds to the red light part of the spectrum: since 686 nm falls withing this range, this photon is a red light photon.
The maximum wavelength of electromagnetic radiation that can cause a transition in rhodopsin is approximately 389 nm, which lies in the visible light part of the spectrum.
Explanation:
The maximum wavelength of electromagnetic radiation that can cause a transition in rhodopsin can be calculated using the equation E = hc/λ, where E is the energy of the photon, h is Planck's constant, c is the speed of light, and λ is the wavelength of the radiation. Rearranging the equation to solve for λ, we have λ = hc/E. Plugging in the given values, we get λ = (6.626 x 10^-34 J · s x 3 x 10^8 m/s)/(1.8 x 1.602 x 10^-19 J) ≈ 389 nm.
This wavelength lies in the visible light part of the spectrum. Visible light ranges from approximately 400 to 700 nm, with shorter wavelengths corresponding to violet light and longer wavelengths corresponding to red light.
Learn more about Maximum wavelength of electromagnetic radiation here:https://brainly.com/question/17085388
#SPJ3
Piano tuners tune pianos by listening to the beats between the harmonics of two different strings. When properly tuned, the note A should have a frequency of 440 Hz and the note E should be at 659 Hz.
(a) What is the frequency difference between the third harmonic of the A and the second harmonic of the E?
(b) A tuner first tunes the A string very precisely by matching it to a 440 Hz tuning fork. She then strikes the A and E strings simultaneously and listens for beats between the harmonics. What beat frequency between higher harmonics indicates that the E string is properly tuned?
(c) The tuner starts with the tension in the E string a little low, then tightens it. What is the frequency of the E string when she hears four beats per second?
Piano tuners use frequency differences and beat frequencies to tune pianos.
Explanation:(a) The frequency of the third harmonic of A can be calculated by multiplying the fundamental frequency of A (440 Hz) by 3, resulting in a frequency of 1320 Hz. The frequency of the second harmonic of E can be calculated by multiplying the fundamental frequency of E (659 Hz) by 2, which is 1318 Hz. To find the frequency difference between the two, subtract the second harmonic of E from the third harmonic of A: 1320 Hz - 1318 Hz = 2 Hz.
(b) When the tuner strikes the A and E strings simultaneously, she listens for beats between the harmonics. The beat frequency indicates that the E string is properly tuned. The beat frequency is equal to the difference between the frequencies of the harmonics. In this case, the beat frequency would be 2 Hz.
(c) When the tuner hears four beats per second, it means there is a beat frequency of 4 Hz between the harmonics. To find the frequency of the E string, we can use the formula: Beat Frequency = Frequency of Higher Harmonic - Frequency of Lower Harmonic. Rearranging the formula, we get: Frequency of Higher Harmonic = Beat Frequency + Frequency of Lower Harmonic. Plugging in the values, we get: Frequency of Higher Harmonic = 4 Hz + 659 Hz = 663 Hz.
Learn more about Piano tuning here:https://brainly.com/question/15071632
#SPJ3
What was the first manmade satellite put into orbit
The Soviet Union's Sputnik 1, it was launched October 4th 1957.
Describe how electronegativity is related to the metallic character of an element. A) Lower electronegativity means an element is more likely to lose electrons and form cations and have a greater metallic character. B) Higher electronegativity means an element is more likely to keep electrons and form ions and have a lower metallic character. C) Medium electronegativity means an element is more likely to gain electrons and form anions and have some metallic character. D) Electronegativity means an element is more likely to save electrons and form metalloids and have no metallic character.
Answer: The answer is A
Explanation:
Electronegativity is the ability to attract electrons. The periodic trend for electronegativity increases up a column and from left to right along a row. Which means that main group metals have low electronegativity and the transition metals have low to medium electronegativity and a small number of valence electrons. Which then leads the metals to not hold on to their valence electrons very tightly and to lose them easily forming cations. So low electronegativity means high metallic character.
A 2.0 µF capacitor is charged through a 50,000 ohm resistor. How long does it take for the capacitor to reach 90% of full charge?
Answer:
0.23 s
Explanation:
First of all, let's find the time constant of the circuit:
[tex]\tau=RC[/tex]
where
[tex]R=50,000 \Omega[/tex] is the resistance
[tex]C=2.0\mu F=2.0\cdot 10^{-6}F[/tex] is the capacitance
Substituting,
[tex]\tau=(50,000 \Omega)(2.0\cdot 10^{-6}F)=0.1 s[/tex]
The charge on a charging capacitor is given by
[tex]Q(t)=Q_0 (1-e^{-t/\tau} )[/tex] (1)
where
[tex]Q_0[/tex] is the full charge
we want to find the time t at which the capacitor reaches 90% of the full charge, so the time t at which
[tex]Q(t)=0.90 Q_0[/tex]
Substituting this into eq.(1) we find
[tex]0.90 Q_0 = Q_0 (1-e^{-t/\tau})\\0.90=1-e^{-t/\tau}\\e^{-t/\tau}=1-0.90=0.10\\-\frac{t}{\tau}=ln(0.10)\\t=-\tau ln(0.10)=(0.1 s)ln(0.10)=0.23 s[/tex]
The time it takes for the capacitor to reach 90% of full charge is approximately 0.23 seconds.
Explanation:To calculate the time it takes for the capacitor to reach 90% of full charge, we need to use the time constant equation, which is given by t = RC. In this case, the resistance is 50,000 ohms and the capacitance is 2.0 µF. Multiplying these values gives us a time constant of 0.1 seconds.
To find the time it takes for the capacitor to reach 90% of full charge, we multiply the time constant by 2.3, which is the natural logarithm of 0.9. So the time it takes for the capacitor to reach 90% of full charge is approximately 0.23 seconds.
Learn more about Capacitor charging time here:https://brainly.com/question/33859208
#SPJ3
tudy the images about geologic time.
What is a noticeable difference between both eras?
The Paleozoic era, not the Mesozoic era, had the first dinosaurs.
The first mammals emerged in the Paleozoic era, not the Mesozoic era.
The Mesozoic era, not the Paleozoic era, had the first animals with shells.
The first flowering plants appeared in the Mesozoic era, not the Paleozoic era.
Answer:
The first flowering plants appeared in the Mesozoic era, not the Paleozoic era
Explanation:
The Mesozoic era is well known and most famous because of the rule of the dinosaurs which were the dominant animals for most of this are. Also, it is the era in which the mammals appeared, though they lived in the shadows of the dinosaurs and only became dominant after their extinction. Another important evolution that took place and is not mentioned very often is the appearance of the first flowering plants. This was a revolutionary trait for the plants, and it helped them to survive in the changing climate on Earth. Soon this trait enabled this type of plants to spread out significantly and to become one of the most dominant organisms on the planet in the following era.
The speed at which an object is moving in a specific direction is its A speed. B acceleration rate. C velocity. D mechanical potential energy rate
Answer:
B. acceleration rate
Explanation:
Answer:
B
Explanation:
An element may have several isotopes that contain different numbers of _________ but the same number of _________. A) quarks, mesons B) neutrons, protons C) tachyons, baryons D) electrons, protons
Answer:
An element may have several isotopes that contain different numbers of NEUTRONS but the same number of PROTONS.
Explanation:
Isotopes are defined as the group of such atoms which will have same number of protons but different number of neutrons
So this is basically same atoms but with different number of neutrons
So here we can sat
[tex]_1^1H , _1^2H , _1^3H[/tex]
above are three isotopes of hydrogen
similarly we have many more examples of isotopes in which the atoms are of same type but with different number of neutrons
so here correct answer will be
An element may have several isotopes that contain different numbers of NEUTRONS but the same number of PROTONS.
Final answer:
Isotopes of an element differ in the number of neutrons they have but have the same number of protons. Answer B) neutrons, protons, is correct for the given question on the nature of isotopes.
Explanation:
An element may have several isotopes that contain different numbers of neutrons but the same number of protons. The correct answer to the question is B) neutrons, protons.
Isotopes are variants of a particular chemical element, which while having the same number of protons, differ in the number of neutrons they possess. Thus, isotopes of an element have identical atomic numbers (representing the number of protons) but different mass numbers (representing the total number of protons and neutrons). This variation in the number of neutrons does not affect the chemical properties of an element, as these properties are primarily determined by the number of protons and electrons, which are the same in all isotopes of an element.
A seagull can fly 25 meters downward in 2 seconds. To find the average velocity of the seagull.what equation will you use?
Answer:
[tex]v=\frac{d}{t}[/tex]
Explanation:
The average velocity of a moving object is given by:
[tex]v=\frac{d}{t}[/tex]
where
d is the displacement of the object
t is the time taken
In this problem, we have
d = 25 m is the displacement
t = 2 s is the time
Therefore, the average velocity of the seagull is
[tex]v=\frac{25 m}{2 s}=12.5 m/s[/tex]
Note that velocity is a vector, so it has not only a magnitude, but also a direction, which corresponds to the direction of the displacement (downward, in this example).
Two electrodes connected to a 9.0 v battery are charged to ±45 nc. What is the capacitance of the electrode?
Answer:
[tex]5\cdot 10^{-9} F[/tex]
Explanation:
The capacitance of the electrode is given by:
[tex]C=\frac{Q}{V}[/tex]
where
C is the capacitance
Q is the charge on the electrode
V is the potential difference
In this problem, we have
[tex]Q=45 nC=45\cdot 10^{-9} C[/tex]
V = 9.0 V
Substituting into the equation, we find
[tex]C=\frac{45\cdot 10^{-9}C}{9.0 V}=5\cdot 10^{-9} F[/tex] (5 nF)
An engine does 15.0 kj of work while exhausting 37.0 kj to the cold reservoir. What is the efficiency of the engine?
Answer:
28.8 %
Explanation:
The efficiency of an engine is given by:
[tex]\eta = \frac{W}{Q_{in}}[/tex]
where
W is the useful work done
[tex]Q_in[/tex] is the heat in input
For this machine, we have
W = 15.0 kJ is the work done
[tex]37.0 kJ[/tex] is the heat exchausted to the cold reservoir, so the total amount of heat in input is
[tex]Q_{in} = 15.0 kJ + 37.0 kJ=52.0 kJ[/tex]
And so the efficiency is
[tex]\eta=\frac{15.0 kJ}{52.0 kJ}=0.288[/tex]
which corresponds to 28.8 %.
The efficiency of an engine is calculated by dividing the work output by the total energy input. In this case, the engine has an efficiency of 28.8%.
Explanation:The efficiency of an engine can be calculated by the ratio of the work output to the heat input. In this case, the work output done by the engine is 15.0 kJ, and the heat input is the total energy supplied to the engine which is the sum of the work done (15.0 kJ) and the energy exhausted to the cold reservoir (37.0 kJ), giving a total of 52.0 kJ. Thus, the efficiency of the engine can be found by dividing the work done by the total energy supplied, or (15.0 kJ)/(52.0 kJ) = 0.288, or 28.8%.
Learn more about Mechanical Efficiency here:https://brainly.com/question/33283760
#SPJ3
If the amplitude of a simple harmonic oscillator is doubled, by what factor does the total energy increase?
a)no change
b)by a factor of two
c)by a factor of four
d)by a factor of eight
Answer:
c)by a factor of four
Explanation:
The total energy of a simple harmonic oscillator is given by
[tex]E=\frac{1}{2}kA^2[/tex]
where
k is the spring constant of the oscillator
A is the amplitude of the motion
In this problem, the amplitude of the oscillator is doubled, so
A' = 2A
Therefore, the new total energy is
[tex]E'=\frac{1}{2}k(2A)^2=4(\frac{1}{2}kA^2)=4E[/tex]
So, the total energy increases by a factor 4.
1. the change in position of an object from start to finish, a vector quantity model 2. a portion of space that contains a value for a measurable quantity at every point in space field 3. speed = distance/? vector 4. the length of the entire path an object travels from start to finish projectile 5. a measurement that has both magnitude and direction distance 6. a change in displacement with respect to time acceleration 7. a mental or physical construct or description that describes a physical phenomenon time 8. a change in velocity with respect to time velocity 9. a measurement that only expresses magnitude, such as time, temperature, distance, and speed displacement 10. objects that are thrown or launched in the air and are subject to gravity scalar
1. the change in position of an object from start to finish, a vector quantity . . . . . displacement
2. a portion of space that contains a value for a measurable quantity at every point in space . . . . . field
3. speed = (distance) / (time to cover the distance)
4. the length of the entire path an object travels from start to finish . . . . . distance
5. a measurement that has both magnitude and direction . . . . . vector
6. a change in displacement with respect to time . . . . . velocity
7. a mental or physical construct or description that describes a physical phenomenon . . . . . model
8. a change in velocity with respect to time . . . . . acceleration
9. a measurement that only expresses magnitude, such as time, temperature, distance, and speed . . . . . scalar
10. objects that are thrown or launched in the air and are subject to gravity . . . . . projectile
Here we want to complete different statements about dynamics, the solutions are:
1) Displacement.2) Field.3) Time.4) Travel distance.5) Vector.6) Velocity.7) Model.8) Acceleration.9) Scalar.10) Free-fall object.So most of these are just definitions, so not a lot can be told about some of the answers, but I will try to develop each one as I can.
1) "the change in position of an object from start to finish, a vector quantity model"
By definition, this is the displacement, the change in between the final and initial position.
2) "a portion of space that contains a value for a measurable quantity at every point in space"
This is a field, it refers to the measure of something (magnetic field, electric field, etc) in a given position in space.
3) "speed = distance/time"
Speed is defined as the quotient between the distance traveled and the time it takes to travel that distance.
4) "the length of the entire path an object travels from start to finish projectile"
This is defined as the "travel distance"
5) "a measurement that has both magnitude and direction"
A vector is a measurement with both magnitude and direction.
6) "a change in displacement with respect to time"
A change in the displacement with respect to time is the velocity, it comes from point 3.
7) "a mental or physical construct or description that describes a physical phenomenon"
This is a model, is just an explanation of a given phenomenon
8) "a change in velocity with respect to time"
The rate of change of velocity with respect to time is the acceleration.
9) "a measurement that only expresses magnitude, such as time, temperature, distance, and speed"
This is a scalar, is a measurement that only has magnitude, not direction.
10) "objects that are thrown or launched in the air and are subject to gravity"
This is a projectile, or more exactly, a free-falling object, if we only look at the vertical problem.
If you want to learn more about dynamics, you can read:
https://brainly.com/question/605631
A room with dimensions 7.00m×8.00m×2.50m is to be filled with pure oxygen at 22.0 °C and 1.00 atm. The molar mass of oxygen is 32.0 g/mol.
How many moles n oxygen of oxygen are required to fill the room?
What is the mass m oxygen of this oxygen?
1. 5765 mol
First of all, let's calculate the volume of the room (which corresponds to the volume of the gas):
[tex]V=7.00 m\cdot 8.00 m \cdot 2.50 m=140 m^3[/tex]
We also know the following data about the gas:
[tex]T=22.0^\circ +273 =295 K[/tex] is the temperature
[tex]p=1.00atm = 1.01\cdot 10^5 Pa[/tex] is the pressure
Then we can use the ideal gas law
[tex]pV=nRT[/tex]
with R being the gas constant
to find the number of moles of the gas:
[tex]n=\frac{pV}{RT}=\frac{(1.01\cdot 10^5 Pa)(140 m^3)}{(8.314 J/mol K)(295 K)}=5765 mol[/tex]
2. 184.5 kg
The molar mass of oxygen is
[tex]M_m = 32.0 g/mol[/tex]
this corresponds to the mass of 1 mol of oxygen.
In this problem, the number of moles is
n = 5765 mol
So the total mass of these n moles of oxygen will be:
[tex]m=n M_m = (5765 mol)(32.0 g/mol)=1.845\cdot 10^5 g=184.5 kg[/tex]
A television camera lens has a 17-cm focal length and a lens diameter of 6.0 cm. what is its number?
Answer:
= 2.83
Explanation:
F number (N) is given by the formula;
F- number = f/D
where f = focal length of lens and D = diameter of the aperture
Therefore;
F number = 17 cm/6 cm
= 2.83
The number of the television camera lens with focal length 17 cm and lens diameter 6.0 meter is 2.83.
What is the focal length of the lens?The focal length of the lens is the length of the distance between the middle of the lens to the focal point.
It can be find out using the following formula as,
[tex]f=d\times n[/tex]
Here, (c)is the diameter the lens and, (n) is the number of the lens. This formula can be written as,
[tex]n=\dfrac{f}{d}[/tex]
The television camera lens has a 17-cm focal length and a lens diameter of 6.0 cm. Thus put this values in the above formula as,
[tex]n=\dfrac{17}{6}\\n=2.83[/tex]
Thus, the number of the television camera lens with focal length 17 cm and lens diameter 6.0 meter is 2.83.
Learn more about the focal length here;
https://brainly.com/question/25779311
Which statement is a description of Charles's law? The temperature and volume of a gas are directly proportional when pressure is constant. The temperature and volume of a gas are inversely proportional when pressure is constant. The volume and pressure of a gas are directly proportional when temperature is constant. The volume and pressure of a gas are inversely proportional when temperature is constant.
Answer:
The temperature and volume of a gas are directly proportional when pressure is constant.
Explanation:
Charles's Law was proposed by a French chemist, Jacques Charles. The law states that "The volume of a fixed mass of a gas varies directly as its absolute temperature if the pressure is constant".
The law shows the relationship between volume and temperature at a constant temperature. It is mathematically expressed as:
V∝T(P,n constant)
Answer: it’s A for e2020
Explanation:
Just took the test
Which is an example of nonobjective statement about a picture that shows two people talking while standing under a tree on a sunny day
A:the two people are standing under a tree on a sunny day
B: the two people are standing under a tree
C:the two people are talking together on a Sunny day
D: the two people are talking about a time when they were younger and ate a picnic lunch under a tree with friends from school
Answer:
D: the two people are talking about a time when they were younger and ate a picnic lunch under a tree with friends from school.Explanation:
This statement is subjective, because it refers to personal issues, which are from subjects. Remember that objective refers to the objects as they are, with no personal opinions, and subjective refers to the subjects, includes their opinion or personal stuff about.
D: the two people are talking about a time when they were younger and ate a picnic lunch under a tree with friends from school is an example of nonobjective statement about a picture that shows two people talking while standing under a tree on a sunny day
What is the meaning of being nostalgic ?
Longing for or thinking fondly of a past time or condition is called being nostalgic
A:the two people are standing under a tree on a sunny day
B: the two people are standing under a tree
C:the two people are talking together on a Sunny day
In all above three statements there is no significance of a picture but in option D: the two people are talking about a time when they were younger and ate a picnic lunch under a tree with friends from school in this statement we can see that there is significance of people where they are talking under a tree about when they were in school that means they must be looking at an old school photograph and feeling nostalgic by remembering old days
hence correct option D: the two people are talking about a time when they were younger and ate a picnic lunch under a tree with friends from school
learn more about nostalgic
https://brainly.com/question/15543021?referrer=searchResults
#SPJ2
An electromagnetic flowmeter applies a magnetic field of0.20 {\rm T} to blood flowingthrough a coronary artery at a speed of 15 {\rm cm/s}.
What force is feltby a chlorine ion with a single negative charge?
Answer:
[tex]4.8\cdot 10^{-21} N[/tex]
Explanation:
The force exerted by a magnetic field on a charged particle is given by
[tex]F=qvB[/tex]
where
q is the charge of the particle
v is the speed
B is the magnetic field strength
In this problem we have:
[tex]B = 0.20 T[/tex] is the strength of the magnetic field
[tex]v = 15 cm/s = 0.15 m/s[/tex] is the velocity
[tex]q=e = 1.6\cdot 10^{-19}C[/tex] is the magnitude of the charge of a single chlorine ion
Substituting into the equation,
[tex]F=(1.6\cdot 10^{-19} C)(0.15 m/s)(0.20 T)=4.8\cdot 10^{-21} N[/tex]
The force felt by a chlorine ion with a single negative charge flowing through a coronary artery under a magnetic field of 0.20 T can be calculated using the Lorentz force law. Given that the velocity of the blood flow is 15 cm/s, the calculated force is -4.8 * 10^-21 N. The negative sign indicates that the force acts in the direction opposite to the magnetic field.
Explanation:In Physics, the force exerted by a magnetic field on a charged particle like a chlorine ion is given by the Lorentz force law, which states F = qvBsinθ. In this equation, 'F' is the magnetic force, 'q' is the charge of the particle, 'v' is the velocity of the particle, 'B' is the magnetic field strength, and 'θ' is the angle between the velocity and magnetic field vectors.
In your case, the chlorine ion has a single negative charge (q = -1.6 * 10^-19 C), the velocity of the blood flow is given as 15 cm/s (convert this to m/s by multiplying by 0.01 to give v = 0.15 m/s), and the magnetic field strength is 0.20 T. Assuming the flow of blood is perpendicular to the magnetic field, the angle θ = 90° so sinθ = 1.
Substituting these values into the Lorentz force equation gives F = (-1.6 * 10^-19 C) * (0.15 m/s) * (0.20 T) * 1 = -4.8 * 10^-21 N. The negative sign indicates the force acts opposite to the direction of the magnetic field.
Learn more about Lorentz force here:https://brainly.com/question/15552911
#SPJ3
Compare and contrast sodium and fluorine?
Compare and contrast oxygen and hydrogen?
sodium is found in group one element, but flourine members of halogens . oxygen found in group six element ,but hydrogen found in group 1( according to periodic table)
Sodium and fluorine form ionic compounds based on their electron transfer, while oxygen and hydrogen bond covalently to create water, reflecting their differences in electronegativity and bonding mechanisms.
Comparing Sodium and Fluorine; Oxygen and Hydrogen
Sodium and fluorine differ in their electron configurations and bonding, resulting in ionic compounds, whereas oxygen and hydrogen can combine to form water through covalent bonding, demonstrating differences in electronegativity and molecular structure.
sodium (Na) is a metal with one valence electron which it readily loses to become a positively charged ion (Na+). Fluorine (F), on the other hand, is a non-metal with seven valence electrons and gains an electron to become a negatively charged ion (F-). When they bond, the resulting compound is ionic due to the high electronegativity difference. Oxygen (O2) and hydrogen (H2) both exist as diatomic molecules, but their contrast lies in the fact that oxygen is highly electronegative while hydrogen has a lower electronegativity, leading to a polar covalent bond when they form water (H2O).
while both pairs form stable compounds, the nature and type of bonding that occurs between sodium and fluorine, and oxygen and hydrogen, are fundamentally different due to their contrasting properties.
Which is not an example of a lever? light switch scissors knife broom
Answer:
scissors
Explanation:
Answer:
Let's first remember what a lever is used for... it allows one to magnify the amount of force being applied to something, via a stiff arm. Now let's go through a process of elimination.
Light switch: Yes there's a stiff arm. And although you're not doing much work turning a light on and off, the switch does magnify the force you apply to the mechanism hidden behind the wallplate. We'll call it a lever.
Knife: Acting as a wedge to force two halves a whole apart. However, it can be used as a lever too. Pushing a knife onto something doesn't always cut it right away. Sometimes, you have to put the point down and then apply force to the handle, using whatever you're cutting as fulcrum. Ultimately a wedge, but still acting as a lever.
Broom: Are you on your knees sweeping with a toothbrush, which takes a lot of work, or are you holding a broom handle in two hands, moving one and using the other as a fulcrum? Thought so. Still a lever.
Scissors: Like the knife, they act as a wedge, cutting through thin materials. However, the cutting point is right at the fulcrum of the scissors! You're not magnifying any force there. So I would say no, scissors are not an example of a lever.
Explanation:
Which resistors in the circuit must have the same amount of charge passing through each second?
i belive the answer is B
Resistors 'C' and 'D' are in series. There's only one possible route for current to flow through them. Every electron that flows through one of them has to flow through the other one. So the current (amount of charge per second) must be the same in 'C' and 'D'. (answer-choice B)
Pleaseeee Please help, I will love you forever and ever
0.5000 kg of water at 35.00 degrees Celsius is cooled, with the removal of 6.300 E4 J of heat. What is the final temperature of the water? Specific heat capacity of water is 4186 J/(kg C°).
Remember to identity all of your data, write the equation, and show your work.
Answer:
The answer to your question is
Explanation:
Data
mass = 0.5kg
T1 = 35
T2 = ?
Q = - 6.3 x 10⁴ J = - 63000 J
Cp = 4184 J / kg°C
Formula
Q = mCp(T2 - T1)
T2 = T1 + Q/mCp
Substitution
T2 = 35 - 63000/(0.5 x 4184)
T2 = 35 - 63000/2092
T2 = 35 - 30.1
T2 = 4.9 °C
The initial temperature of the water is 35 degrees then The final temperature of the water will be equal to 4.9 °C.
What is Specific Heat?Specific heat is the amount of energy needed to raise a product's temperature by one degree Celsius per gram. Traditionally, the units of heat capacity are calories or joules per gram per degree Celsius. The specific heat of water, for instance, is 1 calorie (or 4.186 joules) per gram per degree Celsius.
As per the given data in the question,
mass, m = 0.5 kg
Temperature, T₁ = 35
Q = - 6.3 x 10⁴ J
Q = - 63000 J
Cp = 4184 J / kg°C
Use the equation given below,
Q = mCp(T₂ - T₁)
T₂ = T₁ + Q/mCp
Substitute values.
T₂ = 35 - 63000/(0.5 x 4184)
T₂ = 35 - 63000/2092
T₂ = 35 - 30.1
T2 = 4.9 °C
Therefore, the final temperature is 4.9 °C.
To know more about Specific Heat:
https://brainly.com/question/11297584
#SPJ2
Whenever an object undergoes uniform circular motion, it experiences a net force
A) directed toward the normal.
B) equal to the mass times the velocity.
C) directed toward the center of the circle.
D) equal to mass times velocity divided by the radius of the circle.
Answer:
C) directed toward the center of the circle.
Explanation:
An object undergoing uniform circular motion is an object that is moving at constant speed along a circular trajectory.
According to Newton's Laws, in order to keep the object in circular motion, there must be a net force that keeps changing the object's direction (otherwise, the object would just move in a straight path due to its inertia).
This force is called centripetal force, and it always points towards the centre of the circular path. Its magnitude is given by
[tex]F=m\frac{v^2}{r}[/tex]
where
m is the mass of the object
v is the speed
r is the distance of the object from the centre of the trajectory
Answer:
C) directed toward the center of the circle.
Explanation:
Whenever an object undergoes uniform circular motion, it experiences a net force directed toward the center of the circle. The magnitude of this force is represented by the formula [[m[tex]v^{2}[/tex]/r]].
Through what potential difference ΔV must electrons be accelerated (from rest) so that they will have the same wavelength as an x-ray of wavelength 0.150 nm ? Use 6.63×10−34 J⋅s for Planck's constant, 9.11×10−31 kg for the mass of an electron, and 1.60×10−19 C for the charge on an electron. Express your answer using three significant figures.
Answer:
66.3 V
Explanation:
The wavelength of the electron must be equal to that of the x-ray photon:
[tex]\lambda=0.150 nm=0.15\cdot 10^{-9}m[/tex]
the De Broglie wavelength of the electron is related to its momentum, p, by the formula
[tex]p=\frac{h}{\lambda}[/tex]
where h is the Planck constant. Solving the formula, we find
[tex]p=\frac{6.63\cdot 10^{-34} Js}{0.15\cdot 10^{-9}m}=4.4\cdot 10^{-24} kg m/s[/tex]
Now we can find the electron's energy using the formula
[tex]E=\frac{p^2}{2m}=\frac{(4.4\cdot 10^{-24} kg m/s)^2)}{2(9.11\cdot 10^{-31} kg)}=1.06\cdot 10^{-17} J[/tex]
Then, we know that the energy of an electron accelerated through a potential difference of [tex]\Delta V[/tex] is
[tex]E=q\Delta V[/tex]
where
[tex]q=1.60\cdot 10^{-19} C[/tex] is the electron charge
Solving the equation for the potential difference, we find
[tex]\Delta V=\frac{E}{q}=\frac{1.06\cdot 10^{-17} J}{1.60\cdot 10^{-19} C}=66.3 V[/tex]
This is a process of one nucleus decaying to two or more smaller nuclei. What is this process?
Nuclear fission is the reaction in which the nucleus of a heavy atom, when bombarded with neutrons (or when capturing an incident neutron), becomes unstable and divides into two or more nuclei of lighter atoms, giving rise to a situation of greater stability. In this process that takes place in the atomic nucleus, neutrons, gamma rays and large amounts of energy are emitted.
In addition, several neutrons are produced that affect other fissile nuclei,and trigger more fission reactions that in turn generate more neutrons. Effect known as chain reaction.
What is an object’s acceleration if it is moving at 30 m/s and comes to a stop in 5 s? –30 m/s2 –6 m/s2 30 m/s2 6 m/s2
Answer:32m/s
Explanation:
Answer:
The acceleration is -6 m/s2
Explanation:
The equation for the speed of a body is
V = Vo + a t
Where
Vo is the initial velocity, a is the acceleration and t is the time,
When the body stops the speed is zero
0 = Vo + a t
a = Vo / t
substitute values
a = - 30/5
a = - 6 m/s2
The negative sign indicates that acceleration opposite movement
What happens to a ray of light passing through the center of a lens?
A.
It passes without any deviation.
B.
It converges to the focal point.
C.
It travels parallel to the principal axis.
D.
It diverges away from the principal axis.
Answer:
A. It passes wthout any deviation
Explanation:
In real lenses the light does not go straight through, there is a refraction. But we can assume that that it passes without any deviation because the center of a lens is comparatively flat that the other points of the lens.
Answer:
A. It passes without any deviation.
Explanation:
For making ray diagram, following rules are followed:
A ray of light incident parallel to the principal axis converges or appears to diverge from focus.An incident ray passing through the focus becomes parallel to the principal axis after passing through the lens.A ray of passing through the center of a lens passes without deviation.Thus, the correct option is A.
A magnetic field of 0.90 T is aligned vertically with a flat plane. The magnetic flux through the plane is 7.3 × 10^-3 Wb. What is the inside diameter of the pipe? Show all work and include units of measure
Answer:
0.10 m
Explanation:
The magnetic flux through the plane is given by
[tex]\Phi = BA[/tex]
where
B is the magnetic field intensity
A is the area of enclosed by the pipe
In this problem, we know
[tex]\Phi = 7.3\cdot 10^{-3} Wb[/tex] is the flux
B = 0.90 T is the magnetic field strength
Solving the equation for A, we find the area enclosed by the pipe
[tex]A=\frac{\Phi}{B}=\frac{7.3\cdot 10^{-3} Wb}{0.90 T}=8.1\cdot 10^{-3} m^2[/tex]
We know that the area is given by
[tex]A=\pi r^2[/tex]
where r is the radius. Solving for r, we find the radius:
[tex]r=\sqrt{\frac{A}{\pi}}=\sqrt{\frac{8.1\cdot 10^{-3} m^2}{\pi}}=0.05 m[/tex]
And so the diameter is twice the radius:
[tex]d=2r=2(0.05 m)=0.10 m[/tex]