Avis Company is a car rental company that is located three miles from the Los Angeles airport (LAX). Avis is dispatching a bus from its offices to the airport every 2 minutes. The average traveling time (round-trip) is 10 minutes.

Answers

Answer 1

Answer:

Avis Company is a car rental company that is located three miles from the Los Angeles airport (LAX). Avis is dispatching a bus from its offices to the airport every 2 minutes. The average traveling time (round-trip) is 20 minutes.

a. How many Avis buses are traveling to and from the airport?

b. The branch manager wants to improve the service and suggests dispatching buses every 0.5 minutes. She argues that this will reduce the average traveling time from the airport to Avis offices to 2.5 minutes. Is she correct? If your answer is negative, then what will the average traveling time be?

The answers to the question are

a. 10 buses

b. Yes, increasing the fleet by a factor of 4 will reduce the apparent average travel time from the airport to Avid offices from 10 minutes to 2.5 minutes

Step-by-step explanation:

Number of buses dispatched every 20 minutes= 20÷2=10

Therefore 10 Avid buses are travelling to and from the Los Angeles airport

b. By dispatching every 0.5 minutes we have 20÷0.5 = 40 buses.

Since with 10 buses it takes 10 minutes to make the journey from the airport to Avid offices, then it would take 40 buses 10÷4 = 2.5 minutes time to deliver what it took 10 buses, 10 minutes to deliver.

Answer 2

The Avis Company has 10 buses traveling to and from LAX airport with an average round trip time of 20 minutes and a dispatch frequency of 2 minutes. Increasing the dispatch frequency to every 0.5 minutes does not reduce the average travel time; it remains at 20 minutes as it is dependent on the route's distance and traffic conditions, not the dispatch frequency.

Part A: Number of Avis Buses

To calculate the number of buses traveling to and from the airport, we use the average traveling time for a round trip and the dispatch frequency. With a round trip time of 20 minutes and buses leaving every 2 minutes, we divide the round trip time by the dispatch interval:

Total Buses = Round Trip Time / Dispatch Frequency

Total Buses = 20 minutes / 2 minutes

Total Buses = 10

Therefore, Avis has 10 buses traveling to and from the airport.

Part B: Average Traveling Time with Increased Dispatch Frequency

Increasing the dispatch frequency to every 0.5 minutes does not affect the average traveling time for a round trip. The travel time is determined by the distance between the Avis office and the airport and the traffic conditions, not merely the frequency of bus dispatches. If Avis dispatches buses every 0.5 minutes, there will be more buses in operation, but the average round trip time remains the same at 20 minutes, assuming no changes in traffic conditions or route speeds.


Related Questions

Brian is filling a conic container with water. He has the container half full. The radius of the container is 5 inches and the height is 20 inches. What is the current volume of the water?

Answers

The current volume of the water is 261.66 square inches.

Solution:

The container is in cone shape.

Radius of the container = 5 inch

Height of the container = 20 inch

Volume of the container = [tex]\frac{1}{3} \pi r^2 h[/tex]

                                        [tex]$=\frac{1}{3}\times 3.14 \times 5^2 \times 20[/tex]

Volume of the container = 523.33 square inch

Current volume of the water = Half of the volume of container

                                               [tex]$=\frac{1}{2}\times523.33[/tex]

                                               = 261.66 square inch

The current volume of the water is 261.66 square inches.

Use inverse trigonometric functions to solve the following equations. If there is more than one solution, enter all solutions as a comma-separated list (like "1, 3"). If an equation has no solutions, enter "DNE".solve tan ( θ ) = 1 tan(θ)=1 for θ θ (where 0 ≤ θ < 2 π 0≤θ< 2π).

Answers

The solutions to the equation tan(θ) = 1 within the specified range 0 ≤ θ < 2π: θ = 0.7854, 3.9270

Apply the inverse tangent function:

We begin by applying the inverse tangent function (arctan) to both sides of the equation: arctan(tan(θ)) = arctan(1)

Since arctan is the inverse of tangent, they cancel each other out on the left side, leaving us with: θ = arctan(1)

Determine the reference angle:

arctan(1) = π/4, which is the reference angle in the first quadrant where tangent is 1.

Find solutions in other quadrants:

The tangent function has a period of π, meaning it repeats its values every π radians.

Since tangent is also positive in the third quadrant, we add π to the reference angle to find the solution in that quadrant: θ = π/4 + π = 5π/4

Consider the specified range:

We're given the range 0 ≤ θ < 2π. Both π/4 and 5π/4 fall within this range, so they are the valid solutions.

Therefore, the solutions to the equation tan(θ) = 1 within the specified range are θ = 0.7854 (π/4) and θ = 3.9270 (5π/4).

Final answer:

To solve the equation tan(θ) = 1 for θ, we need to use the inverse tangent function. The solution to the equation is θ = π/4.

Explanation:

To solve the equation tan(θ) = 1 for θ, we need to use the inverse trigonometric function. In this case, we will use the inverse tangent function, also known as arctan or atan.

Applying the inverse tangent function to both sides of the equation, we get θ = atan(1).

Using a calculator, we find that atan(1) = π/4. Therefore, the solution to the equation is θ = π/4.

A reasonable estimate of the moment of inertia of an ice skater spinning with her arms at her sides can be made by modeling most of her body as a uniform cylinder. Suppose the skater has a mass of 64 kg . One eighth of that mass is in her arms, which are 60 cm long and 20 cm from the vertical axis about which she rotates. The rest of her mass is approximately in the form of a 20-cm-radius cylinder.

Answers

Answer:

Step-by-step explanation:

Given data:

Mass of the one arm of the skater, m = (1/16) x 64 = 4 kg

Rest mass of the skater in the form of cylinder, M = (7 / 8) x 64 kg = 56 kg

Radius of the cylinder, R = 20 cm = 0.20 m

The parallel axis theorem:

Draw a rectangle that shows 8 equal parts . Shade more than 3/8 of the rectangle but less than 5/8 .what fraction did you model? Use multiplication and division to write two equivalent fractions for your model.

Answers

Answer:

4/8 more than 3/ but less than 5/8

Answer: I modeled 4/8 because it is greater than 3 less than 5 2 equivalent fractions are 8/16 12/24

Step-by-step explanation:

1. A manufacturer of a printer determines that the mean number of days before a cartridge runs out of ink is 75 days, with a standard deviation of 6 days. Assuming a normal distribution, what is the probability that the number of days will be less than 67.5 days?

Answers

Answer:

[tex]P(X<67.5)=P(\frac{X-\mu}{\sigma}<\frac{67.5-\mu}{\sigma})=P(Z<\frac{67.5-75}{6})=P(z<-1.25)[/tex]

And we can find this probability using the normal standard table or excel:

[tex]P(z<-1.25)=0.106[/tex]

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Let X the random variable that represent the number of days before cartridge runs out of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(75,6)[/tex]  

Where [tex]\mu=75[/tex] and [tex]\sigma=6[/tex]

We are interested on this probability

[tex]P(X<67.5)[/tex]

And the best way to solve this problem is using the normal standard distribution and the z score given by:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

If we apply this formula to our probability we got this:

[tex]P(X<67.5)=P(\frac{X-\mu}{\sigma}<\frac{67.5-\mu}{\sigma})=P(Z<\frac{67.5-75}{6})=P(z<-1.25)[/tex]

And we can find this probability using the normal standard table or excel:

[tex]P(z<-1.25)=0.106[/tex]

Suppose 10000 people are given a medical test for a disease. About1% of all people have this condition. The test results have a 15% false positive rate and a 10% false negative rate. What percent of the people who tested positive actually have the disease?

Answers

Answer:

The percent of the people who tested positive actually have the disease is 38.64%.

Step-by-step explanation:

Denote the events as follows:

X = a person has the disease

P = the test result is positive

N = the test result is negative

Given:

[tex]P(X)=0.01\\P(P|X^{c})=0.15\\P(N|X)=0.10[/tex]

Compute the value of P (P|X) as follows:

[tex]P(P|X)=1-P(P|X^{c})=1-0.15=0.85[/tex]

Compute the probability of a positive test result as follows:

[tex]P(P)=P(P|X)P(X)+P(P|X^{c})P(X^{c})\\=(0.85\times0.10)+(0.15\times0.90)\\=0.22[/tex]

Compute the probability of a person having the disease given that he/she was tested positive as follows:

[tex]P(X|P)=\frac{P(P|X)P(X)}{P(P)}=\frac{0.85\times0.10}{0.22} =0.3864[/tex]

The percentage of people having the disease given that he/she was tested positive is, 0.3864 × 100 = 38.64%.

Write the equation of the line that passes through (3, 4) and (2, −1) in slope-intercept form. (2 points) a y = 3x − 7 b y = 3x − 5 c y = 5x − 11 d y = 5x − 9

Answers

Answer: y = 5x − 11

Step-by-step explanation:

The equation of a straight line can be represented in the slope-intercept form, y = mx + c

Where c = intercept

Slope, m =change in value of y on the vertical axis / change in value of x on the horizontal axis represent

change in the value of y = y2 - y1

Change in value of x = x2 -x1

y2 = final value of y

y 1 = initial value of y

x2 = final value of x

x1 = initial value of x

The line passes through (3,4) and (2, -1),

y2 = - 1

y1 = 4

x2 = 2

x1 = 3

Slope,m = (- 1 - 4)/(2 - 3) = - 5/- 1 = 5

To determine the y intercept, we would substitute x = 3, y = 4 and m= 5 into

y = mx + c. It becomes

4 = 5 × 3 + c

4 = 15 + c

c = 4 - 15 = - 11

The equation becomes

y = 5x - 11

American car travels 32 miles on 1 gallon of gas European car travels 12.7 km on 1 L of gas which car gets better gas mileage explain your reasoning

Answers

The American car because 32 miles = 51.5 km and since it uses a gallon which is 3.785l you divide the 51.5 by 3.785 which gives you 13.376km per liter which is more that 12.7 (European)

Answer: the American car gets better gas mileage.

Step-by-step explanation:

American car travels 32 miles on 1 gallon of gas. This means that its gas mileage is 32 miles per gallon.

European car travels 12.7 km on 1 L of gas. We would convert 12.7 km to miles.

1 kilometer = 0.621 mile

12.7 kilometer = 12.7 × 0.621 = 7.8867 miles

We would also convert 1 L to gallons.

1 liter = 0.264 us gallons

Therefore, the gas mileage of the European car in miles per gallon would be

7.8867/0.264 = 29.87 miles per gallon.

Therefore, since 32 miles per gallon is greater than 29.87 miles per gallon, it means that the American car gets better gas mileage.

New York City is the most expensive city in the United States for lodging. The mean hotel room rate is $204 per night. Assume that room rates are normally distributed with a standard deviation of $55. What is the minimum cost that captures the 20% most expensive hotel rooms in New York City?

Answers

Answer:

[tex]z=0.842<\frac{a-204}{55}[/tex]

And if we solve for a we got

[tex]a=204 +0.842*55=250.31[/tex]

So the value of height that separates the bottom 80% of data from the top 20% is 250.31.  

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Let X the random variable that represent the room hotel rate of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(204,55)[/tex]  

Where [tex]\mu=204[/tex] and [tex]\sigma=55[/tex]

For this part we want to find a value a, such that we satisfy this condition:

[tex]P(X>a)=0.20[/tex]   (a)

[tex]P(X<a)=0.80[/tex]   (b)

Both conditions are equivalent on this case. We can use the z score again in order to find the value a.  

As we can see on the figure attached the z value that satisfy the condition with 0.80 of the area on the left and 0.20 of the area on the right it's z=0.842. On this case P(Z<0.842)=0.8 and P(z>0.842)=0.2

If we use condition (b) from previous we have this:

[tex]P(X<a)=P(\frac{X-\mu}{\sigma}<\frac{a-\mu}{\sigma})=0.842[/tex]  

[tex]P(z<\frac{a-\mu}{\sigma})=0.842[/tex]

But we know which value of z satisfy the previous equation so then we can do this:

[tex]z=0.842<\frac{a-204}{55}[/tex]

And if we solve for a we got

[tex]a=204 +0.842*55=250.31[/tex]

So the value of height that separates the bottom 80% of data from the top 20% is 250.31.  

In choosing what music to play at a charity fund raising event, Shaun needs to have an equal number of string quartets from Mendelssohn, Beethoven, and Haydn. If he is setting up a schedule of the 66 string quartets to be played, and he has 66 Mendelssohn, 1616 Beethoven, and 6868 Haydn string quartets from which to choose, how many different schedules are possible? Express your answer in scientific notation rounding to the hundredths place.

Answers

Answer:

64.69e221

Step-by-step explanation:

When choosing, the combination formula for selection is used. That is when selecting "r" number of items from a possible "n" items, then the number of ways is denoted as:

nCr = n! / (n-r)! × r!

Since 66 string quartet have to be chosen and the 3 genres must be equally represented in the string quartet, then we must have 22 number of each genre in it.

Number of ways to select 22 mendelssohn from possible 66 = 66C22 = 1.82 × 10^17

Number of ways to select 22 Beethoven from possible 1616 = 1616C22 = 2.97 × 10^49

Number of ways to select 22 Haydn from possible 6868 = 6868C22 = 2.2 × 10^63

Total number of ways to arrange these 66 schedules = 66! = 5.44 × 10^92

Number of possible schedule = [1.82 * 10^17] * [2.97*10^49] * [2.2*10^63] * [5.44*10^92]

=64.69 ×10^221. ≈64.69e221

An article in Knee Surgery, Sports Traumatology, Arthroscopy, "Arthroscopic meniscal repair with an absorbable screw: results and surgical technique," (2005, Vol. 13, pp. 273-279) cites a success rate more than 90% for meniscal tears with a rim width of less than 3 mm, but only a 67% success rate for tears of 3-6 mm. If you are unlucky enough to suffer a meniscal tear of less than 3 mm on your left knee, and one of width 3-6 mm on your right knee, what are the mean and variance of the number of successful surgeries?

Answers

Answer:

Mean = 1.57

Variance=0.31

Step-by-step explanation:

To calculate the mean and the variance of the number of successful surgeries (X), we first have to enumerate the possible outcomes:

1) Both surgeries are successful (X=2).

[tex]P(e_1)=0.90*0.67=0.603[/tex]

2) Left knee unsuccessful and right knee successful (X=1).

[tex]P(e_2)=(1-0.9)*0.67=0.1*0.67=0.067[/tex]

3) Right knee unsuccessful and left knee successful (X=1).

[tex]P(e_3)=0.90*(1-0.67)=0.9*0.33=0.297[/tex]

4) Both surgeries are unsuccessful (X=0).

[tex]P(e_4)=(1-0.90)*(1-0.67)=0.1*0.33=0.033[/tex]

Then, the mean can be calculated as the expected value:

[tex]M=\sum p_iX_i=0.603*2+0.067*1+0.297*1+0.033*0\\\\M=1.206+0.067+0.297+0\\\\M=1.57[/tex]

The variance can be calculated as:

[tex]V=\sum p_i(X_i-\bar{X})^2\\\\V=0.603(2-1.57)^2+(0.067+0.297)*(1-1.57)^2+0.033*(0-1.57)^2\\\\V=0.603*0.1849+0.364*0.3249+0.033*2.4649\\\\V=0.1115+0.1183+0.0813\\\\V=0.3111[/tex]

The mean and variance of the number of successful surgeries for both knees combined are:

Mean: [tex]\({1.57}\)[/tex]

Variance: [tex]\({0.3111}\)[/tex]

The mean and variance of the number of successful surgeries for the given meniscal tears can be calculated using the information provided about the success rates.

For a meniscal tear with a rim width of less than 3 mm, the success rate is more than 90%. For simplicity, let's assume the success rate is exactly 90% (since we don't have the exact number above 90%). For a tear of 3-6 mm, the success rate is 67%.

Let's denote the success of a surgery as a random variable [tex]\( X \)[/tex], which takes the value 1 if the surgery is successful and 0 if it is not. The probability of success [tex]\( P(X = 1) \)[/tex] is the success rate, and the probability of failure [tex]\( P(X = 0) \)[/tex] is [tex]\( 1 - P(X = 1) \)[/tex].

For the left knee (tear less than 3 mm):

- [tex]\( P(X = 1) = 0.90 \)[/tex] (success rate)

- [tex]\( P(X = 0) = 1 - 0.90 = 0.10 \)[/tex] (failure rate)

For the right knee (tear 3-6 mm):

- [tex]\( P(X = 1) = 0.67 \)[/tex] (success rate)

- [tex]\( P(X = 0) = 1 - 0.67 = 0.33 \)[/tex] (failure rate)

The mean (expected value) of the number of successful surgeries for each knee is calculated as follows:

For the left knee:

[tex]\[ E(X) = \sum_{i=0}^{1} x_i \cdot P(X = x_i) = 1 \cdot 0.90 + 0 \cdot 0.10 = 0.90 \][/tex]

For the right knee:

[tex]\[ E(X) = \sum_{i=0}^{1} x_i \cdot P(X = x_i) = 1 \cdot 0.67 + 0 \cdot 0.33 = 0.67 \][/tex]

The variance of the number of successful surgeries for each knee is calculated using the formula for the variance of a binary random variable:

For the left knee:

[tex]\[ \text{Var}(X) = E(X^2) - [E(X)]^2 \][/tex]

[tex]\[ E(X^2) = \sum_{i=0}^{1} x_i^2 \cdot P(X = x_i) = 1^2 \cdot 0.90 + 0^2 \cdot 0.10 = 0.90 \][/tex]

[tex]\[ \text{Var}(X) = 0.90 - (0.90)^2 = 0.90 - 0.81 = 0.09 \][/tex]

For the right knee:

[tex]\[ E(X^2) = \sum_{i=0}^{1} x_i^2 \cdot P(X = x_i) = 1^2 \cdot 0.67 + 0^2 \cdot 0.33 = 0.67 \][/tex]

[tex]\[ \text{Var}(X) = E(X^2) - [E(X)]^2 \][/tex]

[tex]\[ \text{Var}(X) = 0.67 - (0.67)^2 = 0.67 - 0.4489 = 0.2211 \][/tex]

Now, assuming the surgeries on the two knees are independent events, the mean and variance for both knees combined can be calculated as follows:

Mean for both knees:

[tex]\[ E(X_{\text{left}} + X_{\text{right}}) = E(X_{\text{left}}) + E(X_{\text{right}}) = 0.90 + 0.67 = 1.57 \][/tex]

Variance for both knees:

Since the surgeries are independent, the variance of the sum is the sum of the variances:

[tex]\[ \text{Var}(X_{\text{left}} + X_{\text{right}}) = \text{Var}(X_{\text{left}}) + \text{Var}(X_{\text{right}}) = 0.09 + 0.2211 = 0.3111 \][/tex]

Therefore, the mean and variance of the number of successful surgeries for both knees combined are:

Mean: [tex]\({1.57}\)[/tex]

Variance: [tex]\({0.3111}\)[/tex]

A salesperson obtained a systematic sample of size 2525 from a list of 500500 clients. To do​ so, he randomly selected a number from 1 to 2020​, obtaining the number 1313. He included in the sample the 1313th client on the list and every 2020th client thereafter. List the numbers that correspond to the 2525 clients selected.

Answers

Question

A salesperson obtained a systematic sample of size 25 from a list of 500 clients. To do​ so, he randomly selected a number from 1 to 20, obtaining the number 13. He included in the sample the 13th client on the list and every 20th client thereafter. List the numbers that correspond to the 25 clients selected.

Answer:

13, 33, 53, ...... 393

Step-by-step explanation:

The Question is making reference to arithmetic progression

Where the first term is 13

And the difference between each interval is 20 (i.e number of clients)

Using the following formula, well obtained the client in any position

Tn = a + (n - 1) d

Where Tn = nth term

a = T1 = 1st term = 13

n = number of terms = 1 to 25

d = common difference = 20

Calculating T2

T2 = 13 + (2 - 1) * 20

T2 = 13 + 20

T2 = 33

Calculating T3

T3 = 13 + (3 - 1) * 20

T3 = 53

.......

Calculating the 20th term

T3 = 13 + (20 - 1) * 20

T20 = 393

A recent survey of 1010 U.S. adults selected at random showed that 627 consider the occupation of firefighter to have very great prestige. Estimate the probability (to the nearest hundredth) that a U.S. adult selected at random thinks the occupation of firefighter has very great prestige.

Answers

Answer:

0.62 = 62% probability that a U.S. adult selected at random thinks the occupation of firefighter has very great prestige.

Step-by-step explanation:

A probability is the number of desired outcomes divided by the number of total outcomes.

Desired outcomes:

Adults who consider the occupation of firefighter to have very great prestige. So the number of desired outcomes is [tex]D = 627[/tex]

Total outcomes.

All adults sampled. So [tex]T = 1010[/tex]

Probability:

[tex]P = \frac{D}{T} = \frac{627}{1010} = 0.62[/tex]

0.62 = 62% probability that a U.S. adult selected at random thinks the occupation of firefighter has very great prestige.

An insurance company reports that 75% of its claims are settled within two months of being filed. In order to test that the percent is less than seventy-five, a state insurance commission randomly selects 35 claims and determines that 23 of the 35 were settled within two months.

a) Write out the hypotheses.

b) Calculate the test statistic.

c) Find the p-value.

d) Do we reject the null hypothesis? Explain.

e) What can you conclude based on this evidence

Answers

Answer:

An insurance company reports that 75% of its claims are settled within two months of being filed. In order to test that the percent is less than seventy-five, a state insurance commission randomly selects 35 claims and determines that 23 of the 35 were settled within two months.

a) Write out the hypotheses.

Fewer than 75% of claims settled within two months of filing.

b) Calculate the test statistic.

Test statistic = percent of claims settled in two months = 23/35 = 65.7%

c) Find the p-value.

we need to use the z-score with a table

=  

standard deviation = s = \sqrt{\frac{1}{N-1} \sum_{i=1}^N (x_i - \overline{x})^2}, =

√(1/34) [(0.657)(12) + (0.343)(23)] = √0.463911765 = 0.681

let 1 = "solved" and 0 = "unresolved"

thus our mean is 0.657

z = (0.75 - 0.657)/(0.681) - 0.137

p = 0.55172

d) Do we reject the null hypothesis? Explain.

Yes, because our p value is not below 0.05 and is not substantial to prove our null hypothesis

e) What can you conclude based on this evidence?

That further testing is needed.

A state insurance commission estimates that 13% of all motorists in its state areuninsured. Suppose this proportion is valid. Find the probability that in a randomsample of 50 motorists, at least 5 will be uninsured. You may assume that the normaldistribution applies.

Answers

Answer:

79.95% probability that in a randomsample of 50 motorists, at least 5 will be uninsured.

Step-by-step explanation:

We use the binomial approximation to the normal to solve this question.

Binomial probability distribution

Probability of exactly x sucesses on n repeated trials, with p probability.

Can be approximated to a normal distribution, using the expected value and the standard deviation.

The expected value of the binomial distribution is:

[tex]E(X) = np[/tex]

The standard deviation of the binomial distribution is:

[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]

Normal probability distribution

Problems of normally distributed samples can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

When we are approximating a binomial distribution to a normal one, we have that [tex]\mu = E(X)[/tex], [tex]\sigma = \sqrt{V(X)}[/tex].

In this problem, we have that:

[tex]n = 50, p = 0.13[/tex]

So

[tex]\mu = E(X) = np = 50*0.13 = 6.5[/tex]

[tex]\sigma = \sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{50*0.13*0.87} = 2.38[/tex]

Find the probability that in a randomsample of 50 motorists, at least 5 will be uninsured.

This is 1 subtracted by the pvalue of Z when X = 4. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{4 - 6.5}{2.38}[/tex]

[tex]Z = -0.84[/tex]

[tex]Z = -0.84[/tex] has a pvalue of 0.2005

1 - 0.2005 = 0.7995

79.95% probability that in a randomsample of 50 motorists, at least 5 will be uninsured.

Using the normal approximation to the binomial distribution, the probability that at least 5 out of 50 motorists will be uninsured when 13% of motorists are uninsured is approximately 74.22%.

First, we calculate the mean (μ) and the standard deviation (σ) of the number of uninsured motorists in a sample of 50. The mean number of uninsured motorists is μ = np, where n is the sample size and p is the probability of a motorist being uninsured. So, μ = 50 * 0.13 = 6.5.

The standard d eviation is σ = √(np(1-p)). Therefore, σ = √(50 * 0.13 * (1 - 0.13)) ≈ 2.31.

To find the probability of at least 5 uninsured motorists, we want P(X ≥ 5). We need to standardize this to the standard normal distribution to find the z-score. The z-score is z = (X - μ) / σ.

For X = 5, the z-score is z = (5 - 6.5) / 2.31 ≈ -0.65. We use the z-table or a calculator to find the probability corresponding to z = -0.65.

Since we want at least 5 uninsured, we find P(Z ≥ -0.65), which equals 1 - P(Z < -0.65). The value from the z-table for -0.65 is approximately 0.2578. Therefore, the probability we're looking for is 1 - 0.2578 = 0.7422, or 74.22%.

Use Green's Theorem to find the work done by the force F(x, y) = x(x + y) i + xy2 j in moving a particle from the origin along the x-axis to (6, 0), then along the line segment to (0, 6), and then back to the origin along the y-axis.

Answers

Final answer:

The question involves using Green's Theorem to calculate work done by a specific force field along a triangular path. Green's Theorem links the line integral around a closed curve to a double integral over the region it encloses. However, direct calculation of line integrals may be more applicable for this problem.

Explanation:

The question asks to use Green's Theorem to calculate the work done by a force F(x, y) = x(x + y) i + xy^2 j moving a particle along a specified path. Green's Theorem relates a line integral around a simple closed curve C, to a double integral over the plane region D bounded by C. It's expressed in the form ∑_C (M dx + N dy) = ∫∫_D (∂N/∂x - ∂M/∂y) dA where M and N are components of a vector field.

To use Green's Theorem, we identify M = x(x + y) and N = xy^2. Thus, ∂N/∂x = y^2 and ∂M/∂y = x. The path described (origin to (6,0), to (0,6), and back to origin) encloses a triangle, the area of which is easily integrated over. However, it is crucial to note that direct integration methods or alternative strategies may sometimes be more straightforward for such paths, especially when they do not form a typical closed curve as in standard Green's Theorem applications.

In the context of this problem, the key would be computing the line integrals directly due to the specific nature of the force field and the path involved. The use of Green's Theorem hints at setting up an integration over the area, but with the given vector field and triangular path, the execution would involve careful calculation of respective line integrals or assessing the area directly since the theorem simplifies to a calculation over the region enclosed by the path.

A company determines that its marginal​ cost, in​ dollars, for producing x units of a product is given by Upper C prime (x )equals4500 x Superscript negative 1.9​, where xgreater than or equals1.11. Suppose that it were possible for the company to make infinitely many units of this product. What would the total cost be?

Answers

Answer:

Total Cost = Fixed Cost as x --> ∞

Step-by-step explanation:

C'(x) = 4500 x⁻¹•⁹ where x ≥ 1

Marginal Cost = C'(x) = (dC/dx)

C(x) = ∫ (marginal cost) dx

C(x) = ∫ (4500 x⁻¹•⁹)

C(x) = (-5000 x⁻⁰•⁹) + k

where k = constant of integration or in economics term, K = Fixed Cost.

C(x) = [-5000/(x⁰•⁹)] + Fixed Cost

The company wants to make infinitely many units, that is, x --> ∞

C(x --> ∞) = [-5000/(∞⁰•⁹)] + Fixed Cost

(∞⁰•⁹) = ∞

C(x --> ∞) = [-5000/(∞)] + Fixed Cost

But mathematically, any number divide by infinity = 0;

(-5000/∞) = 0

C(x --> ∞) = 0 + Fixed Cost = Fixed Cost.

Total Cost of producing infinite number of units for this cost function is totally the Fixed Cost.

how many pounds of chamomile tea that costs 18.20 per pound must be mixed with 12lb of orange tea that costs 12.25 per pound to make a mixture that costs 14.63 per pound

Answers

8 pounds of chamomile tea must be mixed to make a mixture that costs 14.63 per pound.              

Step-by-step explanation:

We are given the following in the question:

Chamomile tea:

Unit cost = 18.20 per pound

Amount = x pounds

Total cost =

[tex]18.20\times x = 18.20x[/tex]

Orange tea:

Unit cost = 12.25 per pound

Amount = 12 pounds

Total cost =

[tex]12.25\times 12 = 147[/tex]

Total mixture:

Unit cost = 14.63 per pound

Amount = (12+x) pounds

Total cost =

[tex]14.63\times (12+x) = 175.56 + 14.63x[/tex]

We can write the equation that cost of mixture is equal to cost of chamomile tea and orange tea.

[tex]18.20x + 147 = 175.56 + 14.63x\\\Rightarrow 18.20x- 14.63x = 175.56-147\\\Rightarrow 3.57x = 28.56\\\Rightarrow x = 8[/tex]

Thus, 8 pounds of chamomile tea must be mixed to make a mixture that costs 14.63 per pound.

The proportion of high school seniors who are married is 0.02. Suppose we take a random sample of 300 high school seniors; a.) Find the mean and standard deviation of the sample count X who are married. b.) What is the probability that, in our sample of 300, we find that 8 of the seniors are married? c.) What is the probability that we find less than 4 of the seniors are married? d.) What is the probability that we find at least 1 of the seniors are married?

Answers

Answer:

a) Mean 6, standard deviation 2.42

b) 10.40% probability that, in our sample of 300, we find that 8 of the seniors are married.

c) 14.85% probability that we find less than 4 of the seniors are married.

d) 99.77% probability that we find at least 1 of the seniors are married

Step-by-step explanation:

For each high school senior, there are only two possible outcomes. Either they are married, or they are not. The probability of a high school senior being married is independent from other high school seniors. So we use the binomial probability distribution to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

The expected value of the binomial distribution is:

[tex]E(X) = np[/tex]

The standard deviation of the binomial distribution is:

[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]

In this problem, we have that:

[tex]n = 300, p = 0.02[/tex]

a.) Find the mean and standard deviation of the sample count X who are married.

Mean

[tex]E(X) = np = 300*0.02 = 6[/tex]

Standard deviation

[tex]\sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{300*0.02*0.98} = 2.42[/tex]

b.) What is the probability that, in our sample of 300, we find that 8 of the seniors are married?

This is P(X = 8).

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 8) = C_{300,8}.(0.02)^{8}.(0.98)^{292} = 0.1040[/tex]

10.40% probability that, in our sample of 300, we find that 8 of the seniors are married.

c.) What is the probability that we find less than 4 of the seniors are married?

[tex]P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)[/tex]

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 0) = C_{300,0}.(0.02)^{0}.(0.98)^{300} = 0.0023[/tex]

[tex]P(X = 1) = C_{300,1}.(0.02)^{1}.(0.98)^{299} = 0.0143[/tex]

[tex]P(X = 2) = C_{300,2}.(0.02)^{2}.(0.98)^{298} = 0.0436[/tex]

[tex]P(X = 3) = C_{300,3}.(0.02)^{3}.(0.98)^{297} = 0.0883[/tex]

[tex]P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 0.0023 + 0.0143 + 0.0436 + 0.0883 = 0.1485[/tex]

14.85% probability that we find less than 4 of the seniors are married.

d.) What is the probability that we find at least 1 of the seniors are married?

Either no seniors are married, or at least 1 one is. The sum of the probabilities of these events is decimal 1. So

[tex]P(X = 0) + P(X \geq 1) = 1[/tex]

From c), we have that [tex]P(X = 0) = 0.0023[/tex]. So

[tex]0.0023 + P(X \geq 1) = 1[/tex]

[tex]P(X \geq 1) = 0.9977[/tex]

99.77% probability that we find at least 1 of the seniors are married

Final answer:

In this problem, the mean and standard deviation of a binomial distribution, with probability of success 0.02 and sample size 300, are found. Subsequently, the probabilities that 8, less than 4, and at least 1 of the seniors are married are computed using the binomial formula.

Explanation:

This problem deals with the Binomial distributions in statistics. Since we know the proportion of high school seniors who are married is 0.02, and the sample size is 300, we can use these values to calculate the mean and the standard deviation.

a.) The mean (mean = np) of the sample count X who are married is 0.02*300=6, and the standard deviation would be sqrt(n*p*(1-p)) = sqrt(300*0.02*0.98) = √5.88≈2.43.

b.) The probability that, in our sample of 300, we find that 8 of the seniors are married is given by the binomial formula P(X=k) = C(n,k)(p^k)(1-p)^(n-k). Plugging n=300, k=8, p=0.02 into the formula, we get the desired probability.

c.) The probability that we find less than 4 of the seniors are married is sum of P(X=k) from k=0 to 3. This could be computed using the aforementioned binomial formula. Remember, you're summing the probabilities for each k.

d.) The probability that we find at least 1 of the seniors are married can be found by subtracting the probability that none of the seniors are married from 1 (i.e., P(X >=1) = 1 - P(X=0)).

Learn more about Binomial Distribution here:

https://brainly.com/question/39749902

#SPJ11

One mole of nickel (6 1023 atoms) has a mass of 59 grams, and its density is 8.9 grams per cubic centimeter, so the center-to-center distance between atoms is 2.23 10-10 m. You have a long thin bar of nickel, 2.1 m long, with a square cross section, 0.08 cm on a side. You hang the rod vertically and attach a 69 kg mass to the bottom, and you observe that the bar becomes 1.11 cm longer. From these measurements, it is possible to determine the stiffness of one interatomic bond in nickel.

Answers

Final answer:

Nickel does not crystallize in a simple cubic structure because the hypothetical density of a simple cubic arrangement is 2.23 g/cm³, significantly less than the actual density of nickel, which is 8.90 g/cm³.

Explanation:

To determine if nickel crystallizes in a simple cubic structure, we can compare the calculated density of a simple cubic arrangement of nickel atoms to the actual density of nickel. Given the edge length of the unit cell for nickel is 0.3524 nm (3.524 x 10⁻⁸ cm) and knowing the properties of a simple cubic lattice, the volume of a single cubic unit cell would be V = a³ = (3.524 x 10⁻⁸ cm)³ = 4.376 x 10⁻²³ cm³. With the mass of a single nickel atom (58.693 g/mol divided by Avogadro's number, 6.022 x 10²³ atoms/mol), if the nickel crystallized in a simple cubic structure, the predicted density would be:

density = mass/volume = (9.746 x 10⁻²³ g) / (4.376 x 10⁻²³ cm³) = 2.23 g/cm³. However, because the actual density of nickel is 8.90 g/cm³, we can conclude that nickel does not form a simple cubic structure.

According to a 2013 study by the Pew Research Center, 15% of adults in the United States do not use the Internet (Pew Research Center website, December, 15, 2014). Suppose that 10 adults in the United States are selected randomly.

a. Is the selection of the 10 adults a binomial experiment? Explain.

b. What is the probability that none of the adults use the Internet (to 4 decimals)?

c. What is the probability that 3 of the adults use the Internet (to 4 decimals)? If you calculate the binomial probabilities manually, make sure to carry at least 4 decimal digits in your calculations.

d. What is the probability that at least 1 of the adults uses the Internet (to 4 decimals)?

Answers

Answer:

a) For this case we can use the binomial model since we assume independent events and the same probability for each trial is the same p =0.15

b) [tex]P(X=0)=(10C0)(0.15)^0 (1-0.15)^{10-0}=0.1969[/tex]

c) [tex]P(X=3)=(10C3)(0.15)^3 (1-0.15)^{10-3}=0.1298[/tex]

d) [tex] P(X \geq 1)= 1-P(X <1) = 1-P(X=0)[/tex]

And using the result from part a we got:

[tex] P(X \geq 1)= 1-P(X <1) = 1-P(X=0)= 1-0.1969 =0.8031[/tex]

Step-by-step explanation:

Previous concepts

The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".  

Let X the random variable of interest, on this case we now that:  

[tex]X \sim Binom(n p)[/tex]  

The probability mass function for the Binomial distribution is given as:  

[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]  

Where (nCx) means combinatory and it's given by this formula:  

[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]  

Solution to the problem

Part a

For this case we can use the binomial model since we assume independent events and the same probability for each trial is the same p =0.15

Part b

For this case we want this probability:

[tex] P(X=0)[/tex]

And replacing we got:

[tex]P(X=0)=(10C0)(0.15)^0 (1-0.15)^{10-0}=0.1969[/tex]

Part c

For this case we want this probability:

[tex] P(X=3)[/tex]

And replacing we got:

[tex]P(X=3)=(10C3)(0.15)^3 (1-0.15)^{10-3}=0.1298[/tex]

Part d

For this cae we want thi probability:

[tex] P(X \geq 1)[/tex]

And we can use the complment rule and we got:

[tex] P(X \geq 1)= 1-P(X <1) = 1-P(X=0)[/tex]

And using the result from part a we got:

[tex] P(X \geq 1)= 1-P(X <1) = 1-P(X=0)= 1-0.1969 =0.8031[/tex]

A random sample of 1800 NAU students in Flagstaff found 1134 NAU students who love their MAT114 class. Find a 95% confidence interval for the true percent of NAU students in Flagstaff who love their MAT114 class. Express your results to the nearest hundredth of a percent. .

Answers

Answer:

95% confidence interval for the true percent of NAU students in Flagstaff who love their MAT114 class is (60.77% , 65.23%)

Step-by-step explanation:

Among 1800 NAU students, 1134 students love their class. We have to find the 95% confidence interval of students who love their class.

We will use the concept of confidence interval of population proportion for this problem.

The proportion of students who love the class = p = [tex]\frac{1134}{1800}=0.63[/tex]

Proportion of students who do not love the class = q = 1 - p = 1 - 0.63 = 0.37

Total number of students in the sample = n = 1800

Confidence Level = 95%

The z values associated with this confidence level(as seen from z table) = 1.96

The formula to calculate the confidence interval for population proportion is:

[tex](p-z\times\sqrt{\frac{p \times q}{n}},p+z\times\sqrt{\frac{p \times q}{n}})[/tex]

Using the values in this expression gives:

[tex](0.63-1.96 \times \sqrt{\frac{0.63 \times 0.37}{1800}}, 0.63+1.96 \times \sqrt{\frac{0.63 \times 0.37}{1800}})\\\\ =(0.6077,0.6523)[/tex]

Thus, 95% confidence interval for the true percent of NAU students in Flagstaff who love their MAT114 class is (0.6077 ,0.6523) or (60.77% , 65.23%

ALGEBRA 2 HELP!!!
Find all the linear factors
f(x)=[tex]3x^{4}-7x^{3}-10x^{2} +28x-8[/tex]

Answers

Answer:

x + 2

3x − 1

x − 2

Step-by-step explanation:

The order of the polynomial is 4, so there are 4 roots.

Use rational root theorem to find possible rational roots.

±1, ±2, ±4, ±8, ±1/3, ±2/3, ±4/3, ±8/3

By trial and error, -2, ⅓, and 2 are all roots.  The fourth root can't be imaginary (complex roots come in pairs), so one of the real roots must be repeated.

Answer: the factors are (x - 2)(x + 2)(3x - 1)

Step-by-step explanation:

The given polynomial function is expressed as

f(x) = 3x⁴ - 7x³ - 10x² + 28x - 8

The first step is to test for any value of x that satisfies the polynomial when

3x⁴ - 7x³ - 10x² + 28x - 8 = 0

Assuming x = 2, then

3(2)⁴ - 7(2)³ - 10(2)² + 28 × 2 - 8 = 0

48 - 56 - 40 + 56 - 8 = 0

0 = 0

It means that x - 2 is a factor.

To determine the other factors, we would apply the long division method. The steps are shown in the attached photo. Looking at the photo, we would factorize the quadratic equation which is expressed as

3x² + 5x - 2 = 0

3x² + 6x - x - 2 = 0

3x(x + 2) - 1(x + 2)

(3x - 1)(x + 2) = 0

The altitude of a triangle is increasing at a rate of 2.5 2.5 centimeters/minute while the area of the triangle is increasing at a rate of 2 2 square centimeters/minute. At what rate is the base of the triangle changing when the altitude is 7.5 7.5 centimeters and the area is 96 96 square centimeters

Answers

Answer:

The base of the triangle is decreasing at a rate 8 centimeter per minute.      

Step-by-step explanation:

We are given the following in the question:

[tex]\dfrac{dh}{dt} = 2.5\text{ cm per minute}\\\\\dfrac{dA}{dt} = 2\text{ square cm per minute}[/tex]

Instant height = 7.5 cm

Instant area = 96 square centimeters

Area of triangle =

[tex]A=\dfrac{1}{2}\times b\times h[/tex]

where b is the base and h is the height of the triangle.

[tex]96 = \dfrac{1}{2}\times b \times 7.5\\\\b = \dfrac{96\times 2}{7.5} = 25.6[/tex]

Rate of change of area of triangle =

[tex]\dfrac{dA}{dt} = \dfrac{d}{dt}(\dfrac{bh}{2})\\\\\dfrac{dA}{dt} =\dfrac{1}{2}(b\dfrac{dh}{dt} + h\dfrac{db}{dt})[/tex]

Putting values, we get,

[tex]2 = \dfrac{1}{2}(7.5\dfrac{db}{dt}+25.6(2.5))\\\\4 = 7.5\dfrac{db}{dt} + 64\\\\-60 = 7.5\dfrac{db}{dt} \\\\\Rightarrow \dfrac{db}{dt} = \dfrac{-60}{7.5} = -8[/tex]

Thus, the base of the triangle is decreasing at a rate 8 centimeter per minute.

Give (in percents) the two marginal distributions, for marital status and for income. Do each of your two sets of percents add to exactly 100%? If not, why not?

Answers

Answer:

Answer is attached

Step-by-step explanation:

6.11

Marginal Distribution of Marital Status

Single 4.1%

Married 93.9%

Divorced 1.5%

Widowed .5%

Marginal Distribution of Job Grade

Job Grade 1 11.6%

Job Grade 2 51.5%

Job Grade 3 30.2%

Job Grade 4 6.7%

Each of the marginal distributions sum up to exactly 100%. Depending on how one rounds the percentages, it is possible that the results will not be exactly 100%.

For this problem, carry at least four digits after the decimal in your calculations. Answers may vary slightly due to rounding.

Santa Fe black-on-white is a type of pottery commonly found at archaeological excavations at a certain monument. At one excavation site a sample of 572 potsherds was found, of which 363 were identified as Santa Fe black-on-white.

(a) Let p represent the proportion of Santa Fe black-on-white potsherds at the excavation site. Find a point estimate for p. (Round your answer to four decimal places.)


(b) Find a 95% confidence interval for p. (Round your answers to three decimal places.)

lower limit
upper limit

Answers

Answer:

a) p = 0.6346

b) 95% confidence interval

Lower limit: 0.5951

Upper limit: 0.6741      

Step-by-step explanation:

We are given the following in the question:

Sample size, n = 572

Number of Santa Fe black-on-whitepots , x = 363

a) proportion of Santa Fe black-on-white potsherds

[tex]\hat{p} = \dfrac{x}{n} = \dfrac{363}{572} = 0.6346[/tex]

b) 95% confidence interval

[tex]\hat{p}\pm z_{stat}\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}[/tex]

[tex]z_{critical}\text{ at}~\alpha_{0.05} = 1.96[/tex]

Putting the values, we get:

[tex]0.6346\pm 1.96(\sqrt{\frac{0.6346(1-0.6346)}{572}}) = 0.6346\pm  0.0395\\\\=(0.5951,0.6741)[/tex]

Lower limit: 0.5951

Upper limit: 0.6741

Following Exercise 3.5.9, let p1, . . . , pk be a pairwise relatively prime set of naturals, each greater than 1. Let X be the set {0, 1, . . . , p1 −1}× . . . ×{0, 1, . . . , pk −1}. Define a function f from {0, 1, . . . , p1p2 . . . pk − 1} to X by the rule f(x) = x%p1, . . . , x%pk. Prove that f is a subject

Answers

Answer: see the pictures attached

Step-by-step explanation:

Please help me find the answer.

Answers

Answer:

b/a = c/b

if a = b, then b = c

Answer: the second one (b/a = c/b) and the last one (if a = b then b = c) are the only ones that are true

Step-by-step explanation:

A survey among US adults of their favorite toppings on a cheese pizza reported that 43% favored pepperoni, 14% favored mushrooms, and 6% favored both pepperoni and mushrooms. What is the probability that a random adult favored pepperoni or mushrooms on their cheese pizza? Provide your answer as a whole number in the box below, i.e., .32 is 32% so you would enter 32. Round as needed.

Answers

Answer:

51% of US adults favored pepperoni or mushrooms on their cheese pizza.                                                    

Step-by-step explanation:

We are given the following in the question:

Percentage of US adults that favored pepperoni = 43%

[tex]P(P) = 0.43[/tex]

Percentage of US adults that favored mushroom = 14%

[tex]P(M) = 0.14[/tex]

Percentage of US adults that favored both pepperoni and mushroom = 6%

[tex]P(M\cap P) = 0.06[/tex]

We have to evaluate the probability that a random adult favored pepperoni or mushrooms on their cheese pizza.

Thus, we have to evaluate:

[tex]P(M\cup P) = P(M) + P(P) - P(M\cap P)\\P(M\cup P) = 0.43 + 0.14 - 0.06\\P(M\cup P) = 0.51 = 51\%[/tex]

Thus, 51% of US adults favored pepperoni or mushrooms on their cheese pizza.

The number of views of a page on a Web site follows aPoisson distribution with a mean of 1.5 per minute.a. What is the probability of no views in a minute?b. What is the probability of two or fewer views in10 minutes?c. Does the answer to the previous part depend on whetherthe 10-minute period is an uninterrupted interval? Explain.d. Determine the length of a time interval such that the probabilityof no views in an interval of this length is 0.001.

Answers

Answer:

a. P (X=0) = 0.223

b. P(X≤2) = 3.93 * 10^-5

C. No

D. t=4.6 miutes

Step-by-step explanation:

a. P (X=0) = [tex]e^{-1.5}[/tex] = 0.223

b. P(X≤2) =[tex]e^{1.5 * 10} (1 + 1.5*10 + \frac{1.5^{2} * 10^{2} }{2} )[/tex]

   = 3.93 * 10^-5

C. No, the answer to the previous part does not depend on whether the 10-minute period is an uninterrupted interval, it only depend on the uniformity of the density of views per minute ad independency of the disjoint time intervals.

D. P (X=0) =0.001

  [tex]e^{-1.5t} = 0.001\\\\-1.5t=ln(0.001)\\\\t =\frac{-6.9}{-1.5}[/tex]

t=4.6 miutes

Final answer:

The Poisson distribution is used to calculate the probabilities of certain counts of discrete events occurring in a given time interval. By using the average rate of occurrence, we can determine probabilities relevant to web traffic, call intervals, or urgent care visits.

Explanation:

The Poisson distribution is used to model the number of events that occur in a fixed interval of time or space if these events happen with a known average rate and independently of the time since the last event. Various scenarios using Poisson distributions involve understanding the probability of a certain number of events occurring over a specified period.

Probability of no views in one minute: This can be computed using the formula for the Poisson distribution where the expected mean number of events (λ) is 1.5. The probability P(X=0) is given by (e^-1.5 * 1.5^0) / 0!.Probability of two or fewer views in 10 minutes: Given that events occur at a rate of 1.5 per minute, over 10 minutes the average rate would be 15. Calculate the cumulative probability for 0, 1, and 2 events and sum them up.Dependence of the interval: The answer to part b does not depend on the interval being uninterrupted, as the Poisson model assumes independence of intervals.Length of interval for a 0.001 probability of no views: Find the interval length 't' such that P(X=0) = 0.001 using the Poisson formula and solving for 't'.
Other Questions
what is the answer to this-2(4x-3)=10 Wright is Emmett tills uncle Your younger sister has asked you for help because she feels she cannot remember class material well enough to get good grades on her tests. Provide three specific pieces of advice that she should consider, making sure that your advice is based on psychological science. If you were called away during the electrophoresis procedure and were not able to monitor your electrophoresis run, what do you think would happen if the electricity were to remain running in your absence What are the three types of selection pressures that could act and eliminate organisms with undesirable traits The __________ stage of the crisp-dm process focuses on understanding the objectives and requirements of a project. To find the product of 42.12 and 10, move the decimal point in 42.12 __ places to the right because 10 has __ zeros. You are renting a limousine that charges certain rates to visit each of the following cities. You need to visit each city once and you need to start in Athens and end in Athens. Use the "Brute Force" Algorithm to find the cheapest route to visit each city and return home again to Athens. A. B. C. D. Carl Rogers believes that most people consider themselves worthless and unlovable. Reinhold Niebuhr, on the other hand, claims that most people suffer from excessive self-love and self-pride. What do you consider to be the strengths and weaknesses of each of these contrasting positions? Use psychological research findings to support your arguments. what is the function of the pancreas?A.It secretes a liquid called bile, which helps to digest fatsB.It produces a blend of enzymes to break down nutrients for digestion.C.It stores a digestive juice produced by the salivary glands in your mouthD.It filters water and waste materials from the blood. A rational number between 13/15 and 14/15 Cory enters into a contract with Diane to act as her personal sports trainer. If they later dispute the meaning, and the contract contains unclear terms, the rules of contract interpretation will give effect to:_________ Anne is studying for a history exam covering the French Revolution that will consist of five essay ques- tions selected at random from a list of ten the professor has handed out to the class in advance. Not exactly a Napoleon buff, Anne would like to avoid researching all ten questions but still be reasonably assured of getting a fairly good grade. Specifically, she wants to have at least an 85% chance of getting at least four of the five ques- tions right. Will it be sufficient if she studies eight of the ten questions? 5 This vocation, fair and true, I stumbled on one day,6and the verdict was that Id pursueeachfact that comes my way.Which type of figurative language does the poet use in these lines?A hyperboleB onomatopoeiaC personificationD similie why was life hard and unfair for african americans living in the north? How many moles of NO gas are formed from 2.25 moles of nitrogen? Helppp assaaappppp!! At a local community college, five statistics classes are randomly selected out of 20 and all of the students from each class are interviewed. Identify the type of sampling used in this example. When an electron moves from a higher energy level in an atom to a lower energy level, a. a redshifted spectrum is emitted. b. a photon is absorbed. c. a photon is emitted. d. a continuous spectrum is emitted. A super ball is dropped from a height of 100 feet. Each time it bounces, it rebounds half the distance it falls. How many feet will the ball have traveled when it hits the ground for the fourth time