Answer: noble gas
Explanation:
Chemical bond is formed between atoms by losing gaining, or sharing electrons.
When the number of electrons and protons differ, it leads to the formation of ionic species. When an atom gains electrons, it will lead to the formation of negatively charged ion known as anion and when an atom looses electrons, it will lead to the formation of positively charged ion known as cation.
The atoms lose , gain or share electrons to achieve nearest noble gas configuration or to get stable.
Example : Sodium (Na) with atomic number 11 loses one electron to form [tex]Na^+[/tex] to get electronic configuration of neon with 1 0 electrons.
What is the concentration of NOBr, if the concentration of NO was measured to be 0.89 M, Br2 was measured to be 0.562 M, and the equilibrium constant, K, is 1.3 × 10-2?
Answer:
0.076M = [NOBr]
Explanation:
For the reaction:
2NO + Br₂ ⇄ 2 NOBr
The equilibirum constant, K, is defined as:
[tex]K = \frac{[NOBr]^2}{[NO]^2[Br_2]}[/tex](1)
Replacing the concentrations and the equilibrium value in (1):
[tex]1.3x10^{-2} = \frac{[NOBr]^2}{[0.89]^2[0.562]}[/tex]
5.79x10⁻³ = [NOBr]²
0.076M = [NOBr]
I hope it helps!
Which step in the process of protein synthesis occurs directly after mrna is assembled?
Answer:
Translation
Explanation:
Protein synthesis is the process of production of proteins in in the cells of living organisms. Transcription and Translation are the two main steps in the protein synthesis. The first step is completed in nucleus where mRNA is made using DNA as template. The second step i.e. translation occurs in the cytoplasm with the help of Ribosomes. The mRNA synthesized during transcription is pre-mRNA. After the processing it is assembled as mature RNA. After getting assembled the second step of protein synthesis viz. Translation begins in the cytoplasm.
You are troubleshooting an older laptop with a thin-film-transistor liquid-crystal display (LCD TFT) screen that is very dim and flickering. You have determined that the LCD graphics adapter is installed and is functioning properly. What is most likely the problem?
Answer:
the inverter has failed
Explanation:
Based on the information provided within the question it can be said that the most likely problem with the LCD screen in this scenario is that the inverter has failed. The inverter is a component used in LCD displays which prepares the power connection so that is provides the correct power to the screens back-light lamp. If there is a problem with the inverter then it would fail to provide enough power which will cause the light and screen to flicker. Such as in this scenario.
How much HCl is produced from the reaction of an excess of HSbCl4 with 3 moles H2S in the following reaction? HSbCl4 + H2S → Sb2S3 + HCl (Remember to balance the equation.)
Answer:
We will produce 8.0 moles of HCl , this is 291.7 grams HCl
Explanation:
Step 1: Data given
Number moles of H2S = 3.0 moles
Step 2: The balanced equation
2HSbCl4 + 3H2S → Sb2S3 + 8HCl
Step 3: Calculate moles HCl
For 2 moles HSbCl4 we need 3 moles H2S to produce 1mol Sb2S3 and 8 moles HCl
For 3.0 moles H2S we'll have 8.0 moles HCl
Step 4: Calculate mass HCl
Mass HCl = moles HCl * molar mass HCl
Mass HCl = 8.0 moles * 36.46 g/mol
Mass HCl = 291.7 grams
We will produce 8.0 moles of HCl , this is 291.7 grams HCl
From the balanced equation, it is determined that 2 moles of HCl are produced from 1 mole of HSbCl4. Therefore, 6 moles of HCl will be produced from the reaction of an excess of HSbCl4 with 3 moles of H2S.
Explanation:The balanced equation for the reaction is:
HSbCl4 + H2S → Sb2S3 + 2HCl
The mole ratio between HSbCl4 and HCl is 1:2, which means that for every 1 mole of HSbCl4, 2 moles of HCl are produced.
Since there is an excess of HSbCl4, we can assume that all 3 moles of H2S will react.
Therefore, the number of moles of HCl produced will be:
(3 moles H2S) x (2 moles HCl/1 mole HSbCl4) = 6 moles HCl
Suppose paper pulp mills are permitted to emit harmful pollutants, free of charge, into the air. How will the price and output of paper in a competitive market compare with their values under conditions of ideal economic efficiency
Answer:
The price will be too low, and the output will be too large.
Explanation: