Answer:
No, since the slopes are different
Step-by-step explanation:
Parallel lines by definition have the same slope but different y-intercepts. The slope of the line y = 6x + 9 is 6, the coefficient of x since the equation is given in slope-intercept form. Its y-intercept is 9.
For the second equation, 27x – 3y = –81 , we have to solve for y or re-write the equation in slope-intercept form;
-3y = -27x - 81
y = 9x + 27
The slope of this line is thus 9, the coefficient of x since the equation is in slope-intercept form. Its y-intercept is 27.
The two equations have different slopes and thus they are not parallel
x+16=24hvvcgcfcycdfdxfxxdgfv
To do solve this you must isolate x. First subtract 16 to both sides (what you do on one side you must do to the other). Since 16 is being added to x, subtraction (the opposite of addition) will cancel it out (make it zero) from the left side and bring it over to the right side.
x + (16 - 16) = 24 - 16
x = 8
Check:
8 + 16 = 24
24 = 24
Hope this helped!
~Just a girl in love with Shawn Mendes
if you subtract 16 from both sides you would get x=8
Which point on the x-axis lies on the line that passes through point C and is parallel to line AB?
a (1,0)
b (1,1)
c (0,2)
d (2.0)
Answer:
d. (2, 0)Step-by-step explanation:
Parallel lines have the same slope.
The formula of a slope:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have the points A(-4, 0) and B(2, -3). Substitute:
[tex]m=\dfrac{-3-0}{2-(-4)}=\dfrac{-3}{6}=-\dfrac{1}{2}[/tex]
C(-2, 2).
The point on the x-axis D(x , 0).
The slope:
[tex]m=\dfrac{0-2}{x-(-2)}=\dfrac{-2}{x+2}[/tex]
Put the value of the slope:
[tex]\dfrac{-2}{x+2}=\dfrac{-1}{2}[/tex] change the signs
[tex]\dfrac{2}{x+2}=\dfrac{1}{2}[/tex] cross multiply
[tex]x+2=(2)(2)[/tex]
[tex]x+2=4[/tex] subtract 2 from both sides
[tex]x=2[/tex]
Solve the equation 1/t-2=t/8
Answer:
Two solutions were found :
t =(16-√288)/-2=8+6√ 2 = 0.485
t =(16+√288)/-2=8-6√ 2 = -16.48
Step-by-step explanation:
Answer:
-IF THE EQUATION IS [tex]\frac{1}{t-2}=\frac{t}{8}[/tex], THEN:
[tex]t_1=4\\t_2=-2[/tex]
-IF THE EQUATION IS [tex]\frac{1}{t}-2=\frac{t}{8}[/tex], THEN:
[tex]t_1=-16.485\\t_2=0.485[/tex]
Step-by-step explanation:
-IF THE EQUATION IS [tex]\frac{1}{t-2}=\frac{t}{8}[/tex] THE PROCEDURE IS:
Multiply both sides of the equation by [tex]t-2[/tex] and by 8:
[tex](8)(t-2)(\frac{1}{t-2})=(\frac{t}{8})(8)(t-2)\\\\(8)(1)=(t)(t-2)\\\\8=t^2-2t[/tex]
Subtract 8 from both sides of the equation:
[tex]8-8=t^2-2t-8\\\\0=t^2-2t-8[/tex]
Factor the equation. Find two numbers whose sum be -2 and whose product be -8. These are -4 and 2:
[tex]0=(t-4)(t+2)[/tex]
Then:
[tex]t_1=4\\t_2=-2[/tex]
-IF THE EQUATION IS [tex]\frac{1}{t}-2=\frac{t}{8}[/tex] THE PROCEDURE IS:
Subtract [tex]\frac{1}{t}[/tex] and [tex]2[/tex]:
[tex]\frac{1}{t}-2=\frac{t}{8}\\\\\frac{1-2t}{t}=\frac{t}{8}[/tex]
Multiply both sides of the equation by [tex]t[/tex]:
[tex](t)(\frac{1-2t}{t})=(\frac{t}{8})(t)\\\\1-2t=\frac{t^2}{8}[/tex]
Multiply both sides of the equation by 8:
[tex](8)(1-2t)=(\frac{t^2}{8})(8)\\\\8-16t=t^2[/tex]
Move the [tex]16t[/tex] and 8 to the other side of the equation and apply the Quadratic formula. Then:
[tex]t^2+16t-8=0[/tex]
[tex]t=\frac{-b\±\sqrt{b^2-4ac}}{2a}\\\\t=\frac{-16\±\sqrt{16^2-4(1)(-8)}}{2(1)}\\\\t_1=-16.485\\t_2=0.485[/tex]
what is the probability that a customer ordered a small given they ordered a hot
Answer:
.05
Step-by-step explanation:
See The attachment for explanation
Hope it helps you...☺
The function f(x) is shown below.
00W
If g(x) is the inverse of f(x), what is the value of f(g(2)) ?
[tex]f(g(x))=x[/tex] when [tex]g(x)=f^{-1}(x)[/tex]
So [tex]f(g(2))=2[/tex]
The value of f(g(2)) is 2 since g(x) is the inverse of f(x).
What is an inverse function?An inverse function that does the opposite operation of the actual function. It is denoted by f⁻¹(x).
Calculation:The given function is f(x) and g(x) is the inverse of f(x) i..e, g(x) = f⁻¹(x).
Then,
f(g(x)) = f(f⁻¹(x))
= x
Thus,
f(g(2)) = 2 (since x=2)
Therefore, the value of f(g(2)) = 2.
Learn more about the inverse function here:
https://brainly.com/question/3831584
#SPJ2
Suppose a triangle has two sides of length 2 and 3 and hat angle between these two sides is 60. what is the length of the third side of he triangle?
A combination lock like the one shown below has three
dials. Each of the dials has numbers ranging from 1 to 25. If
repeated numbers are allowed, how many different
combinations are possible with the lock?
Answer:
15625
Step-by-step explanation:
Let us consider each dial individually.
We have 25 choices for the first dial.
We then have 25 choices for the second dial.
We then have 25 choices for the third dial.
Let us consider any particular combination, the probability that combination is right is (probability the first number is right) * (probability the second number is right) * (probability the third number is right) = 1/25 * 1/25 * 1/25 = 1/15625
Therefore there are 15625 combinations
if f(x) = -3x+4 and g(x) =2, solve for the value of x for which f(x) = g(x) is true
Answer: 0.67 (to 3 s.f)
Step-by-step explanation:
f(x)=g(x)
-3x + 4 = 2
-3x = -2
x = 2/3
x = 0.67
Hope it helped
A tourist boat is used for sightseeing in a nearby river. The boat travels 2.4 miles downstream and in the same amount of time, it travels 1.8 miles upstream. If the boat travels at an average speed of 21 miles per hour in the still water, find the current of the river. (SHOW WORK)
Answer:
3 miles per hour
Step-by-step explanation:
Let x miles per hour be the current of the river.
1. The boat travels 2.4 miles downstream with the speed of (21+x) miles per hour. It takes him
[tex]\dfrac{2.4}{21+x}\ hours.[/tex]
2. The boat travels 1.8 miles upstream with the speed of (21-x) miles per hour. It takes him
[tex]\dfrac{1.8}{21-x}\ hours.[/tex]
3. The time is the same, so
[tex]\dfrac{2.4}{21+x}=\dfrac{1.8}{21-x}[/tex]
Cross multiply:
[tex]2.4(21-x)=1.8(21+x)[/tex]
Multiply it by 10:
[tex]24(21-x)=18(21+x)[/tex]
Divide it by 6:
[tex]4(21-x)=3(21+x)\\ \\84-4x=63+3x\\ \\84-63=3x+4x\\ \\7x=21\\ \\x=3\ mph[/tex]
For the given functions f and g, find the requested function and state its domain.
f(x) = 8x - 3; g(x) = 4x - 9
Find f - g.
Answer:
4x+6
Step-by-step explanation:
f(x)=8x-3
g(x)=4x-9
f(x)-g(x) = 8x-3-(4x-9)=8x-3-4x+9=4x+6
The value of f(x) - g(x) is 4x+6 and The domain is all real value of x.
What is a function ?A function can be defined as a mathematical expression which establishes relation between a dependent variable and an independent variable.
It always comes with a defined range and domain.
It is given in the question
functions f and g
f(x) = 8x - 3; g(x) = 4x - 9
f- g = ?
The value of f(x) - g(x) = 8x -3 - (4x -9)
f(x) - g(x) = 8x -3 - 4x +9
f(x) - g(x) = 4x +6
h(x) = 4x+6
The domain is all real value of x.
To know more about Function
https://brainly.com/question/12431044
#SPJ2
What is 720° converted to radians
Final answer:
To convert 720° to radians, multiply by π/180 to get 4π rad. This shows that 720° is equivalent to 4π radians.
Explanation:
To convert 720° to radians, we use the relationship that 1 revolution equals 360° or 2π radians. Therefore, to convert degrees to radians, you multiply the number of degrees by π/180. In this case:
720° × (π rad / 180°) = 4π rad
Thus, 720° is equal to 4π radians. The concept of angular velocity is related to radians as it is the rate of change of an angle with time, and using radians can be especially useful in calculations involving angular motion.
needdd hellpppppssssssss
Answer:
Choice number one:
[tex]\displaystyle \frac{5}{10}\cdot \frac{4}{9}[/tex].
Step-by-step explanation:
Let [tex]A[/tex] be the event that the number on the first card is even.Let [tex]B[/tex] be the event that the number on the second card is even.The question is asking for the possibility that event [tex]A[/tex] and [tex]B[/tex] happen at the same time. However, whether [tex]A[/tex] occurs or not will influence the probability of [tex]B[/tex]. In other words, [tex]A[/tex] and [tex]B[/tex] are not independent. The probability that both [tex]A[/tex] and [tex]B[/tex] occur needs to be found as the product of
the probability that event [tex]A[/tex] occurs, andthe probability that event [tex]B[/tex] occurs given that event [tex]A[/tex] occurs.5 out of the ten numbers are even. The probability that event [tex]A[/tex] occurs is:
[tex]\displaystyle P(A) = \frac{5}{10}[/tex].
In case A occurs, there will only be four cards with even numbers out of the nine cards that are still in the bag. The conditional probability of getting a second card with an even number on it, given that the first card is even, will be:
[tex]\displaystyle P(B|A) = \frac{4}{9}[/tex].
The probability that both [tex]A[/tex] and [tex]B[/tex] occurs will be:
[tex]\displaystyle P(A \cap B) = P(B\cap A) = P(A) \cdot P(B|A) = \frac{5}{10}\cdot \frac{4}{9}[/tex].
consider each table of values
of the three functions,
f & h
none
f & g
g & h
all three
represent linear relationships
Answer:
g and h
Step-by-step explanation:
both g and h have constant relationships while f's f(x) values aren't constant so it doesn't have a linear relationship
Answer:
Of the three functions g and h represent linear relationship.
Step-by-step explanation:
If a function has constant rate of change for all points, then the function is called a linear function.
If a lines passes through two points, then the slope of the line is
[tex]m=\frac{x_2-x_1}{y_2-y_1}[/tex]
The slope of function f(x) on [1,2] is
[tex]m_1=\frac{11-5}{2-1}=6[/tex]
The slope of function f(x) on [2,3] is
[tex]m_2=\frac{29-11}{3-2}=18\neq m_1[/tex]
Since f(x) has different slopes on different intervals, therefore f(x) does not represents a linear relationship.
From the given table of g(x) it is clear that the value of g(x) is increased by 8 units for every 2 units. So, the function g(x) has constant rate of change, i.e.,
[tex]m=\frac{8}{2}=4[/tex]
From the given table of h(x) it is clear that the value of h(x) is increased by 6.8 units for every 2 units. So, the function h(x) has constant rate of change, i.e.,
[tex]m=\frac{6.8}{2}=3.4[/tex]
Since the function g and h have constant rate of change, therefore g and h represent linear relationship.
what is the equation of the circle with Center (-6, 7) that passes through the point (4, -2)
we know the center of the circle, and we also know a point on the circle, well, the distance from the center to a point is just the radius.
[tex]\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-6}~,~\stackrel{y_1}{7})\qquad (\stackrel{x_2}{4}~,~\stackrel{y_2}{-2})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{radius}{r}=\sqrt{[4-(-6)]^2+[-2-7]^2}\implies r=\sqrt{(4+6)^2+(-2-7)^2} \\\\\\ r=\sqrt{10^2+(-9)^2}\implies r=\sqrt{100+81}\implies r=\sqrt{181} \\\\[-0.35em] ~\dotfill[/tex]
[tex]\bf \textit{equation of a circle}\\\\ (x- h)^2+(y- k)^2= r^2 \qquad center~~(\stackrel{-6}{ h},\stackrel{7}{ k})\qquad \qquad radius=\stackrel{\sqrt{181}}{ r}\\[2em] [x-(-6)]^2+[y-7]^2=(\sqrt{181})^2\implies (x+6)^2+(y-7)^2=181[/tex]
Round $499.76 to the nearest dollar
This is your answer:
if then number is $499.49 that would mean it rounds down to $499.00
but in your case $499.76 rounds to $500.00
(Remember .50 and up goes up!)
Therefor your answer is $500.00
Answer:
$499.76 rounded to the nearest dollar is $500 !!
Step-by-step explanation:
Why?
A dollar ($1) would be in the ones column and it's asking for the nearest dollar! So you would round it by the number on the right of the dollar, the tenths.
Consider that lines B and C are parallel. What is the value of x? What is the measure of the smaller angle?
Answer:
the awncer would be x=0
Step-by-step explanation:
.
I need help with this problem.
Answer:
42 degrees
Step-by-step explanation:
So we are given that m<BOC+m<AOB=90
So we have (6x-6)+(5x+8)=90
11x+2=90
11x=88
x=8
We are asked to find m<BOC
m<BOC=6x-6=6(8)-6=48-6=42
18. What is the y-intercept of the graph of the function y = 3x + 2x - 13?
[tex]y=3\cdot0 + 2\cdot0 - 13=-13[/tex]
The y-intercept is [tex](0,-13)[/tex]
Order the relative frequencies from least to greatest
Final answer:
To order the relative frequencies from least to greatest, calculate the relative frequency for each data value by dividing the frequency by the total number of data values. Then, determine the cumulative relative frequency by adding all previous relative frequencies to the relative frequency for the current row. Finally, list the data values in increasing order of their relative frequencies.
Explanation:
The given data is:
114,950; 158,000; 230,500; 387,000; 389,950; 479,000; 488,800; 529,000; 575,000; 639,000; 659,000; 1,095,000; 5,500,000
To order the relative frequencies from least to greatest, we need to determine the relative frequency for each data value. The relative frequency is found by dividing the frequency by the total number of data values. The cumulative relative frequency is the sum of all previous relative frequencies. Here are the calculations:
Relative Frequency:
114,950 : 0.00002
158,000 : 0.00003
230,500 : 0.00005
387,000 : 0.00008
389,950 : 0.00008
479,000 : 0.00010
488,800 : 0.00010
529,000 : 0.00011
575,000 : 0.00012
639,000 : 0.00013
659,000 : 0.00013
1,095,000 : 0.00022
5,500,000 : 0.00100
Now we can order the relative frequencies from least to greatest:
114,950 : 0.00002
158,000 : 0.00003
230,500 : 0.00005
387,000 : 0.00008
389,950 : 0.00008
479,000 : 0.00010
488,800 : 0.00010
529,000 : 0.00011
575,000 : 0.00012
639,000 : 0.00013
659,000 : 0.00013
1,095,000 : 0.00022
5,500,000 : 0.00100
How can I round decimals
Answer:
Find the place value you want (the "rounding digit") and look at the digit just to the right of it.
If that digit is less than 5, do not change the rounding digit but drop all digits to the right of it.
If that digit is greater than or equal to five, add one to the rounding digit and drop all digits to the right of it.
Step-by-step explanation:
Step-by-step explanation: To round a decimal, you first need to know the indicated place value position you want to round to. This means that you want to first find the digit in the rounding place which will usually be underlined.
Once you locate the digit in the rounding place, look to the left of that digit. Now, the rules of rounding tell us that if a number is less than 4, we round down but if a number is greater than or equal to 5, we round up.
I'll show an example.
Round the following decimal to the indicated place value.
0.8005
To round 0.8005 to the indicated place value position, first find the digit in the rounding place which in this case is the 0 in the thousandths place.
Next, find the digit to the right of the rounding place which in this case is 5. Since 5 is greater than or equal to 5, we round up.
This means we add 1 to the digit in the rounding place so 0 becomes 1. So we have 0.801. Now, we change all digits to the right of the rounding place to 0 so 5 changes to 0.
Finally, we can drop of any zeroes to the right of our decimal as long as they're also to the right of the rounding position.
So we can write 0.8010 as 0.801.
Image provided.
Which answer is right please help
Answer:
A
Step-by-step explanation:
Linear functions go into a straight line in order
Y in set b goes from 2 to 1250 so it is traveling much faster than set A
what is the range of f?
Answer:
[ -8 , 9 ]
Step-by-step explanation:
You are looking at where f(t), the function, is on its y values.
Please mark for Brainliest!! :D Thanks!!
For more questions or more information, please comment below!
What are the solutions of the equation?
0 = x2 + 3x - 10
Ox=5.2
Ox=-5,-2
x = -5,2
x=5-2
Answer:
Step-by-step explanation:
0 = x2 + 3x - 10
10 = 2x+3x
10 = 5x
x = 2
0x = 5.2
0x = 10
x = 10.2 = 20
x = 20
0x = -5.-2
0x = -10
x = -10.2 = -20
x = -20
x = -5.2
x = -10
x = 5-2
x = 3
GOOD LUCK ! ;)
Suppose you are determining the growth rate of two species of plants. Species A ls 25 cm tall and grows 3 cm per month. Species
B is 10 cm tall and grows 8 cm per month. Which system of equations models the height of each species H(m) as a function of m
months
Answer: Last Option
[tex]H (m) = 25 + 3m\\H (m) = 10 + 8m[/tex]
Step-by-step explanation:
The initial height of the plant of species A is 25 cm and grows 3 centimeters per month.
If m represents the number of months elapsed then the equation for the height of the plant of species A is:
[tex]H (m) = 25 + 3m[/tex]
For species B the initial height is 10 cm and it grows 8 cm each month
If m represents the number of months elapsed then the equation for the height of the plant of species B is:
[tex]H (m) = 10 + 8m[/tex]
Finally, the system of equations is:
[tex]H (m) = 25 + 3m\\H (m) = 10 + 8m[/tex]
The answer is the last option
What are the zeros of this function?
Answer:
x =0 and x = 4
Step-by-step explanation:
It is a quadratic function and hence will have two roots. It cuts graph at 2 points( x - axis ). Hence has two roots.
What is the true solution to the logarithmic equation below?
Answer:
x = 4/9
C
Step-by-step explanation:
log_2(6x/) - log_2(x^(1/2) = 2 Given
log_2(6x/x^1/2) = 2 Subtracting logs means division
log_2(6 x^(1 - 1/2)) = 2 Subtract powers on the x s
log_2(6 x^(1/2) ) = 2 Take the anti log of both sides
6 x^1/2 = 2^2 Combine the right
6 x^1/2 = 4 Divide by 6
x^1/2 = 4/6 = 2/3 which gives 2/3 now square both sides
x = (2/3)^2
x = 4/9
Answer:
Option c
Step-by-step explanation:
The given logarithmic equation is
[tex]log_{2} (6x)-log_{2}(\sqrt{x})=2[/tex]
[tex]log_{2}[\frac{(6x)}{\sqrt{x}}]=2[/tex] [since log[tex](\frac{a}{b})[/tex]= log a - log b]
[tex]log_{2}[\frac{(6\sqrt{x})\times\sqrt{x}}{\sqrt{x}}]=2[/tex] [since x = [tex](\sqrt{x})(\sqrt{x})[/tex]]
[tex]log_{2}(6\sqrt{x} )=2[/tex]
[tex]6\sqrt{x} =2^2[/tex] [logₐ b = c then [tex]a^{c}=b[/tex]
[tex]6\sqrt{x} =4[/tex]
[tex]\sqrt{x} =\frac{4}{6}[/tex]
[tex]\sqrt{x} =\frac{2}{3}[/tex]
[tex]x=(\frac{2}{3})^2[/tex]
= [tex]\frac{4}{9}[/tex]
Option c is the answer.
the sum and express it in simplest
(-6b3 - 362.6) + (2b3 - 362)
Enter the correct answer.
Answer:
[tex]\large\boxed{(-6b^3-362.6)+(2b^3-362)=-4b^3-724.5}[/tex]
Step-by-step explanation:
[tex](-6b^3-362.6)+(2b^3-362)\\\\=-6b^3-362.6+2b^3-362\qquad\text{combine like terms}\\\\=(-6b^3+2b^3)+(-362.5-362)\\\\=-4b^3-724.5[/tex]
A student simplifies (6b + 4r) – (2b + r) and says that the result is 4b + 5r. Explain the error and describe the correct steps to simplify the expression.
Answer: 4b + 3r
Step-by-step explanation: The student correctly subtracted the 2b, but accidentally added the r instead of subtracting it, she likely misunderstood the parentheses.
The correct answer would be 4b + 3r
Answer:
Third option ✔ 4b + 3r
Step-by-step explanation:
E D G E N U I T Y
A boy purchased (bought) a party-length sandwich 54 in. long. He wants to cut it into three pieces so that the middle piece is 6 in. longer than the shortest piece and the shortest piece is 9 in. shorter than the longest piece. How long should the three pieces be?
Answer:
length of shortest piece = 13 in
length of middle piece = 19 in
length of longest piece = 22 in
Step-by-step explanation:
Total length of sandwich = 54 inch
Let shortest piece = x
Middle piece = x+6
Longest piece = x+9
Add this pieces will make complete sandwich
x+(x+6)+(x+9) = 54
Solving
x+x+6+x+9 = 54
Combining like terms
x+x+x+6+9 = 54
3x + 15 = 54
3x = 54 -15
3x = 39
x = 13
So, length of shortest piece = x = 13 in
length of middle piece = x+6 = 13+6 = 19 in
length of longest piece = x+9 = 13+9 = 22 in
Answer:
The three pieces should be 13 , 19 , 22 inches
Step-by-step explanation:
* Lets study the information to solve the problem
- The length of the sandwich is 54 in
- The sandwich will cut into three pieces
- The middle piece is 6 inches longer than the shortest piece
- The shortest piece is 9 inches shorter than the longest piece
* Lets change the above statements to equations
∵ The shortest piece is common in the two statements
∴ Let the length of the shortest piece is x ⇒ (1)
∵ The middle piece is 6 inches longer than the shortest piece
∴ The length of the middle piece = x + 6 ⇒ (2)
∵ The shortest piece is 9 inches shorter than the longest piece
∴ The longest piece is 9 inches longer than the shortest piece
∴ The longest piece = x + 9 ⇒ (3)
∵ the length of the three pieces = 54 inches
- Add the length of the three pieces and equate them by 54
∴ Add (1) , (2) , (3)
∴ x + (x + 6) + (x + 9) = 54 ⇒ add the like terms
∴ 3x + 15 = 54 ⇒ subtract 15 from both sides
∴ 3x = 39 ⇒ divide both sides by 3
∴ x = 13
* The length of the shortest piece is 13 inches
∵ The length of the middle piece = x + 6
∴ The length of the middle piece = 13 + 6 = 19 inches
* The length of the middle piece is 19 inches
∵ The length of the longest piece = x + 9
∴ The length of the longest piece = 13 + 9 = 22 inches
* The length of the longest piece is 22 inches
* The lengths of the three pieces are 13 , 19 , 22 inches
what is 1/6 as a percent
Answer:16.66
Step-by-step explanation:
To convert 1/6 into a percent, multiply by 100 to get approximately 16.67 percent.
To convert a fraction to a percent, you can follow a standard way of expressing the fraction such that the denominator equals 100. For 1/6, you want to find what number over 100 is equivalent to it. To do so, you can set up a proportion where 1/6 equals x/100. Solving for x, you would cross-multiply and divide to get:
1 * 100 = 6 * x
[tex]\( x = \frac{100}{6} \)[/tex]
x ≈ 16.67
Therefore, 1/6 as a percent is approximately 16.67 percent.