At equilibrium, the concentrations in this system were found to be [ N 2 ] = [ O 2 ] = 0.200 M and [ NO ] = 0.400 M . N 2 ( g ) + O 2 ( g ) − ⇀ ↽ − 2 NO ( g ) If more NO is added, bringing its concentration to 0.700 M, what will the final concentration of NO be after equilibrium is re‑established?

Answers

Answer 1

Answer: The equilibrium concentration of NO after it is re-established is 0.55 M

Explanation:

For the given chemical equation:

[tex]N_2(g)+O_(g)\rightleftharpoons 2NO(g)[/tex]

The expression of [tex]K_{eq}[/tex] for above equation follows:

[tex]K_{eq}=\frac{[NO]^2}{[N_2][O_2]}[/tex]     .....(1)

We are given:

[tex][NO]_{eq}=0.400M[/tex]

[tex][N_2]_{eq}=0.200M[/tex]

[tex][O_2]_{eq}=0.200M[/tex]

Putting values in expression 1, we get:

[tex]K_{eq}=\frac{(0.400)^2}{0.200\times 0.200}\\\\K_{eq}=4[/tex]

Now, the concentration of NO is added and is made to 0.700 M

Any change in the equilibrium is studied on the basis of Le-Chatelier's principle. This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.

The equilibrium will shift in backward direction.

                           [tex]N_2(g)+O_(g)\rightleftharpoons 2NO(g)[/tex]

Initial:               0.200    0.200        0.700

At eqllm:      0.200+x   0.200+x     0.700-2x

Putting values in expression 1, we get:

[tex]4=\frac{(0.700-2x)^2}{(0.200+x)\times (0.200+x)}\\\\x=0.075[/tex]

So, equilibrium concentration of NO after it is re-established = (0.700 - 2x) = [0.700 - 2(0.075)] = 0.55 M

Hence, the equilibrium concentration of NO after it is re-established is 0.55 M


Related Questions

t physiological pH, the carboxylic acid group of an amino acid will be ________, while the amino group will be ________, yielding the zwitterion form.

Answers

Answer:

At physiological pH,the carboxylic acid group of an amino acid will be deprotonated while the amino group will be protonated,yielding the zwitter ion form.

Explanation:

Deprotonated means removal of protons in an acid base reaction and protonated means addition of protons in an acid base reaction.

Both protonated and de protonated reaction takes place in catalytic acid bade reaction by changing either it's mass or it's charge.

During formation of zwitter ion, the carboxylic acid will be deprotonated by donating the H+ ion while the amino acid is protonated by taking the H+ ion.

R-CH-COOH                               R-CH-COO-

   I                                ⇒                 I

  NH₂                                              NH₃               (Zwitter ion)

Final answer:

At physiological pH, the carboxylic acid group of an amino acid will be negatively charged, while the amino group will be positively charged, yielding the zwitterion form.

Explanation:

Amino acids can exist as zwitterions at physiological pH. The carboxylic acid group of an amino acid will be negatively charged as a carboxylate ion (-COO-) at physiological pH. On the other hand, the amino group of an amino acid will be positively charged as an ammonium ion (-NH3+) at physiological pH. This combination of positive and negative charges gives rise to the zwitterion form of an amino acid.

A certain metal M forms a soluble sulfate salt MSO, Suppose the left half cell of a galvanic cell apparatus is filled with a 3.00 M solution of MSO, and the ight half cell with a 30.0 mM solution of the same substance. Electrodes made of M are dipped into both solutions and a voltmeter is connected between them. The temperature of the apparatus is held constant at 35.0 °C lf right 410 Which electrode will be positive? What voltage will the voltmeter show? Assume its positive lead is connected to the positive electrode. Be sure your answer has a unit symbol, if necessary, and round it to 2 significant digits.

Answers

Explanation:

It is known that for high concentration of [tex]M^{2+}[/tex], reduction will take place. As, cathode has a positive charge and it will be placed on left hand side.

Now, [tex]E^{o}_{cell}[/tex] = 0 and the general reaction equation is as follows.

         [tex]M^{2+} + M \rightarrow M + M^{2+}[/tex]

                3.00 M        n = 2       30 mM

         E = [tex]0 - \frac{0.0591}{2} log \frac{50 \times 10^{-3}}{1}[/tex]

            = [tex]-\frac{0.0591}{2} log (5 \times 10^{-2})[/tex]

            = 0.038 V

Therefore, we can conclude that voltage shown by the voltmeter is 0.038 V.

The formation constant* of [M(CN) 4 ]2− is 7.70 × 10 16 , where M is a generic metal. A 0.150 mole quantity of M(NO3)2 is added to a liter of 0.820 M NaCN solution. What is the concentration of M2+ ions at equilibrium?

Answers

Final answer:

The question involves calculation of equilibrium concentrations in a complex formation reaction in a solution, where the reaction is between a metal ion M²⁺ and cyanide ions CN⁻ to form a complex [M(CN)4]²⁻. The stated formation constant for the reaction allows formulating an equation for calculating the equilibrium concentration of M²⁺.

Explanation:

To determine the concentration of M²⁺ ions at equilibrium, we need to consider the process of complex formation here, which is M²⁺ + 4CN⁻  → [M(CN)4]²⁻. The formation constant for this reaction is given as 7.7 x 10¹⁶. Given a 0.150 mole quantity of M(NO3)2 is added to a liter of 0.820 M NaCN solution, initially we will have [M²⁺] = 0.150 M and [CN⁻] = 0.820 M.

As the reaction proceeds to equilibrium, [M²⁺] drops by x amount reacting with 4x amount of [CN⁻]. At equilibrium, [M²⁺] = 0.150 - x, [CN-] = 0.820 - 4x and [M(CN)4]²⁻ = x. Applying the formation constant: 7.7 x 10¹⁶ = [M(CN)4]²⁻ / ([M²⁺][CN-]⁴) = x / (0.150 - x)(0.820 - 4x)⁴

This is a difficult equation to solve directly, but if we make the assumption that x, which relates to the equilibrium concentration of [M²⁺], is much less than initial concentrations of M²⁺ and CN⁻, this simplifies the equation and allows determination of the equilibrium concentration of M²⁺.

Learn more about [M(CN)4]2- Complex Formation here:

https://brainly.com/question/32237545

#SPJ12

Final answer:

To find the concentration of M2+ ions at equilibrium, use the formation constant and initial concentrations of M(NO3)2 and NaCN.

Explanation:

The concentration of M2+ ions at equilibrium can be determined using the formation constant and the initial concentrations of M(NO3)2 and NaCN. First, calculate the initial concentration of M2+ ions by multiplying the concentration of M(NO3)2 (0.150 M) by its stoichiometric coefficient (2). Then, use the formation constant (7.70 × 10^16) to calculate the concentration of [M(CN)4]2- ions at equilibrium. Since the stoichiometric coefficient of M2+ ions is also 1, the concentration of M2+ ions at equilibrium will be equal to the concentration of [M(CN)4]2- ions.

Learn more about Equilibrium Constant here:

https://brainly.com/question/32442283

#SPJ2

In a coffee-cup calorimeter experiment, 10.00 g of a soluble ionic compound was added to the calorimeter containing 75.0 g H2O initially at 23.2°C. The temperature of the water increased to 31.8°C. What was the change in enthalpy for the dissolution of the compound? Give your answer in units of joules per gram of compound. Assume that the specific heat of the solution is the same as that of pure water, 4.18 J ⁄ (g ⋅ °C).

Answers

Final answer:

The change in enthalpy for the dissolution of the compound is 344.11 J/g.

Explanation:

In a coffee-cup calorimeter experiment, the change in enthalpy for the dissolution of a compound can be determined using the equation q = mCΔT, where q is the amount of heat absorbed or released, m is the mass of the compound, C is the specific heat of the solution, and ΔT is the change in temperature. Given that the initial temperature of the water is 23.2°C and the final temperature is 31.8°C, the change in temperature is ΔT = 31.8°C - 23.2°C = 8.6°C.

Since 10.00 g of the compound was added to 75.0 g of water, the total mass of the solution is 75.0 g + 10.00 g = 85.0 g.

Using the equation q = mCΔT, where C is the specific heat of water (4.18 J/(g·°C)), the amount of heat involved in the dissolution can be calculated as q = (85.0 g)(4.18 J/(g·°C))(8.6°C) = 3,441.14 J.

The change in enthalpy for the dissolution of the compound is thus 3,441.14 J/10.00 g = 344.11 J/g of the compound.

Determine the rate constant for each of the following fi rst-order reactions, in each case expressed for the rate of loss of A: (a) A S B, given that the concentration of A decreases to one-half its initial value in 1000. s; (b) A S B, given that the concentration of A decreases from 0.67 molL1 to 0.53 molL1 in 25 s; (c) 2 A S B C, given that [A]0 0.153 molL1 and that after 115 s the concentration of B rises to 0.034 molL1

Answers

Explanation:

The integrated first law is given by :

[tex][A]=[A]_o\times e^{-k\times t}[/tex]

Where:

[tex][A]_o[/tex] = initial concentration of reactant

[A] = concentration of reactant after t time

k = rate constant

a)

[tex][A_o]=x[/tex]

[tex][A]=\frac{x}{2}[/tex]

t = 1000 s

[tex]\frac{x}{2}=x\times e^{-k\times 1000 s}[/tex]

Solving for k:

[tex]k=0.06934 s^{-1}[/tex]

The rate constant for this reaction is [tex]0.06934 s^{-1}[/tex].

b)

[tex][A_o]=0.67 mol/L[/tex]

[tex][A]=0.53 mol/L[/tex]

t = 25 s

[tex]0.53 mol/L=0.67 mol/L\times e^{-k\times 25s}[/tex]

Solving for k:

[tex]k=0.009376 s^{-1}[/tex]

The rate constant for this reaction is [tex]0.009376 s^{-1}[/tex].

c) 2 A → B +C

[tex][A_o]=0.153 mol/L[/tex]

[tex][A]=?[/tex]

[tex][B]=0.034 mol/L[/tex]

According to reaction, 1 mole of B is obtained from 2 moles of A.

Then 0.034 mole of B will be obtained from:

[tex]\frac{2}{1}\times 0.034 mol= 0.068 mol[/tex] of A

So, the concentration left after 115 seconds:

[tex][A]=0.153 mol/L-0.068 mol/L=0.085 mol/L[/tex]

t = 115 s

[tex]0.085mol/L=0.53 mol/L\times e^{-k\times 115 s}[/tex]

Solving for k:

[tex]k=0.01592 s^{-1}[/tex]

The rate constant for this reaction is [tex]0.01592 s^{-1}[/tex].

When a aqueous solution of a certain acid is prepared, the acid is dissociated. Calculate the acid dissociation constant of the acid. Round your answer to significant digits.

Answers

[tex]K_a[/tex] = [tex]\dfrac{[H^{+}] [A^{-}]}{[HA]}[/tex]

Explanation:

When an aqueous solution of a certain acid is prepared it is dissociated is as follows-

        [tex]{\displaystyle {\ce {HA[/tex]  ⇄  [tex]{H^+}+{A^{-}}} }}[/tex]

Here HA is a protonic acid such as acetic acid, [tex]CH_3COOH[/tex]

The double arrow signifies that it is an equilibrium process, which means the dissociation and recombination of the acid occur simultaneously.The acid dissociation constant can be given by -

        [tex]K_a[/tex] = [tex]\dfrac{[H^{+}] [A^{-}]}{[HA]}[/tex]

The reaction is can also be represented by Bronsted and lowry -

         [tex]\\{\displaystyle {\ce {{HA}+ H_2O}[/tex] ⇄  [tex][H_3O^+] [A^-][/tex]

Then the dissociation constant will be

        [tex]K_a[/tex] = [tex]\dfrac{[H_3O^{+}] [A^{-}]}{[HA]}[/tex]

Here, [tex]K_a[/tex] is the dissociation constant of an acid.

Answer:

Explanation:

To calculate the acid dissociation constant (Ka) of the acid, we need to know the concentration of the acid and the concentration of the conjugate base at equilibrium, as well as the concentration of H3O+ or OH- ions in the solution. The general equation for the dissociation of a weak acid, HA, is:

HA + H2O ⇌ H3O+ + A-

The acid dissociation constant can be written as:

Ka = [H3O+][A-]/[HA]

We can assume that the initial concentration of the acid is equal to the concentration of HA at equilibrium, since the acid is completely dissociated in solution. Therefore, we can write the equilibrium concentration of HA as [HA]0 - [H3O+], where [HA]0 is the initial concentration of the acid.

We are not given the values of [HA], [H3O+], or [A-], but we can use the pH of the solution to calculate the concentration of H3O+:

pH = -log[H3O+]

Solving for [H3O+], we get:

[H3O+] = 10^-pH

Substituting this expression for [H3O+] into the equation for Ka, we get:

Ka = [H3O+][A-]/([HA]0 - [H3O+])

Ka = (10^-pH)[A-]/([HA]0 - 10^-pH)

If we know the concentration of the conjugate base, [A-], we can substitute that value into the equation. If we do not know the concentration of the conjugate base, we can assume that it is small compared to [HA]0 and therefore can be neglected. In that case, the equation simplifies to:

Ka ≈ 10^-pH

Therefore, the acid dissociation constant of the acid is approximately equal to 10^-pH. We would need more information about the acid and the solution to calculate a more exact value for Ka.

A specimen of a 4340 steel alloy with a plane strain fracture toughness of 54.8 MPa(50 ksi) is exposed to a stress of 1205 MPa(174800psi) . (a) If the largest surface crack is 0.8 mm (0.03150 in.) long, determine the critical stress ?c. (b) Will this specimen experience fracture? Assume that the parameter Y has a value of 0.99.

Answers

Explanation:

(a)  Formula for critical stress is as follows.

         [tex]\sigma_{c} = \frac{k_{IC}}{\tau \sqrt{\pi \times a}}[/tex]

Here,  [tex]K_{IC}[/tex] = 54.8

          [tex]\tau[/tex] = 0.99

            a = 0.8 mm = [tex]0.8 \times 10^{-3}[/tex] m

Putting the given values into the above formula as follows.

          [tex]\sigma_{c} = \frac{k_{IC}}{\tau \sqrt{\pi \times a}}[/tex]

                       = [tex]\frac{54.8}{0.99 \times \sqrt{3.14 \times 0.8 \times 10^{-3}}}[/tex]

                       = 1107 MPa

Hence, value of critical stress is 1107 MPa.

(b)    Applied stress value is given as 1205 MPa and since it is more than the critical stress (1107 MPa) as a result, a fracture will occur.

An aqueous solution of sodium sulfate is allowed to react with an aqueous solution of barium nitrate. What is the coefficient of the solid in the balanced equation

Answers

Answer: The coefficient of the solid in the balanced equation is 1.

Explanation:

A double displacement reaction is one in which exchange of ions take place. The salts which are soluble in water are designated by symbol (aq) and those which are insoluble in water and remain in solid form are represented by (s) after their chemical formulas.

The balanced chemical equation is:

[tex]Na_2SO_4(aq)+Ba(NO_3)_2(aq)\rightarrow BaSO_4(s)+2NaNO_3(aq)[/tex]

Thus a coefficient of 1 is placed in front of the solid.

The coefficient of the solid in the balanced equation is 1.

The double substitution reaction is a reaction in which ion exchange takes place. Salts that are soluble in water are indicated by the symbol (aq), and salts that are insoluble in water and remain solid are represented by (s) according to the chemical formula.

The balanced chemical equation is:

            Ba(NO3)2 + Na2SO4 → BaSO4 + NaNO3

Thus, the coefficient of the solid in the balanced equation is 1.

Learn more :

https://brainly.com/question/9149918?referrer=searchResults

Aqueous hydrochloric acid will react with solid sodium hydroxide to produce aqueous sodium chloride and liquid water . Suppose 31.4 g of hydrochloric acid is mixed with 12. g of sodium hydroxide. Calculate the minimum mass of hydrochloric acid that could be left over by the chemical reaction. Be sure your answer has the correct number of significant digits.

Answers

Answer:

The answer to your question is there will be 20.5 g left of HCl

Explanation:

Data

HCl = 31.4 g

NaOH = 12 g

Excess of HCl = ?

Balanced chemical reaction

                HCl  +  NaOH  ⇒   NaCl  +  H₂O

Molar weight of HCl = 1 + 35.5 = 36.5 g

Molar weight of NaOH = 23 + 16+ 1 = 40 g

Calculate the limiting reactant

theoretical yield HCl/NaOH = 36.5/40 = 0.9125

experimental yield HCl/NaOH = 31.4/12 = 2.62

Conclusion

The limiting reactant is NaOH because the experimental yield increases.

Calculate the mass of Excess reactant

               36.5 g of HCl ---------------- 40 g of NaOH

                x                     ---------------- 12 g of NaOH

                x = (12 x 36.5) / 40

                x = 438 / 40

                x = 10.95 g of HCl

Excess HCl = 31.4 - 10.95

                   = 20.5 g

Answer:

There will remain 20.5 grams of hydrochloric acid

Explanation:

Step 1: Data given

Mass of hydrochloric acid = 31.4 grams

Mass of sodium hydroxide = 12.0 grams

Molar mass hydrochloric acid (HCl) = 36.46 g/mol

Molar mass sodium hydroxide (NaOH) = 40.0 g/mol

Step 2: The balanced equation

HCl + NaOH → NaCl + H2O

Step 3: Calculate moles

Moles = mass / molar mass

Moles HCl = 31.4 grams / 36.46 g/mol

Moles HCl = 0.861 moles

Moles NaOH = 12.0 grams / 40.0 g/mol

Moles NaOH = 0.3 moles

Step 4: Calculate the limiting reactant

The limiting reactant is NaOH. It will completely be consumed (0.3 moles). Hcl is in excess. There will react 0.3 moles. There will remain 0.861 - 0.3 = 0.561 moles

Step 5: Calculate mass HCl

Mass HCl = moles HCl * molar mass

Mass HCl = 0.561 moles * 36.46 g/mol

Mass HCl = 20.5 grams

There will remain 20.5 grams of hydrochloric acid

Acetylenic compounds may be used as dienophiles in the Diels-Alder reaction. Write the structure for an adduct that you expect from the reaction of 1,3-butadiene with hexafluoro-2-butyne:

Answers

Answer:

Explanation:

An electron-donating heteroatom substituent at position-2 of a furan promotes regiospecific opening of the 7-oxa bridge of the Diels-Alder cycloadduct with hexafluoro-2-butyne, producing a 4-heterosubstituted 2,3-di(trifluoromethyl)phenol building block in a single step. The phenol and heteroatom substituent are easily transformed to the corresponding iodide or triflate that readily undergoes Heck, Suzuki, and Stille reactions to install a variety of substituents in high yields. This methodology provides a facile and general synthesis of 1,4-disubsituted 2, 3-di(trifluoromethyl)benzenes.

Final answer:

The Diels-Alder reaction of 1,3-butadiene with hexafluoro-2-butyne would form a six-membered ring with a hexafluoroalkyl side group, yielding a bicyclic compound.

Explanation:

The Diels-Alder reaction between 1,3-butadiene and hexafluoro-2-butyne would yield a six-membered ring product, specifically a bicyclic compound due to the formation of a cyclohexene derivative where the double bond is part of the ring and the hexafluoroalkyl group is attached to two adjacent carbons in the ring. It involves the 1,3-butadiene acting as the diene and the hexafluoro-2-butyne acting as the dienophile in an intermolecular reaction. The Diels-Alder reaction creates two new sigma bonds and a pi bond across the alkene and the alkyne to form the new cyclohexene ring.

H2(g) + F2(g)2HF(g) Using standard thermodynamic data at 298K, calculate the entropy change for the surroundings when 2.20 moles of H2(g) react at standard conditions. S°surroundings = J/K

Answers

Answer: The value of [tex]\Delta S^o[/tex] for the surrounding when given amount of hydrogen gas is reacted is -31.02 J/K

Explanation:

Entropy change is defined as the difference in entropy of all the product and the reactants each multiplied with their respective number of moles.

The equation used to calculate entropy change is of a reaction is:

[tex]\Delta S^o_{rxn}=\sum [n\times \Delta S^o_{(product)}]-\sum [n\times \Delta S^o_{(reactant)}][/tex]

For the given chemical reaction:

[tex]H_2(g)+F_2(g)\rightarrow 2HF(g)[/tex]

The equation for the entropy change of the above reaction is:

[tex]\Delta S^o_{rxn}=[(2\times \Delta S^o_{(HF(g))})]-[(1\times \Delta S^o_{(H_2(g))})+(1\times \Delta S^o_{(F_2(g))})][/tex]

We are given:

[tex]\Delta S^o_{(HF(g))}=173.78J/K.mol\\\Delta S^o_{(H_2)}=130.68J/K.mol\\\Delta S^o_{(F_2)}=202.78J/K.mol[/tex]

Putting values in above equation, we get:

[tex]\Delta S^o_{rxn}=[(2\times (173.78))]-[(1\times (130.68))+(1\times (202.78))]\\\\\Delta S^o_{rxn}=14.1J/K[/tex]

Entropy change of the surrounding = - (Entropy change of the system) = -(14.1) J/K = -14.1 J/K

We are given:

Moles of hydrogen gas reacted = 2.20 moles

By Stoichiometry of the reaction:

When 1 mole of hydrogen gas is reacted, the entropy change of the surrounding will be -14.1 J/K

So, when 2.20 moles of hydrogen gas is reacted, the entropy change of the surrounding will be = [tex]\frac{-14.1}{1}\times 2.20=-31.02J/K[/tex]

Hence, the value of [tex]\Delta S^o[/tex] for the surrounding when given amount of hydrogen gas is reacted is -31.02 J/K

) PABA refers to para-aminobenzoic acid which is used in some sunscreen formulations. If a 0.055 M solution of PABA has a pH of 2.96, determine the Ka of PABA. What kind of problem do you think thisis

Answers

Answer: [tex]K_a[/tex] of PABA is 0.000022

Explanation:

[tex]NH_2C_6H_5COOH\rightarrow H^++NH_2C_6H_5COO^-[/tex]

  cM              0             0

[tex]c-c\alpha[/tex]        [tex]c\alpha[/tex]          [tex]c\alpha[/tex]

So dissociation constant will be:

[tex]K_a=\frac{(c\alpha)^{2}}{c-c\alpha}[/tex]

Give c= 0.055 M and [tex]\alpha[/tex] = ?

[tex]K_a=?[/tex]

[tex]pH=-log[H^+][/tex]

[tex]2.96=-log[H^+][/tex]

[tex][H^+]=1.09\times 10^{-3}[/tex]

[tex][H^+]=c\times \alpha[/tex]

[tex]1.09\times 10^{-3}=0.055\times \alpha[/tex]

[tex]\alpha=0.02[/tex]

Putting in the values we get:

[tex]K_a=\frac{(0.055\times 0.02)^2}{(0.055-0.055\times 0.02)}[/tex]

[tex]K_a=0.000022[/tex]

Thus [tex]K_a[/tex] of PABA is 0.000022

Nitroglycerine decomposes violently according to the chemical equation below. What mass of carbon dioxide gas is produced from the decomposition of 10.4 g C3H5(NO3)3?

Answers

Explanation:

Below is an attachment containing the solution.

What tests can you do to identify gases, based on their chemical properties?

Answers

Tests for gases
Hydrogen, oxygen, carbon dioxide, ammonia and chlorine can be identified using different tests.
Hydrogen. A lighted wooden splint makes a popping sound in a test tube of hydrogen.
Oxygen. A glowing wooden splint relights in a test tube of oxygen.

Use standard enthalpies of formation to calculate the standard enthalpy of reaction for the following reaction: 2 H_2S(g) + 3 O_2(g) → 2 H_2O(l) + 2 SO_2(g) \DeltaH^{\circ}_{rxn}

Answers

Answer:

ΔrxnHº  =-1,124.3 kJ

Explanation:

To solve this question we first need to search  for the enthalpies of formation of reactants and products and calculate the change in enthalpy of reaction utilizing the equation

ΔrxnHº = ∑ νΔfHº reactants - Σ νΔfHº products

where ν is the stoichiometric coefficient of the compound  in the balanced equation .

ΔfHº H₂S(g) = -20.50 kJmol⁻¹

ΔfHº 0₂(g)  = 0  ( O₂ is in standard state )

ΔfHº H₂O(l) = -285.8 kJmol⁻¹

ΔfHº SO₂(g) = -296.84 kJmol⁻¹

ΔrxnHº =  [2 x  -285.8  + 2 x  -296.84] - [2 x -20.50]

           =    - 1,124.3 kJ

Air is about 78.0% nitrogen molecules and 21.0% oxygen molecules. Several other gases make up the remaining 1% of air molecules. What is the partial pressure of the other gases in air (excluding oxygen and nitrogen) at an atmospheric pressure of 0.90 atm

Answers

Answer:

The partial pressure of the other gases is 0.009 atm

Explanation:

Step 1: Data given

Air is about 78.0% nitrogen molecules and 21.0% oxygen molecules and 1% of other gases.

The atmospheric pressure = 0.90 atm

Step 2: Calculate mol fraction

If wehave  100  moles of air, 78 moles will be nitrogen,

21  moles will be  oxygen, and  1  mol will be other gases.

Mol fraction = 1/100 = 0.01

Step 3: Calculate the partial pressure of the other gases

Pgas = Xgas * Ptotal

⇒ Pgas = the partial pressure = ?

⇒ Xgas = the mol fraction of the gas = 0.01

⇒Ptotal = the total pressure of the pressure = 0.90 atm

Pgas = 0.01 * 0.90 atm

Pgas = 0.009 atm

The partial pressure of the other gases is 0.009 atm

A system at equilibrium has two aqueous products and two aqueous reactants. An additional amount of one of the products is added to the system. After the addition, which of the following will change?Select the correct answer below:a. the amount of the added productb. the amount of the other productc. the amounts of the reactantsd. all of the above

Answers

Final answer:

If an extra amount of a product is added to a system at equilibrium, the system will shift towards the reactants to counteract this change. This shift can cause changes in the amounts of all substances involved, including the added product, the other product, and the reactants.

Explanation:

When an extra amount of a product is added to a system at equilibrium, the system shifts to counteract this change and re-establish equilibrium, as described by Le Châtelier's principle. Specifically, the system will shift in the direction that reduces the excess amount of the product, i.e., towards the reactants. With this shift, the quantities of all substances in the system can change.

Therefore, the appropriate answer is d. all of the above. Adding more of one product will indeed increase the amount of that product initially (a), but the system will shift to remove the added product by moving towards the reactants. In this process, the amount of the other product may also change as it is consumed or generated (b), and the amounts of reactants will also adjust as they are generated or consumed (c).

Learn more about Le Châtelier's principle here:

https://brainly.com/question/12099569

#SPJ3

Even though we have known of many nuclear energy technologies for about one century some of these technologies have not yet been fully developed. Obtaining energy from thorium remains a challenge for many reasons. In a reactor, thorium is bombarded with neutrons and becomes U-233 and then U-234, which can undergo fission and produce energy. Complete the following U-234 fission reaction. Hint: Do not ignore the amount of energy given off by the reaction! 234.0 tlu . i37 154Xe + 3?Sr + 3 1.0087n + 180 MeV

Answers

Answer: The nuclear fission reaction of U-234.043 is written below.

Explanation:

In a nuclear reaction, the total mass and total atomic number remains the same.

For the given fission reaction:

[tex]^{234.043}_{92}\textrm{U}\rightarrow ^{137.159}_{54}\textrm{Xe}+^{A}_{38}\textrm{Sr}+3^{1.0087}_0\textrm{n}+180MeV[/tex]

To calculate A:

Total mass on reactant side = total mass on product side

234.043 = 137.159 + A + 3(1.0087)

A = 93.858

Now, the chemical equation becomes:

[tex]^{234.043}_{92}\textrm{U}\rightarrow ^{137.159}_{54}\textrm{Xe}+^{93.858}_{38}\textrm{Sr}+3^{1.0087}_0\textrm{n}+180MeV[/tex]

Hence, the nuclear fission reaction of U-234.043 is written above.

Determine whether the following reaction is a Lewis acid/base reaction and if so, what is the Lewis acid: Fe3+(aq) + 6 CN−(aq) → Fe(CN)63−(aq) Group of answer choices This is not a Lewis acid/base reaction It is a Lewis acid/base reaction, and Fe3+ is the Lewis acid It is a Lewis acid/base reaction, and CN- is the Lewis acid

Answers

Answer: It is a Lewis acid/base reaction, and [tex]Fe^{3+}[/tex] is the Lewis acid.

Explanation:

According to the Lewis concept, an acid is defined as a substance that accepts electron pairs and base is defined as a substance which donates electron pairs.

[tex]Fe^{3+}[/tex] can readily accept electrons and thus act as a lewis acid which is short of electrons.

[tex]CN^-[/tex] can readily lose electrons and thus act as a lewis base which has excess of electrons.

It is a Lewis acid/base reaction, and [tex]Fe^{3+}[/tex] is the Lewis acid.

Be sure to answer all parts. Zinc is an amphoteric metal, meaning it reacts with both acids and bases. The standard reduction potential is −1.36 V for the following reaction: (1)Zn(OH)42−(aq) + 2e− → Zn(s) + 4OH−(aq) Calculate the formation constant Kf for the reaction: (2)Zn2+(aq) + 4OH−(aq) ⇌ Zn(OH)42−(aq)

Answers

Answer:

[tex]1.86*10^{20[/tex]

Explanation:

The equation for the reaction is:

[tex]Zn^{2+}_{(aq)} + 4OH^-_{(aq)}[/tex]     ⇄     [tex]Zn(OH)^{2-}_{4(aq)}[/tex]

Oxidation can be defined as the addition of oxygen, removal of hydrogen and/or loss of electron during an electron transfer. Oxidation process occurs at the anode.

On the other hand; reduction is the removal of oxygen, addition of hydrogen and/ or the process of electron gain during an electron transfer. This process occurs at  the cathode.

The oxidation-reduction process with its standard reduction potential is as follows:

[tex]Zn(OH)^{2-}_{4(aq)} + 2e^- ----->Zn_{(s)} +4OH^-_{(aq)}[/tex]            [tex]E^0_{anode} = -1.36 V[/tex]

At the zinc electrode (cathode); the reduction process of the reaction with its standard reduction potential is :

[tex]Zn^{2+}_{(aq)} +2e^- -----> Zn_{(s)}[/tex]                  [tex]E^0_{cathode} = -0.76 V[/tex]

The standard cell potential [tex]E^0_{cell}[/tex] is given as:

[tex]E^0_{cell}=E^0_{cathode}-E^0_{anode}[/tex]

[tex]E^0_{cell}[/tex] = -0.76 V - (- 1.36 V)

[tex]E^0_{cell}[/tex] = -0.76 V + 1.36 V

[tex]E^0_{cell}[/tex] = +0.60 V

Now to determine the formation constant [tex]k_f[/tex] of the [tex]E^0_{cell}[/tex] ; we use the expression:

[tex]E^0_{cell}[/tex] = [tex]\frac{RT}{nF}Ink_f[/tex]

where;

[tex]E^0_{cell}[/tex] = +0.60 V

R = universal gas constant = 8.314 J/mol.K

T = Temperature @ 25° C = (25+273)K = 298 K

n = numbers of moles of electron transfer = 2

F = Faraday's constant = 96500 J/V.mol

[tex]+ 0.60 V = \frac{(8.314)(298)}{n(96500)} Ink_f[/tex]

[tex]+0.60 V = \frac{(0.0257)}{n}Ink_f[/tex]

[tex]+0.60V = \frac{0.0592}{n}log k_f[/tex]

[tex]logk_f = \frac{+0.60V*n}{0.0592}[/tex]

[tex]logk_f = \frac{+0.60V*2}{0.0592}[/tex]

[tex]logk_f = 20.27[/tex]

[tex]k_f= 10^{20.27}[/tex]

[tex]k_f = 1.86*10^{20}[/tex]

Therefore, the formation constant [tex]k_f[/tex] for the reaction is = [tex]1.86*10^{20[/tex]

A silver rod and a SHE are dipped into a saturated aqueous solution of silver oxalate, Ag2C2O4, at 25°C. The measured potential difference between the rod and the SHE is 0.5812 V, the rod being positive. Calculate the solubility product constant for silver oxalate.

Answers

The solubility product constant (Ksp) is calculated as 2.392.

To solve this problem, we can use the Nernst equation:

Ecell = E°cell - (RT/nF) * ln(Q)

where:

Ecell is the measured potential difference between the rod and the SHE (0.5812 V)

E°cell is the standard cell potential

R is the ideal gas constant (8.314 J/(mol·K))

T is the temperature in Kelvin (25°C = 298 K)

n is the number of electrons transferred in the balanced redox reaction

F is Faraday's constant (96485 C/mol)

Q is the reaction quotient

In this case, the balanced redox reaction is:

Ag2C2O4(s) ⇌ 2Ag+(aq) + C2O4^2-(aq)

The solubility product constant (Ksp) for silver oxalate can be expressed as:

Ksp = [Ag+]^2 * [C2O4^2-]

Since the rod is positive, it means that Ag+ ions are being reduced to Ag(s) on the rod, so we can write:

E°cell = E°red,cathode - E°red,anode

The standard reduction potential for Ag+ to Ag(s) is 0.7996 V, and the standard reduction potential for C2O4^2- to CO2(g) is 0.1936 V.

Therefore, E°cell = 0.7996 V - 0.1936 V = 0.606 V

Now we can substitute all the values into the Nernst equation:

0.5812 V = 0.606 V - (8.314 J/(mol·K) * 298 K / (2 * 96485 C/mol)) * ln(Q)

Simplifying:

0.5812 V = 0.606 V - (0.0257 V) * ln(Q)

0.0257 V * ln(Q) = 0.606 V - 0.5812 V

0.0257 V * ln(Q) = 0.0248 V

ln(Q) = 0.0248 V / 0.0257 V

ln(Q) = 0.964

Q = e^(0.964)

Q ≈ 2.622

Since Q = [Ag+]^2 * [C2O4^2-], we can write:

[Ag+]^2 * [C2O4^2-] ≈ 2.622

The solubility product constant (Ksp) is the product of the concentrations of the ions at equilibrium, so we can assume that the concentrations are equal to each other:

[Ag+] ≈ [C2O4^2-]

Therefore, we can substitute [Ag+] for [C2O4^2-]:

[Ag+]^2 * [Ag+] ≈ 2.622

[Ag+]^3 ≈ 2.622

Taking the cube root of both sides:

[Ag+] ≈ (2.622)^(1/3)

[Ag+] ≈ 1.378

Therefore, the approximate solubility of silver oxalate is 1.378 M.

The solubility product constant (Ksp) can now be calculated as:

Ksp = [Ag+]^2 * [C2O4^2-] ≈ (1.378)^2 * (1.378) ≈ 2.392

The solubility product constant for silver oxalate at [tex]25\°C[/tex] is approximately [tex]\( 10^{-22.125} \)[/tex].

The solubility product constant [tex](\( K_{sp} \))[/tex] for silver oxalate can be calculated using the Nernst equation and the measured potential difference between the silver rod and the standard hydrogen electrode (SHE). The reaction occurring at the silver rod can be represented as:

[tex]\[ \text{Ag}_2\text{C}_2\text{O}_4(s) \rightleftharpoons 2\text{Ag}^+(aq) + \text{C}_2\text{O}_4^{2-}(aq) \][/tex]

The Nernst equation for this reaction at [tex]25\°C[/tex] is given by:

[tex]\[ E = E^{\circ} - \frac{0.0592}{n} \log \frac{1}{[\text{Ag}^+]^2[\text{C}_2\text{O}_4^{2-}]} \][/tex]

where [tex]\( E \)[/tex] is the measured potential (0.5812 V), [tex]\( E^{\circ} \)[/tex] is the standard reduction potential for the [tex]\( \text{Ag}^+ \)[/tex] / Ag couple, [tex]\( n \)[/tex] is the number of electrons transferred in the half-reaction (which is 2 for this reaction), and the concentrations of [tex]\( \text{Ag}^+ \)[/tex] and [tex]\( \text{C}_2\text{O}_4^{2-} \)[/tex] are equal to the solubility of silver oxalate since they come from its dissolution.

 First, we need to find the standard reduction potential [tex]\( E^{\circ} \)[/tex] for the [tex]\( \text{Ag}^+ \)[/tex] / Ag couple, which is 0.7996 V.

 Rearranging the Nernst equation to solve for the solubility \( S \), we get:

[tex]\[ S = [\text{Ag}^+] = [\text{C}_2\text{O}_4^{2-}] = 10^{\frac{(E^{\circ} - E)n}{0.0592}} \][/tex]

Plugging in the values:

[tex]\[ S = 10^{\frac{(0.7996 - 0.5812) \times 2}{0.0592}} \][/tex]

[tex]\[ S = 10^{\frac{0.2184 \times 2}{0.0592}} \][/tex]

[tex]\[ S = 10^{\frac{0.4368}{0.0592}} \][/tex]

[tex]\[ S = 10^{7.375} \][/tex]

[tex]\[ S \approx 10^{-7.375} \][/tex]

The solubility product constant [tex]\( K_{sp} \)[/tex] is given by:

[tex]\[ K_{sp} = [\text{Ag}^+]^2[\text{C}_2\text{O}_4^{2-}] \][/tex]

[tex]\[ K_{sp} = (S)^2(S) \][/tex]

[tex]\[ K_{sp} = (10^{-7.375})^2(10^{-7.375}) \][/tex]

[tex]\[ K_{sp} = 10^{-7.375 \times 3} \][/tex]

[tex]\[ K_{sp} = 10^{-22.125} \][/tex]

The reported molar absorptivity of Red Dye #3 is 2.038 L mol-1 cm-1. If a solution of Red Dye #3 displays an absorbance of 1.657 in a cuvette that is 0.701 cm in length, what is the concentration of the dye in solution? Report your response to three digits after the decimal. _____ M

Answers

Answer: Concentration of the dye in solution is 1.159 M

Explanation:

According to Beer-Lambert law, the absorbance is directly proportional to the concentration of an absorbing species.

Formula used :

[tex]A=\epsilon \times C\times l[/tex]

where,

A = absorbance of solution = 1.657

C = concentration of solution = ?

l = length of the cell = 0.701 cm

[tex]\epsilon[/tex] = molar absorptivity of this solution =

[tex]1.657=2.038Lmol^{-1}cm^{-1}\times C\times 0.701cm[/tex]

[tex]C=1.159mol/L[/tex]

Thus the concentration of the dye in solution is 1.159 M

Concentration of the dye in solution is 1.159 M

Beer-Lambert Law:

According to Beer-Lambert law, the absorbance is directly proportional to the concentration of an absorbing species. The concentration can be calculated by using this law which is given as:

[tex]A=E*l*c[/tex]

where,

A = absorbance of solution = 1.657

c = concentration of solution = ?

l = length of the cell = 0.701 cm

E= molar absorptivity of this solution = [tex]2.038 L mol^{-1} cm^{-1}[/tex]

On substituting the values:

[tex]A=E*l*c\\\\1.657=2.038*0.701*c\\\\c=\frac{1.657}{2.038*0.701}\\\\ c=1.159mol/L[/tex]

Thus, the concentration of the dye in solution is 1.159 M.

Find more information about Beer-Lambert Law here:

brainly.com/question/26555614

Calculate the relative atomic mass of this sample of Germanium, giving your answer to two decimal places. ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... .........................................................................................................................

Answers

Answer:

Germanium is an element in the same group with Carbon and Silicon. The atomic number is 32. The relative atomic mass is usually measured with the Sample of an isotope. In this case Germanium has a relative atomic mass of 72.63

Answer:

The relative atomic mass of the sample of Germanium is 72.89 u

Explanation:

For a sample of germanium we have the following compositions:

m70Ge = 70 u

%70Ge = 22.6%

m72Ge = 72 u

%72Ge = 25.45%

m74Ge = 74 u

%74Ge = 36.73%

m76Ge = 76 u

%76Ge = 15.22%

To calculate the atomic mass of Germanium we must add all the atomic masses of its isotopes multiplied by its percentage of abundance and all this divided by 100, in this way:

mGe = [(m70Gex%70Ge)+(m72Gex%72Ge)+(m74Gex%74Ge)+(m76Gex%76Ge)]/100

replacing values:

mGe = [(70x22.6)+(72x25.45)+(74x36.73)+(76x15.22)]/100 = 72.89 u

If a reaction has a very low activation energy, the products would be expected to form quickly at high temperatures. Select the reason why such a reaction might form products very slowly, or not at alla. negative delta G
b. lack of a catalyst
c. positive delta G

Answers

Answer: Option (c) is the correct answer.

Explanation:

It is known that when Gibb's free energy, that is, [tex]\Delta G[/tex] has a negative value then the reaction will be spontaneous and the formation of products is favored more rapidly.  

Activation energy is defined as the minimum amount of energy required to initiate a chemical reaction.

So, when reactants of a chemical reaction are unable to reach towards its activation energy then a catalyst is added to lower the activation energy barrier so the reaction can take place rapidly.

Since, the given reaction has low activation energy. Therefore, there is no need to add a catalyst.

And, when value of [tex]\Delta G[/tex] is positive then the reaction is spontaneous in nature and formation of products is less favored.

Thus, we can conclude that for the given situation positive delta G is the reason that a reaction might form products very slowly, or not at all.

Lab group B determines that 0.003 moles of bicarbonate was present in their portion of an antacid tablet. How many grams of bicarbonate are in their tablet? Report your answer to 3 decimal places.

Answers

Answer:

There are 0.183 grams of bicarbonate in their tablet

Explanation:

Step 1: Data given

0.003 moles of bicarbonate was present in their portion of an antacid tablet

Bicarbonate = HCO3-

Molar mass of bicarbonate = 61.02 g/mol

Step 2: Calculate mass bicarbonate

Mass bicarbonate = moles bicarbonate * molar mass bicarbonate

Mass bicarbonate = 0.003 moles * 61.02 g/mol

Mass bicarbonate = 0.183 grams

There are 0.183 grams of bicarbonate in their tablet

Calculate the friction of the person on ski. We use the situation from example 5.1 "Skiing Exercise" from the text book, but we change the slope to 15 degrees. Tips: - The gravity force of the person is 608 N. - You first have to calculate the perpendicular component of the gravity force. This is also the normal force.

Answers

Answer: Friction (Fk) = 46.2N.

Explanation: In the attachment, there is the drawing of the forces acting on the skiing person. As the person is in movement, the formula to calculate the friction is Fk = μk.N, where μk is the coefficient of kinetic friction and N is normal force. Normal force is the force necessary to keep a person "above" the ground. To find the normal force as suggested, we use the representation of the forces in the attachment. With it, it's shown that to calculate N:

cos 15° = [tex]\frac{N}{Fg}[/tex]

N = Fg·cos 15°

N = 608·(-0.76)

N = - 461.9N

Now, with N and knowing the coefficient, which can be found in Physics Text Books and it is 0.1, we have:

Fk = 0.1·(-461.9)

Fk = - 46.2N

The friction is negative because it is pointing to the opposite side of the reference.

One 55-gram serving of a particular cereal supplies 270 mg of sodium, 11% of the recommended daily allowance. How many moles and atoms of sodium are in the recommended daily allowance?

Answers

Final answer:

A 55-gram serving of cereal supplies 270 mg of sodium, which is 11% of the recommended daily allowance. The recommended daily allowance contains 2454.55 mg of sodium and 106.82 mol of sodium. It also contains 6.43 x 10²⁵ atoms of sodium.

Explanation:

To find the moles of sodium in the recommended daily allowance, we need to know the amount of sodium in the daily allowance. The problem states that a 55-gram serving of the cereal supplies 270 mg of sodium, which is 11% of the recommended daily allowance.

So, the total amount of sodium in the daily allowance is

270 mg / 0.11 = 2454.55 mg.

To convert this to moles, we use the molar mass of sodium, which is 22.99 g/mol.

Therefore, the number of moles of sodium in the daily allowance is 2454.55 mg / 22.99 g/mol = 106.82 mol.

To find the number of atoms of sodium in the daily allowance, we use Avogadro's number (6.022 x 10²³ atoms/mol). Therefore, the number of atoms of sodium in the daily allowance is 106.82 mol x (6.022 x 10²³ atoms/mol) = 6.43 x 10²⁵ atoms.

Learn more about moles of sodium here:

https://brainly.com/question/32846208

#SPJ3

To find the moles and atoms of sodium in the recommended daily allowance, divide the mass of sodium in mg by its molecular weight, then multiply the resulting moles by Avogadro's number to get atoms. There are roughly 0.107 moles and 6.44 x 1022 atoms of sodium in the allowance.

One 55-gram serving of cereal provides 270 mg of sodium, which is 11% of the recommended daily allowance. To calculate the total recommended daily allowance, we divide 270 mg by 0.11, getting approximately 2455 mg of sodium. The molecular weight of sodium is about 22.99 g/mol, so we can find the number of moles of sodium in the daily allowance by dividing the mass (in grams) by the molecular weight. This results in approximately 0.107 moles of sodium.

To find the number of atoms of sodium, we use Avogadro's number, which is approximately 6.022 x 1023 atoms/mole. Multiplying the number of moles by Avogadro's number gives us the number of atoms. So, there are roughly 6.44 x 1022 sodium atoms in the recommended daily allowance of sodium.

2 UO2+ + 4 H+U4+ + UO22+ + 2 H2O is second order in UO2+ and third order overall. Complete the rate law for this reaction in the box below. Use the form k[A]m[B]n... , where '1' is understood for m, n ... (don't enter 1) and concentrations taken to the zero power do not appear

Answers

Answer:

[tex]r=k[UO_2^+]^2[H^+][/tex]

Explanation:

The given reaction is :-

[tex]2UO_2^++4H^+\rightarrow U^{4+}+UO_2^{2+}+2H_2O[/tex]

According to the law of mass action:-

The rate of the reaction is directly proportional to the active concentration of the reactant which each are raised to the experimentally determined coefficients which are known as orders. The rate is determined by the slowest step in the reaction mechanics.

Order of in the mass action law is the coefficient which is raised to the active concentration of the reactants. It is experimentally determined and can be zero, positive negative or fractional.

The order of the whole reaction is the sum of the order of each reactant which is raised to its power in the rate law.  

m = 2 =  is order with respect to [tex]UO_2^+[/tex]

n = order with respect to H+

overall order = m+n = 3

n = 3 - m = 3 - 2 = 1

Rate law is:-

[tex]r=k[UO_2^+]^2[H^+][/tex]

At the Henry's Law constant for carbon dioxide gas in water is . Calculate the mass in grams of gas that can be dissolved in of water at and a partial pressure of . Round your answer to significant digits.

Answers

The question is incomplete, here is the complete question:

At 25°C Henry's Law constant for carbon dioxide gas in water is 0.031 M/atm . Calculate the mass in grams of gas that can be dissolved in 425. mL of water at 25°C and at a partial pressure of 2.92 atm. Round your answer to 2 significant digits.

Answer: The mass of carbon dioxide that can be dissolved is 1.7 grams

Explanation:

To calculate the molar solubility, we use the equation given by Henry's law, which is:

[tex]C_{CO_2}=K_H\times p_{CO_2}[/tex]

where,

[tex]K_H[/tex] = Henry's constant = [tex]0.031M/atm[/tex]

[tex]C_{CO_2}[/tex] = molar solubility of carbon dioxide gas

[tex]p_{CO_2}[/tex] = partial pressure of carbon dioxide gas = 2.92 atm

Putting values in above equation, we get:

[tex]C_{CO_2}=0.031M/atm\times 2.92 atm\\\\C_{CO_2}=0.0905M[/tex]

To calculate the mass of solute, we use the equation used to calculate the molarity of solution:

[tex]\text{Molarity of the solution}=\frac{\text{Mass of solute}\times 1000}{\text{Molar mass of solute}\times \text{Volume of solution (in mL)}}[/tex]

Given mass of carbon dioxide = ? g

Molar mass of carbon dioxide = 44 g/mol

Molarity of solution = [tex]0.0905mol/L[/tex]

Volume of solution = 425 mL

Putting values in above equation, we get:

[tex]0.0905mol/L=\frac{\text{Mass of carbon dioxide}\times 1000}{44g/mol\times 425}\\\\\text{Mass of solute}=\frac{44\times 425\times 0.0905}{1000}=1.7g[/tex]

Hence, the mass of carbon dioxide that can be dissolved is 1.7 grams

styrofoam is made by blowing a gas into a polymer called polystyrene, which in turn is made from styrene. Styrene is 92.26% carbon and the rest is hydrogen 7.02 * 10^18 molecules of styrene weigh 1.22 mg. what is the molecular formula for it

Answers

Answer : The molecular of the compound is, [tex]C_8H_8[/tex]

Solution :

If percentage are given then we are taking total mass is 100 grams.

So, the mass of each element is equal to the percentage given.

Mass of C = 92.26 g

Mass of H = 100 - 92.26 = 7.74 g

Molar mass of C = 12 g/mole

Molar mass of H = 1 g/mole

Step 1 : convert given masses into moles.

Moles of C = [tex]\frac{\text{ given mass of C}}{\text{ molar mass of C}}= \frac{92.26g}{12g/mole}=7.688moles[/tex]

Moles of H = [tex]\frac{\text{ given mass of H}}{\text{ molar mass of H}}= \frac{7.74g}{1g/mole}=7.74moles[/tex]

Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.

For C = [tex]\frac{7.688}{7.74}=0.99\approx 1[/tex]

For H = [tex]\frac{7.74}{7.74}=1[/tex]

The ratio of C : H = 1 : 1

The mole ratio of the element is represented by subscripts in empirical formula.

The Empirical formula = [tex]C_1H_1[/tex]

The empirical formula weight = 1(12) + 1(1) = 13 gram/eq

Now we have to calculate the molecular mass of polymer.

As, the mass of polymer of [tex]7.02\times 10^{18}[/tex] molecules = 1.22 mg = 0.00122 g

So, the mass of polymer of [tex]6.022\times 10^{23}[/tex] molecules = [tex]\frac{6.022\times 10^{23}}{7.02\times 10^{18}}\times 0.00122g=104.6g/mol[/tex]

Now we have to calculate the molecular formula of the compound.

Formula used :

[tex]n=\frac{\text{Molecular formula}}{\text{Empirical formula weight}}[/tex]

[tex]n=\frac{104.6}{13}=8[/tex]

Molecular formula = [tex](C_1H_1)_n=(C_1H_1)_8=C_8H_8[/tex]

Therefore, the molecular of the compound is, [tex]C_8H_8[/tex]

Final answer:

The molecular formula for styrene is C8H8.

Explanation:

The molecular formula for styrene can be determined using the given information. Firstly, we need to find the mass of 7.02 * 10^18 molecules of styrene. Given that 7.02 * 10^18 molecules weigh 1.22 mg, we can calculate the molecular weight of the styrene as follows:

Calculate the mass of 1 molecule of styrene by dividing 1.22 mg by 7.02 * 10^18 molecules: 1.22 mg / (7.02 * 10^18 molecules) = 1.74 * 10^-22 mg/molecule Find the number of atoms in a molecule of styrene by dividing the mass of 1 molecule by the molecular weight of carbon: (1.74 * 10^-22 mg/molecule) / (12 g/mol) = 1.45 * 10^-23 moleculesDivide the number of atoms by Avogadro's number (6.022 * 10^23 molecules/mol) to determine the molecular formula: (1.45 * 10^-23 molecules) / (6.022 * 10^23 molecules/mol) =  2.41 * 10^-47 mol

Therefore, the molecular formula of styrene is C8H8.

Learn more about Styrene molecular formula here:

https://brainly.com/question/25589552

#SPJ3

Other Questions
How many bits does it take to store a 3-minute song using an audio encoding method that samples at the rate of 40,000 bits/second, has a bit depth of 16, and does not use compression Which type of scientific statement is defined as a possible explanation or answer to a scientific question that is based on prior knowledge or research and is testable? A straight wire carries a current of 238 mA from right to left. What is the magnetic field at a point 10.0 cm directly below the wire? Give the magnitude here, but make sure you can find the direction too You have been using the same computer for several years. To extend its service life, you decide to upgrade the processor. You check the motherboard documentation and purchase the fastest processor supported by the motherboard. However, when you start the computer, it beeps regularly, nothing is displayed on the screen, and it doesn't start. What should you do?A. Return the CPU for a new one.B. Update the UEFI firmware.C. Press F8 while booting the computer.D. Upgrade the motherboard. True Ketchup Inc. manufactures and distributes sauces, pickles, and spices. The company has separate divisions responsible for developing and marketing each item. Thus, the company has adopted a _____ approach to departmentalization Create your dialogue, include yourself and another friend in the dialogue so you use the yo.form and the tu form. This dialogue should take place in one of the most popular departmentstores in town. You need to make sure you include colors, clothes, and express preferences aswell. The dialogue should be no less than 10 sentences. please some one helps me with this one this must to be written in Spanish please help me I will be thankful for you forever. thank you so much. 5. If insects and birds fly from flower to flower to help with pollination, why are there not flowers ofmixed species? The reaction 2PH3(g)+As2(g)2AsH3(g)+P2(g) has Kp=2.9105 at 873 K. At the same temperature, what is Kp for each of the following reactions? Parts A, B, and C Part A: 2AsH3(g)+P2(g)2PH3(g)+As2(g) Part B: 6PH3(g)+3As2(g)3P2(g)+6AsH3(g) Part C: 2P2(g)+4AsH3(g)2As2(g)+4PH3(g) A cylindrical barrel is 8 feet tall, and 5 feet wide at the bottom. What is the volume of the barrel? What theme does the motif of time support?O Life is short, so make every moment count.O Time can be subjective.A lifetime cannot be measured by a clock. A selection model that requires an applicant to achieve some minimum level of proficiency on all selection dimensions is referred to as a _____ model. Jenson College provides its own housekeeping services. The College director would like to outsource this service and has found a company that will provide the service for $50 per hour. The following information has been collected about the cost per hour to the college for performing its own housekeeping services: Cost per hour of service: Cleaning supplies $3 Direct labour costs $27 Variable overhead $2 Total hours of housekeeping services per year 3,120 Total fixed overhead $51,840 Determine whether Jenson College should outsource housekeeping, assuming that 50% of fixed costs can be eliminated if the service is outsourced. (If an amount reduces the net income then enter with a negative sign preceding the number, e.g.-15,000 or parenthesis, e.g. (15,000).) Number of hours: 3,120 In-house Outsource Net Income Increase (Decrease) Cleaning supplies $ $ $ Direct labour Variable overhead Fixed costs Purchase price Total cost $ $ $ Jenson College outsource the services. Excerpt from The Beginnings of a Mississippi School William H. Holtzclaw After a while we moved into an abandoned house, which we used for a schoolhouse, but it was little better than teaching out of doors. When it rained the water not only came through the roof, but through the sides as well. During cold winter rains I had to teach while standing with my overcoat on and with arctic rubbers to protect myself against pneumonia. During those rainy days Miss Lee, my assistant, would get up on a bench and stand there all day to keep her feet out of the water and would have an umbrella stretched over her to keep from getting wet from above. The little fellows would be standing in the water below like little ducks. They stood these conditions exceedingly well. Many of them were not protected with overshoes or any shoes, but they came to school each day just as if they had been properly clad. Which would NOT be important information to include in a citation on the works cited or reference page for this passage? A)the author's first and last name B)the date the book or article was published C)the page where the information was located D)the number of pictures contained in the book Elimi Why are the gravediggers debating about whether Opheliadeserves a Christian burial? Teal Company uses a periodic inventory system. For April, when the company sold 650 units, the following information is available.Units Unit Cost Total Cost April 1 inventory 290 $18 $5,220 April 15 purchase 400 22 8,800 April 23 purchase 310 23 7,130 1,000 $21,150 Calculate the weighted average cost per unit. (Round answer to 2 decimal places, e.g. 2.76.) The spring of a spring gun has force constant k =400 N/m and negligible mass. The spring is compressed6.00 cm and a ball with mass 0.0300 kg isplaced in the horizontal barrel against the compressed spring. Thespring is then released, and the ball is propelled out the barrelof the gun. The barrel is 6.00 cm long, so the ballleaves the barrel at the same point that it loses contact with thespring. The gun is held so the barrel is horizontal.Calculate the speed with which the ballleaves the barrel if you can ignore friction.Calculate the speed of the ball as it leavesthe barrel if a constant resisting force of 6.00 Nacts on the ball as it moves along the barrel.For the situation in part (b), at whatposition along the barrel does the ball have the greatest speed?(In this case, the maximum speed does not occur at the end of thebarrel.)What is that greatest speed? A registered representative at another member firm has a client who wishes to buy a Direct Participation Program (DPP) unit, a product that is not offered through his firm. He has a friend that is a registered representative at another member firm where DPPs are sold, and offers to refer the prospective client in exchange for a small fee. Which statement is TRUE?A. This is permitted since the referral payment is smallB. This is permitted because the recipient of the referral fee is a registered individualC. This is permitted as long as the client is informed that a referral fee has been paidD. This is prohibited The method of tree ring dating gave the following years A.D. for an archaeological excavation site. Assume that the population of x values has an approximately normal distribution. 1313 1243 1271 1313 1268 1316 1275 1317 1275 (a) Use a calculator with mean and standard deviation keys to find the sample mean year x and sample standard deviation s. (Round your answers to the nearest whole number.) x After choosing among several computer server systems, the Director of Information Systems feels very positive about the choice that was made. However, some of this optimism is due to the fact that the Director ignored some of the limitations of the chosen system and unconsciously downplays the importance of the positive features of the rejected systems. The Director of Information Systems is engaging in:________.A) confirmation bias.B) impulsive buying.C) escalation of commitment.D) rational maximization.E) rational choice thinking. A 32. In bat is leaning against a fence. If the bat is 15 in. Away from the base of the fence, what angle is formed between the ground and the bat?Trigonometry