Bodhi has a collection of 175 dimes and nickels. The collection is worth $13.30. Which equation can be used to find n, the number of nickels in the collection? 0.1n + 0.05(n – 175) = 13.30 0.1n + 0.05(175 – n) = 13.30 0.1(n – 175) + 0.05 = 13.30 0.1(175 – n) + 0.05n = 13.30

Answers

Answer 1

Answer: 0.1(175-n)+0.05n=13.30

Step-by-step explanation: The question is asking you to make and simplify a system of equations.

The 2 equations are:

n+d=175

0.1d+0.05n=13.30.

d=175-n

Solve for n, then substitute into the second equation.

0.1(175-n)+0.05n=13.30

Hope this helps!


Related Questions

Help plz & thank you!!

Answers

Answer:

option A

Step-by-step explanation:

Step 1

X

[tex]x=\left[\begin{array}{ccc}b&a\\4&a\end{array}\right][/tex]

Step 2

2Y

[tex]\left[\begin{array}{ccc}2c&2d\\2a&2b\end{array}\right][/tex]

Step 3

X - 2Y = Z

[tex]2Y=\left[\begin{array}{ccc}b&a\\4&a\end{array}\right]-\left[\begin{array}{ccc}2c&2d\\2a&2b\end{array}\right]=\left[\begin{array}{ccc}a&c\\16&b\end{array}\right][/tex]

Step 4

Four equations are formed

Equation 1

b - 2c = a

Equation 2

a - 2d = c

Equation 3

4 - 2a = 16

-2a = 16 - 4

-2a = 12

a = -6

Equation 4

a -2b = b

-6 - 2b = b

-6 = b + 2b

-6 = 3b

b = -2

Plug values of a and b in equation 1 and 2

b - 2c = a

-2 -2c = -6

-2c = -6 + 2

-2c = -4

c = -4/-2

c = 2

a - 2d = c

-6 -2d = 2

-2d = 2+6

-2d = 8

 d = 8/-2

 d = -4

Use △DEF, shown below, to answer the question that follows:

Triangle DEF where angle E is a right angle. DE measures 55. EF measures x. Angle D measures 49 degrees.

What is the value of x rounded to the nearest hundredth? Type the numeric answer only in the box below.

Answers

Answer:

63.2702623...

Step-by-step explanation:

The ratio between FE and DE is the tangent of the angle EDF.[tex]tan 49 = \frac x {55}[/tex] or [tex]x= 55*tan 49[/tex]. With a calculator, you get 63.2702623... Cut where needed

55x tan49 =63.270

63.270.

A .Dog and a cat are 200 meters apart when they see each other. The dog can run at a speed of 30 m/sec, while the cat can run at a speed of 24 m/sec. How soon will the dog catch the cat if the dog starts running after the cat?

Answers

Given the speeds of the dog and cat, the dog will catch the cat in approximately 33.33 seconds by covering the 200-meter distance at a relative speed of 6 m/s.

Problem: A dog and a cat are 200 meters apart. The dog runs at 30 m/s, and the cat runs at 24 m/s. How soon will the dog catch the cat?

Calculate the relative speed at which the dog is gaining on the cat: 30 m/s - 24 m/s = 6 m/s.

Divide the initial distance (200 meters) by the relative speed (6 m/s) to find the time it takes for the dog to catch the cat: 200 m / 6 m/s = 33.33 seconds.

Mrs. Winter's students reported the amount of time they spent reading last night. The line plot shows the fraction of an hour each student spent reading. How much total time did Mrs. Winter's students spend reading last night?

Answers

Final answer:

To find out the total time Mrs. Winter's students spent reading, add up all the fractional hour amounts on the line plot for each student.

Explanation:

In this question, we are dealing with the issue of determining the total time that Mrs. Winter's students spent on reading, using a line plot that displays fractional hours. Unfortunately, without the actual line plot, we can't provide a specific numerical answer. However, the process would involve adding up all the fractional hour amounts for each student. For instance, if one student read for 1/2 hour and another for 1/3 hour, the total would be 1/2 + 1/3 = 5/6 hour. Repeat this addition process for all the students in the class to find the overall total time spent reading.

Learn more about Total Time Spent Reading here:

https://brainly.com/question/31487065

#SPJ12

The total time which Mrs. Winter's students spend reading last night is: A. 10 3/4 hours.

What is a line plot?

In Mathematics and Statistics, a line plot is a type of graph that is used for the graphical representation of data set above a number line, while using crosses, dots, or any other mathematical symbol.

Based on the information provided about the fraction of an hour, a frequency table can be computed as follows;

Hour    Frequency

1/4                 10

1/2                  9

3/4                 5

In this context, we can calculate the total amount of time as follows;

Total amount of time = 1/4(10) + 1/2(9) + 3/4(5)

Total amount of time = 10/4 + 9/2 + 15/4

Total amount of time = 10 3/4 hours.

Read more on line plot here: brainly.com/question/28741427

#SPJ3

There are 10,000 light bulbs in a shipment. In a sample of 100 bulbs, 5 were broken. How many broken bulbs would you expect in the whole shipment?

Answers

Answer:

Step-by-step explanation:

Answer:

500

Step-by-step explanation:

The experimental probability of breakage is 5 out of 100, or 0.05.

Thus, if the shipment of bulbs numbers 10,000, the expected number of broken bulbs is 0.05(10,000), or 500.

Which function best fits the following points?

Answers

Answer:

Correct answer is choice B.

Step-by-step explanation:

We have been given a graph and 4 different choices.

Now we need to determine about which of the given functions best fits the points in the graph.

From graph we can clearly see that points are going upward very fast as compared to x when x-value increases.

That happens in exponential type function  which is usually written in form of

[tex]y=ab^x[/tex]

Choice B looks similar to that.

hence correct answer is choice B.

PLEASE HELP I AM STUCK ON THIS

Answers

Answer:

Step-by-step explanation:

This is a right triangle problem.  The reference angle is x, the side opposite the reference angle is 32, and the hypotenuse is 58.  The trig ratio that relates the side opposite a reference angle to the hypotenuse is the sin.  Filling in accordingly:

[tex]sin(x)=\frac{32}{58}[/tex]

Because you are looking for a missing angle, you will use your 2nd button and then the sin button to see on your display:

[tex]sin^{-1}([/tex]

Within the parenthesis enter the 32/58 and you'll get your angle measure.  Make sure your calculator is in degree mode, not radian mode!!!

Please help me :)...

Answers

Answer:

x = 8

Step-by-step explanation:

Since the triangle is right use Pythagoras' theorem to solve for x

The square on the hypotenuse of a right triangle is equal to the sum of the squares on the other 2 sides, thus

x² + 15² = 17²

x² + 225 = 289 ( subtract 225 from both sides )

x² = 64 ( take the square root of both sides )

x = [tex]\sqrt{64}[/tex] = 8

Find the surface of this composite solid.

A. 152 m^2
B. 120 m^2
C. 136 m^2
D. 104 m^2

Answers

Answer:

B

Step-by-step explanation:

The surface area of this solid is the sum of all the surfaces.

There are 4 rectangular surfaces all around, each measuring 4 by 5 m.

So area of 4 of these surfaces is: 4 * (4*5)= 4 * 20 = 80

The bottom is a rectangle with dimensions 4 and 4. So area is 4 * 4 = 16

There are 4 triangular faces in the top portion, each with base 4 and height 3. Area of triangle is 1/2 * base * height. Hence,

Area of 4 of these triangles is 4*[(1/2)*4*3] = 4 * 6 = 24

Thus, the surface area = 80 + 16 + 24 = 120 m^2

Answer choice B is right.

Hey, can someone please teach me this? I haven't been at school to learn it and I have a quiz later.

Example:
The scores on the SAT form a normal distribution with a mean of 500 and a standard deviation of 100.

What is the minimum score necessary to be in the top 15% of the SAT scores?

Find the range of values that define the middle 80% of the distribution of SAT scores.

Answers

Answer:

604

Step-by-step explanation:

"Top 15%" corresponds to the rightmost area under the standard normal curve to the right of the mean.  That means 85% of the area under this curve will be to the left.  Which z-score corresponds to the area 0.85 to the left?

Using a calculator (invNorm), find this z-score:  invNorm(0.85) = 1.0346.

Which raw score corresponds to this z-score?

Recall the formula for the z-score:

       x - mean

z = ------------------

         std. dev.

Here we have:

       x - 500

z = ------------------ - 1.0364, or x - 500 = 103.64.  Then the minimum score

          100                necessary to be in the top 15% of the scores is

                                  found by adding 500 to both sides:

                                   x = 603.64

Minimum score necessary to be in the top 15% of the SAT scores is 604.

The middle 80% of the distribution ranges from 372 to 628.

The SAT scores form a normal distribution with a mean (")") of 500 and a standard deviation (")") of 100. We need to find:

1. Minimum Score to be in the Top 15%

To find the minimum score for the top 15%, we need to find the corresponding z-score and then use it to calculate the SAT score.The z-score for the top 15% can be found using a z-score table or calculator, which gives us a z-score of approximately 1.04. The formula to convert a z-score to an SAT score is:

X = μ + zσ

Calculating the SAT Score:

μ = 500z = 1.04σ = 100

So, X = 500 + 1.04 * 100 = 604. Therefore, the minimum score necessary to be in the top 15% is 604.

2. Range of Values for the Middle 80%

To find the middle 80%, we calculate the z-scores that correspond to the lower 10% and the upper 10% (since 100% - 80% = 20%, split evenly).

From a z-score table, the z-scores are approximately -1.28 and +1.28.

The formulas to convert these z-scores are:

X_low = μ + (-1.28)σ  and X_high = μ + 1.28σ

Calculating the Range:

X_low = 500 + (-1.28) * 100 = 372X_high = 500 + 1.28 * 100 = 628

So, the range of scores that define the middle 80% is 372 to 628.

The equation for a circle is ​x2−8x+y2−2y−8=0​ .


What is the equation of the circle in standard form?


(x−16)2+(y−1)2=25

(x−16)2+(y−1)2=16

(x−4)2+(y−1)2=25

(x−4)2+(y−1)2=16

Answers

You can analyze it in this way:

1)(2) in y2-2y can show that was (y-1)^2 so we add -1 to -8 => -9

2)(8) in x2-8x show us that was (x-4)^2 so we add -16 to -9 => -25

and finally we have:(x-4)^2 + (y-1)^2 =25

it means C is true!

Answer:(x−4)2+(y−1)2=25 is the answer

Katie bought 4 sweaters that cost the same amount and 1 shirt that cost $20. The items she bought cost a total of $160 before tax Was added. What was the cost of each sweater?

Answers

Answer:

Each sweater costs $35.

Step-by-step explanation:

First subtract the total price ($160) by the price of the shirt ($20).

160 - 20 = 140

Now were left with $140. Since Katie bought 4 sweaters, divide 140 by 4.

140/4 = 35

This means that each sweater was $35. If you want to make sure this is correct just multiply 35 by 4 and then add the $20. You should end up with $160.

35 x 4 = 140

140 + 20 = 160

What can you say about the y-values of the two functions [tex]f(x) = 3^x-3[/tex] and = [tex]g(x) = 7x^2-3[/tex]? Check all that apply.

A. The minimum y-value of f(x) is -3.
B. g(X) has the smallest possible y-value.
C. f(X) has the smallest possible y-value.
D. The minimum y-value of g(x) is -3

Answers

Answer:

a) The minimum y-value of f(x) is -3

d) The minimum y-value of g(x) is -3

Step-by-step explanation:

Given in the question that,

f(x) = 3[tex]^{x}[/tex]-3

g(x) = 7x² - 3

A)

At large negative exponents, the value approaches to zero

y = [tex]3^{-100}-3=-3[/tex]

y = [tex]3^{-1000}-3=-3[/tex]

y = [tex]3^{-10000}-3=-3[/tex]

B)

Minimum y-value of g(x) will be when x = 0

y = 7x² - 3

y = 7(0) - 3

y = -3

Answer :B and D

explanation: that’s correct

5(y+1)-y = 3(y-1)+7
no solution
y = ?
or
all real numbers are solutions

Answers

Answer:

One solution:  y = -1

Step-by-step explanation:

Perform the indicated multiplications:

5y + 5 - y = 3y - 3 + 7, or

4y + 5 = 3y + 4, or

y = -1    This equation has ONE solution:  y = -1

Which statement best describes the domain and range of p(x) = 6–x and q(x) = 6x? p(x) and q(x) have the same domain and the same range. p(x) and q(x) have the same domain but different ranges. p(x) and q(x) have different domains but the same range. p(x) and q(x) have different domains and different ranges.

Answers

Answer:

The statement that best describes the domain and range of p(x) and q(x) is:

             p(x) and q(x) have the same domain and the same range.

Step-by-step explanation:

We are given a function p(x) as:

[tex]p(x)=6-x[/tex]

AS the function is a polynomial function.

Hence it is defined everywhere for all the real values.

Hence, the domain of the function p(x) is: All  Real numbers.

and the range of the function p(x) is: All the real numbers.

and the function q(x) is given by:

[tex]q(x)=6x[/tex]

which is also a polynomial function.

Hence, it also has the same domain and range.

Domain and range are specific sets for each function. For given case, p(x) and q(x) have the same domain and range.

What is domain and range of a function?

Domain is the set of values for which the given function is defined.

Range is the set of all values which the given function can output.

The domain and range of given functions are:

p(x) = 6-x

For any real number value of x, p(x) just takes 6-x(negates the input and add 6 to it), thus, its always defined, and thus, its domain is all real numbers.

Since p = 6-x is possible to go negatively infinite and positively infinite and always continuous, thus, its range is all real numbers(all numbers are possible as its output)

We can prove the above statement. Let some real number T is not in the range of p(x). But we have T = 6-x => x = 6-T which is a real number, thus, for input 6-T, there is output T. Thus, its a contradiction, and thus, all real numbers are in range of p(x).

Thus,

Range of p(x): [tex]x \in \mathbb R[/tex] (R is all real numbers' set)Domain of p(x): [tex]x \in \mathbb R[/tex]

q(x) = 6x

Its scaling all numbers. All numbers can be multiplied by 6 and produce a valid result. Thus, its domain is all real numbers.

Suppose that we've T as a real number. Then we can get this as output if we put input as x = T/6 (since then 6x = 6(T/6) = T)

Thus, all real numbers are in its output set, thus, its range is all real numbers.

The Range of q(x): [tex]x \in \mathbb R[/tex] and Domain of q(x): [tex]x \in \mathbb R[/tex]

Hence, for given case, p(x) and q(x) have the same domain and range.

Learn more about domain and range here:
https://brainly.com/question/26077568

The anderson's drove 175 miles in 3 1/2 miles. What is their average driving rate, in miles per hour? At this rate, how many miles will theAndersons drive in 8 1/2 hours? What is the Anderson's driving rate in feet per second? Round to the nearest tenth

Answers

Answer:

50 mph, 450 mi, 73.3 ft/sec

Step-by-step explanation:

Part 1:

Find the unit rate (which here is mph).

 175 mi

------------- = 50 mph

3.5 hrs

Part 2:

In 8.5 hrs, the Andersons can expect to cover (50 mph)(8.5 hr) = 425 mi

Part 3:

50 mph       88 ft/sec

------------ *  ----------------- = 73.33 ft/sec, or 73.3 ft/sec to the nearest tenth.

      1              60 mph

The population of a local species of beetle can be found using an infinite geometric series where a1 = 880 and the common ratio is one fourth. Write the sum in sigma notation, and calculate the sum (if possible) that will be the upper limit of this population.


the summation of 880 times one fourth to the i minus 1 power, from i equals 1 to infinity. ; the sum is divergent


the summation of 880 times one fourth to the i minus 1 power, from i equals 1 to infinity. ; the sum is 1,173


the summation of 880 times one fourth to the i power, from i equals 1 to infinity. ; the series is divergent


the summation of 880 times one fourth to the i power, from i equals 1 to infinity. ; the sum is 1,173

Answers

Answer: Second Option

"the summation of 880 times one fourth to the i minus 1 power, from i equals 1 to infinity. ; the sum is 1,173"

Step-by-step explanation:

We know that infinite geometrical series have the following form:

[tex]\sum_{i=1}^{\infty}a_1(r)^{n-1}[/tex]

Where [tex]a_1[/tex] is the first term of the sequence and "r" is common ratio

In this case

[tex]a_1 = 880\\\\r=\frac{1}{4}[/tex]

So the series is:

[tex]\sum_{i=1}^{\infty}880(\frac{1}{4})^{n-1}[/tex]

By definition if we have a geometric series of the form

[tex]\sum_{i=1}^{\infty}a_1(r)^{n-1}[/tex]

Then the series converges to  [tex]\frac{a_1}{1-r}[/tex]   if [tex]0<|r|<1[/tex]

In this case [tex]r = \frac{1}{4}[/tex] and [tex]a_1=880[/tex]  then the series converges to [tex]\frac{880}{1-\frac{1}{4}} = 1,173.3[/tex]

Finally the answer is the second option

What polynomial identity should be used to prove that 20 = 36 − 16?

Difference of Cubes
Difference of Squares
Square of Binomial
Sum of Cubes

Please help!

Answers

Answer:

a difference of two squares

Step-by-step explanation:

Note that 36 − 16 is a difference of two squares:  6^2 - 4^2.

Find the volume of the following cone. Use 3.14 for π.

A. 9847.04 cubic meters


B. 39388.16 cubic meters


C. 10257.33 cubic meters


D. 41029.33 cubic meters

Answers

Answer:

Step-by-step explanation:

Radius

= 28 ÷ 2

= 14 m

Volume

= 1/3 (3.14) (14)²(48)

= 1/3 (3.14) (196)(48)

= 9847.04 m³

Answer:  A. 9847.04 cubic meters

Step-by-step explanation:

From the given picture, we have

The diameter of the cone = 28 m

Then the radius of the cone = [tex]\dfrac{28}{2}=14\text{ m}[/tex]

Height of the cone = 48 inches

The volume of cone is given by :-

[tex]V=\dfrac{1}{3}\pi r^2h\\\\\Rightarrow V=\dfrac{1}{3}(3.14)(14)^2(48)\\\\\Rightarrow V=9847.04\text{ m}^3[/tex]

Hence, the volume of the cone = [tex]9847.04\text{ m}^3[/tex]

Explore Three Dimensional Shapes: Investigation 4

I need help with the worksheet

Answers

1. Volume is Length x width x height.

Volume = 6 x 4 x 8 = 192 ft^2

Answer is D.

2. Divide the volume by the height to get the area of the base.

Area of base = 312 / 12 = 26 in^2

Answer is D.

3. A 1/2 x 8 x 6 = 24 x 12 = 288 cm^3

   B.  (12 +6)/2 x 5 = 45 x 14 = 630 m^3

4. See attached picture.

Please help fast.
A number cube is rolled and a coin is tossed. The number cube and the coin are fair. What is the probability that the number rolled is greater than 4 and the coin toss is tails? Write your answer as a fraction in simplest form.

Answers

Answer:

[tex]\frac{1}{6}[/tex]

Step-by-step explanation:

In probability theory, "AND" means multiplication and "OR" means "addition".

We can find the 2 probabilities separately and multiply them (as there is "AND")

So,

Probability number rolled greater than 4 = number of numbers that are greater than 4/total number of numbers

There are 2 numbers greater than 4 in a die (5 & 6) and total 6 numbers, so

P(number greater than 4) = 2/6

Now,

Probability that tails come up in coin toss = 1/2 (there are 1 tail and 1 head in a coin)

Hence,

P(number greater than 4 and tails in coin) = 2/6 * 1/2 = 1/6

Final answer:

To find the probability of rolling a number greater than 4 on a die and getting tails on a coin toss, you multiply the individual probabilities: (1/3) for the die roll and (1/2) for the coin toss, resulting in a combined probability of 1/6.

Explanation:

The question is asking to find the probability of a specific combined event involving the roll of a number cube (a six-sided die) and the flip of a coin. To solve this problem, we need to calculate the probability that the number cube shows a number greater than 4 (which can be either a 5 or 6) and that the coin toss results in tails.

First, we find the probability of rolling a number greater than 4 on a six-sided die. There are 2 favorable outcomes (5 or 6) out of 6 possible outcomes, so the probability of this event is 2/6, which simplifies to 1/3.

Next, we calculate the probability of getting tails on a coin flip. Since a coin has two sides, and only one side is tails, the probability is 1/2.

To find the combined probability of both events happening together, we multiply the probabilities of the individual events:

Combined Probability = Probability (Number > 4) × Probability (Tails) = (1/3) × (1/2)

Therefore, the combined probability is:

(1/3) × (1/2) = 1/6

Claire wants to place a mirror that is 1812 inches wide in the center of a wall that is 31 inches wide. How far from each corner should she place the mirror for it to be centered.

Answers

Answer:

Claire should place the mirror 6 and 1/4 (6.25) inches from each corner of the wall in order for the mirror to be centered.  

Step-by-step explanation:

In order to find out how far the mirror would need to be set from each corner of the wall, you need to first take the total length of the wall and subtract the total width of the mirror:  31 - 18.5 = 12.5.  12.5 inches is the amount of wall space that would be left when the mirror is hanging.  In order for the mirror to be centered, we need to take the amount of wall space left and divide by two (2) to find the measurement from each corner:  12.5 ÷ 2 = 6.25 or 6 1/4.  By placing the mirror 6.25 inches from each corner of the wall, the mirror will be centered on the wall.

Thank you for your assistance in advance.

Answers

Answer:

15.8 to nearest tenth.

Step-by-step explanation:

Using the distance formula to find the lengths of the 3 sides:

AC = √ [(5-0)^2 + (-1- -3)^2] = √(25+4)

= √29.

BC = √[(-1--0)^2 + (1- -3)^2)] = √17

AB =  √[(5- -1)^2 + (-1-1)^2)] = √40

The perimeter = √29. + √17. + √40

=  15.8 to nearest tenth.

The standard form of the equation of a circle is (x?4)2+(y?2)2=9. What is the general form of the equation? X2+y2+8x+4y+11=0 x2+y2+8x+4y?29=0 x2+y2?8x?4y?29=0 x2+y2?8x?4y+11=0

Answers

Answer:

[tex]x^2+y^2-8x-4y+11=0[/tex]

Step-by-step explanation:

We want to find the equation of the circle: [tex](x-4)^2+(y-2)^2=9[/tex] in general form.

We need to expand the parenthesis to obtain: [tex]x^2-8x+16+y^2-4y+4=9[/tex]

This implies that:

[tex]x^2+y^2-8x-4y+20=9[/tex]

We add -9 to both sides of the equattion to get:

[tex]x^2+y^2-8x-4y+20-9=0[/tex]

Simplify the constant terms to get:

[tex]x^2+y^2-8x-4y+11=0[/tex]

The general form of the equation is x^2 + y^2 - 8x -4y - 11 = 0

How to determine the general form?

The equation is given as:

(x-4)^2+(y-2)^2=9

Evaluate the exponents

x^2 - 8x + 16 + y^2 -4y + 4 = 9

Collect like terms

x^2 - 8x +  y^2 -4y - 9 + 16 + 4 = 0

Evaluate the like terms

x^2 - 8x +  y^2 -4y - 11 = 0

Rewrite as:

x^2 + y^2 - 8x -4y - 11 = 0

Hence, the general form of the equation is x^2 + y^2 - 8x -4y - 11 = 0

Read more about circle equations at:

https://brainly.com/question/1559324

(-9,-35) and (2,9) are two anchor points on the trend line, then find the equation of the line

Answers

Answer:

the desired equation is y = 4x + 1

Step-by-step explanation:

As we move to the right from (-9, -35) to (2, 9), x increases by 11 and y increases by 44.  Thus, the slope of the line in question is

m = rise / run = 44/11 = 4.

Using the slope-intercept form of the equation of a straight line, we substitute 4 for m, 2 for x and 9 for y, obtaining:

y = mx + b →  9 = 4(2) + b.  Thus, b = 1, and the desired equation is

y = 4x + 1

Final answer:

By using the slope-intercept form of a line and the given anchor points, we find that the equation of the line is y= 4x - 1.

Explanation:

The subject of this question is to find the equation of a trend line using two anchor points (-9,-35) and (2,9). We can calculate the equation of a line using the slope-intercept form y = mx + b, where m represents the slope and b represents the y-intercept.

First, calculate the slope (m) which is (y2-y1)/(x2-x1) = (9 - (-35))/(2 - (-9)) = 44/11 = 4.

Then, with the slope (m = 4) and one point (2,9), plug in these values into the slope-intercept form to solve for the y-intercept (b). 9 = 4*2 + b. Solving for b gives -1.

So, the equation of the trend line is y= 4x - 1.

Learn more about Equation of Trend Line here:

https://brainly.com/question/30293530

#SPJ2

If you apply these changes to the linear parent function, f(x) = x, what is the equation of the new function?

- Vertically compress by a factor of 7
- Shifts up 5 units.

A. [tex]g(x) = 7x + 5[/tex]
B. [tex]g(x) = \frac{1}{7} (x+5)[/tex]
C. [tex]g(x) = 7(x-5)[/tex]
D. [tex]g(x) = \frac{1}{7} x+5[/tex]

Answers

Answer:

A, g(x) = 7x + 5

Step-by-step explanation:

applying these translations to the parent function f(x) = x, we would get the following equation:

g(x) = 7x + 5

a vertical compression is written before the parent function (in this case f(x)=x), and a shift up is written next to the function. both of these are without parentheses

the answer would be A, g(x) = 7x + 5

If sin θ = 2 over 7 and tan θ > 0, what is the value of cos θ?


3 square root of 5 over 7

negative 3 square root of 5 over 7

3 square root of 5

negative 3 square root of 5

Answers

Answer:

It's the first choice.

Step-by-step explanation:

cos θ  = √(1 - sin^2 θ ) and cos θ  will be positive because  sin θ > 0  tan θ > 0. The angle  θ  will be in the first quadrant.

cos  θ  = √( 1 - (2/7)^2)

cos  θ = √(1 - 4/49) = √(45/49)

cos  θ  = √9√5 / 7

cos  θ  = 3√5 / 7.

Answer:

3 square root of 5 over 7. it's positive answer because both sin and tan are positive meaning they are sitting in the first quadrant were all ∅'s are positive

Step-by-step explanation:

match the correct letter



1.
4 * ¼ = 1

2.
6 * 1 = 6

3.
5 + 7 = 7 + 5

4.
If 5 + 1 = 6 and 4 + 2 = 6, then 5 + 1 = 4 + 2

5.
4(x - 3) = 4x - 12

6.
3(5) = 5(3)

7.
Rules that allow us to take short cuts when solving algebraic problems.

8.
5 * (3 * 2) = (5 * 3) * 2

9.
4 + (-4) = 0

10.
2 + 0 = 2

11.
A + (B + C) = (A + B) + C





a.
Distributive property

b.
Associative property of addition

c.
Identity property of multiplication

d.
Associative property of multiplication

e.
Identity property of addition

f.
Multiplicative inverse property

g.
Additive inverse property

h.
Commutative property of addition

i.
Commutative property of multiplication

j.
Transitive property

k.
Properties


Answers

Answer:

1) f

4 * ¼ = 1 (Multiplicative inverse property)

2) c

6 * 1 = 6 (Identity property of multiplication)

3) h

5 + 7 = 7 + 5 (Commutative property of addition)

4) j

If 5 + 1 = 6 and 4 + 2 = 6, then 5 + 1 = 4 + 2 (Transitive property)

5) a

4(x - 3) = 4x - 12 (Distributive property)

6) i

3(5) = 5(3) (Commutative property of multiplication)

7) k

Rules that allow us to take short cuts when solving algebraic problems.(Properties)

8) d

5 * (3 * 2) = (5 * 3) * 2 (Associative property of multiplication)

9) g

4 + (-4) = 0 (Additive inverse property)

10) e

2 + 0 = 2 (Identity property of addition)

11) b

A + (B + C) = (A + B) + C (Associative property of addition)


Find the unknown angle measure by solving for the given variable.

Answer Choices: 32,48,96,24,36,64

Answers

A triangle is 180°. So you can do:

3.2n + 6.4n + 2.4n = 180   Simplify

12n = 180

n = 15   Now that you know the value of n, you can plug it into each individual angle/equation

∠X = 3.2n    plug in 15 for n

∠X = 3.2(15)

∠X = 48°

∠Y = 6.4(15)

∠Y = 96°

∠Z = 2.4(15)

∠Z = 36°

Find the area of the circle with a circumference of 30π . Write your solution in terms of π and round to the nearest hundredth.

Area in terms of π:____

Answer Choices:

Answers

Hi again.

Answer

= option d, 225π mm^2

Circumference = 2πr

30π = 2πr

30 = 2r

30 / 2 = r

15 = r

Area = π[tex]r^{2}[/tex]

[tex]15^{2}[/tex]π

225π

The area of the circle in terms of the π will be 225π mm²

What is an area of the circle?

The area of the circle is defined as the space occupied by the circle in the three-dimensional plane. The circle is the locus of the point equidistant from its centre.

It is given in the question that:-

Circumference = 2πr

30π = 2πr

30 = 2r

30 / 2 = r

15 = r

Area = πr²

Area =π(15)²

Area = 225π  mm²

Hence the area of the circle will be 225π  mm²

To know more about the area of the circle follow

https://brainly.com/question/14068861

#SPJ2

Other Questions
the niche of an animal is best defined as?A. all the way an animal fits into its environment B. the number of individuals of the species the environment will support C. the same as its lifespan The cost to manufacture x pairs of sunglasses can be represented by a function, C(x). If it cost 398 to manufacture 4 pairs of sunglasses, which of the following is true a) c(4)=99.50b) c(398)=4c) c(4)=398d) c(99.50)=1can someone solve it and show steps please In two to four sentences, write an analysis explaining how John Masefields poem "Sea Fever is written in a fixed poetic structure. How many times does 12 go into 32 what is ATP in simple terms? rsum sur deux graines de cacao Penalty apr is interest that applies to the balance if___.Select The best answer from The choices provided.A. payments are on timeB. Payment are late C. Purchase are not made in the introduction period. D. Purchase are made after the introduction period. 15' 3" 5' 6" (iT'S nOT eAsY Omar makes a total of $51.75 selling brownies and muffins at a bake sale if he sells 16 brownies for $2.25 each how many muffins does he sell at $1.75 each? solve the equation for y0.6y + 1.2 = 0.3y - 0.9 + 0.8y What is the arc length if 0=6pi/5 and the radius is 2cm? 6 What is the answer to this problem The __________ War fought from 1950 1953 was ended following a settlement that allowed communism north of the 38th parallel and democracy to the south. A. Cambodian B. Vietnam C. Cold D. Korean Which of the following scenarios represents arraignment? A criminal suspect is in court listening to witnesses discuss the case. The police arrest a man and he appears in court the next day to enter a plea. The police arrest a woman and put her in jail overnight. A criminal suspect is in a court in front of a grand jury. solve the equation y=2x-4, 3x+y=11 during colonial times, how was news and information distributed? you are dealt one card from a standard 52 card deck. find the probability of being dealt a card greater than 2 and less than 8 Choose the equation below that represents the line passing through the point (2, 5) with a slope of 3 Who gives the reader the first description of Mr. Rochester in these chapters and how does it affect the story What is the best description of Argentinas Dirty War that lasted from 1976 to 1983? -a long intense war between Argentina and armed rebel groups in Chile -a war that was dirty because it was fought using chemical weapons -a military group that placed a populist dictator as the head of government -a period of repression and human rights abuses committed by military rulers