An unknown mass of m kg attached to the end of an unknown spring k has a natural frequency of 94cpm. when a 0.453 kg mass is added to m, the natural frequency is lowered to 76.7cpm. determine the unknown mass m and the spring constant k N/m.

Answers

Answer 1

To solve this problem we will define the two frequencies given. From there and in international units, we will proceed to clear the variable concerning the spring constant from both equations. We will match the two equations and find the mass. With the mass found we will replace in any of the two system equations and find the spring constant

[tex]f_1 = \frac{1}{2\pi} (\sqrt{\frac{k}{m}} ) = 94\frac{cycles}{minute} \times \frac{1 minute}{60s} = \frac{47}{30} cycles/s[/tex]

Now

[tex]f_2 = \frac{1}{2\pi} (\sqrt{\frac{k}{m+0.453}}) = 76.7\frac{cycles}{minute} \times \frac{1 minute}{60s} = \frac{767}{600} cycles/s[/tex]

The two equations could be described as:

1)

[tex]\frac{1}{2\pi} \sqrt{\frac{k}{m}} = \frac{47}{30}[/tex]

[tex]\sqrt{\frac{k}{m}} = \frac{47\pi}{15}[/tex]

[tex]\sqrt{k} = \frac{47\pi}{15}\sqrt{m}[/tex]

2)

[tex]\frac{1}{2\pi} \sqrt{\frac{k}{m+0.453}}) = \frac{767}{600}[/tex]

[tex]\sqrt{\frac{k}{m+0.453}} = \frac{767\pi}{300}[/tex]

[tex]\sqrt{k} = \frac{767\pi}{300}\sqrt{m+0.453}[/tex]

Equation both expression we have that,

[tex]\frac{47\pi}{15}\sqrt{m} = \frac{767\pi}{300}\sqrt{m+0.453}[/tex]

[tex]\sqrt{m}= \frac{767}{940} \sqrt{m+0.453}[/tex]

[tex]m(1-\frac{588289}{883600}) = \frac{588289}{883600} \times 0.453[/tex]

[tex]m = \frac{\frac{588289}{883600} \times 0.453}{(1-\frac{588289}{883600})}[/tex]

[tex]m \approx 0.902kg[/tex]

Use one of the formulas from the system

[tex]\sqrt{k} = \frac{47\pi}{15}\sqrt{m}[/tex]

[tex]\sqrt{k} = \frac{47\pi}{15}\sqrt{0.902}[/tex]

[tex]k = 87.4N/m[/tex]


Related Questions

A particle starts from the origin at t = 0 with a velocity of and moves in the xy plane with a constant acceleration of . At the instant the particle's x coordinate is 29 m, what are (a) its y coordinate and (b) its speed?

Answers

Answer:

a) When the x-component of the position of the particle is 29 m, the y-component is 45 m.

b)When the x-component of the position of the particle is 29 m, its speed is 21.8 m/s.

Explanation:

I´ve found the complete question on the web:

A particle starts from the origin at t=0 with a velocity of 8.0 j m/s and moves in the x-y plane with a constant acceleration of (4i + 2j) m/s^2. At the instant the particle's x-coordinate is 29m. What are its y-coordinate and speed?

a) First, let´s find at which time the particle is located at 29 m along the x-axis. For that let´s use the equation of position of an object moving in a straight line at constant acceleration:

x = x0 + v0x · t + 1/2 · ax · t²

Where:

x = x-component of the position of the particle at time t

x0 = initial x-position.

v0x = initial x-component of the velocity.

t = time

ax = x-component of the acceleration.

We have the following data:

x = 29 m

x0 = 0 (because the particle starts from the origin, x = 0 and y = 0).

v0x = 0 (the initial velocity only has an y-component).

ax = 4 m/s²

Then, the equation of position gets reduced to this:

x = 1/2 · a · t²

29 m = 1/2 · 4 m/s² · t²

29 m/ 2 m/s² = t²

t = 3.8 s

Now, we can find the y-component of the position of the particle at that time:

y = y0 + v0y · t + 1/2 · ay · t²

Where:

y = y-component of the position of the particle at time t.

y0 = initial y-component of the position.

v0y = initial y-component of the velocity.

ay = y-component of the acceleration

t = time.

We have the following data:

y0 = 0

v0y = 8.0 m/s

ay = 2 m/s²

t = 3.8 s (calculated above)

Then, we can calculate "y" at t = 3.8 s

y = 0 + 8.0 m/s · 3.8 s + 1/2 · 2 m/s² · (3.8 s)²

y = 45 m

When the x-component of the position of the particle is 29 m, the y-component is 45 m.

b) To find the speed of the particle, let´s use the equation of velocity.

For the x-component of the velocity (vx):

vx = v0x + ax · t   (v0x = 0)

vx = 4 m/s² · 3.8 s

vx = 15.2 m/s

The y-component of the velocity will be:

vy = v0y + ay · t

vy = 8.0 m/s + 2 m/s² · 3.8 s

vy = 15.6 m/s

Then, the vector velocity will be:

v = (15.2, 15.6) m/s

To calculate the speed, we have to find the magnitude of the velocity vector:

[tex]|v| = \sqrt{(15.2 m/s)^{2}+(15.6 m/s)^{2}} = 21.8 m/s[/tex]

When the x-component of the position of the particle is 29 m, its speed is 21.8 m/s.

In an effort to stay awake for an all-night study session, a student makes a cup of coffee by first placing a 200 WW electric immersion heater in 0.400 kgkg of water.

Answers

Answer:

The heat is 115478.4 J.

Explanation:

Given that,

Mass of water = 0.400 kg

Power = 200 W

Suppose, we determine how much heat must be added to the water to raise its temperature from 20.0°C to 89.0°C?

We need to calculate the heat

Using formula of heat

[tex]Q=mc\Delta T[/tex]

Where, m = mass of water

c = specific heat

Put the value into the formula

[tex]Q=400\times4.184\times(89-20)[/tex]

[tex]Q=115478.4\ J[/tex]

Hence, The heat is 115478.4 J.

Final answer:

The subject of this question is Physics, and the student is asking about using an electric immersion heater to heat water for an all-night study session. To calculate the resistance of the heater, the formula Resistance = (Voltage)^2 / Power is used. The current flowing through the heater can be determined using Ohm's Law: Current = Voltage / Resistance.

Explanation:

The subject of this question is Physics. The student is asking about using an electric immersion heater to heat water for an all-night study session.

To calculate the resistance of the heater, we need to use the formula: Resistance = (Voltage)^2 / Power. The power can be calculated using the formula: Power = Current x Voltage.

We can determine the current flowing through the heater using Ohm's Law: Current = Voltage / Resistance.

A nautical mile is 6076 feet, and 1 knot is a unit of speed equal to 1 nautical mile/hour. How fast is a boat going 8 knots going in feet/s

Answers

Answer:

The speed of the boat is equal to 13.50 ft/s.

Explanation:

given,

1  nautical mile = 6076 ft

1 knot = 1 nautical mile /hour

1 knot = 6076 ft/hr

speed of boat = 8 knots

 8 knots = 8 nautical mile /hour

               =[tex]8 \times \dfrac{6076\ ft}{1\nautical\ mile}\times \dfrac{1\ hour}{60\times 60\ s}[/tex]

               = 13.50 ft/s

The speed of the boat is equal to 13.50 ft/s.

The speed of the boat will be    [tex]V=13.50\dfrac{ft}{sec}[/tex]

What will be the speed of the boat?

It is given that

nautical mile   6076 feet

1 knot= 1 nautical mile per hour

[tex]\rm 1\ knot = 6076\dfrac{ft}{hr}[/tex]

Speed of the boat is = 8 knots

[tex]\rm 8 \ knot = 8\ nautical \dfrac{Mile }{Hour}[/tex]

[tex]=\dfrac{8 \times 6076\tines 1}{60\times 60}[/tex]

[tex]\rm 8 \ k not= 13.50\dfrac{ft}{s}[/tex]

Thus  The speed of the boat will be    [tex]V=13.50\dfrac{ft}{sec}[/tex]

To know more about speed follow

https://brainly.com/question/4931057

A child in a boat throws a 5.80-kg package out horizontally with a speed of 10.0 m/s. The mass of the child is 24.6kg and the mass of the boat is 39.0kg . (Figure 1)

Calculate the velocity of the boat immediately after, assuming it was initially at rest.

Express your answer to three significant figures and include the appropriate units. Enter positive value if the direction of the force is in the direction of the velocity of the box and negative value if the direction of the force is in the direction opposite to the velocity of the box.

Answers

Answer:

-0.912 m/s

Explanation:

When the package is thrown out, momentum is conserved. The total momentum after is the same as the total momentum before, which is 0, since the boat was initially at rest.

[tex] (m_c + m_b)v_b + m_pv_p = 0[/tex]

where [tex]m_c = 24.6 kg, m_b = 39 kg, m_p = 5.8 kg[/tex] are the mass of the child, the boat and the package, respectively. [tex], v_p = 10m/s, v_b[/tex] are the velocity of the package and the boat after throwing.

[tex] (24.6 + 39)v_b + 5.8*10 = 0[/tex]

[tex]63.6v_b + 58 = 0[/tex]

[tex]v_b = -58/63.6 = -0.912 m/s[/tex]

At a certain instant a particle is moving in the +x direction with momentum +8 kg m/s. During the next 0.13 seconds a constant force acts on the particle, with Fx=-7N and Fy= +5N.
What is the magnitude of the momentum of the particle at the end of this 0.13-second interval?

Answers

Answer:

The momentum of the particle at the end of the 0.13 s time interval is 7.12 kg m/s

Explanation:

The momentum of the particle is related to force by the following equation:

Δp = F · Δt

Where:

Δp =  change in momentum = final momentum - initial momentum

F = constant force.

Δt = time interval.

Let´s calculate the x-component of the momentum after the 0.13 s:

final momentum - 8 kg m/s = -7 N · 0.13 s

final momentum = -7 kg m/s² · 0.13 s + 8 kg m/s

final momentum = 7.09 kg m/s

Now let´s calculate the y-component of the momentum vector after the 0.13 s. Since the particle wasn´t moving in the y-direction, the initial momentum in this direction is zero:

final momentum = 5 kg m/s² · 0.13 s

final momentum = 0.65 kg m/s

Then, the mometum vector will be as follows:

p = (7.09 kg m/s,  0.65 kg m/s)

The magnitude of this vector is calculated as follows:

[tex]|p| = \sqrt{(7.09 kg m/s)^{2} + (0.65 kg m/s)^{2}} = 7.12 kg m/s[/tex]

The momentum of the particle at the end of the 0.13 s time interval is 7.12 kg m/s

a. A beam of light is incident from air on the surface of a liquid. If the angle of incidence is 26.7° and the angle of refraction is 18.3°, Find the critical angle for the liquid when surrounded by air?b. A light ray, traveling in air, strikes the surface of abeaker of mineral oil at an angle of 37.5° with thenormal to the surface. The speed of light in mineral oil is 2.17 x10^8 m/s.. Calculate the angle of refraction.

Answers

Answer:

(a). The critical angle for the liquid when surrounded by air is 44.37°

(b). The angle of refraction is 26.17°.

Explanation:

Given that,

Incidence angle = 26.7°

Refraction angle = 18.3°

(a). We need to calculate the refraction of liquid

Using Snell's law

[tex]n=\dfrac{\sin i}{\sin r}[/tex]

Put the value into the formula

[tex]n=\dfrac{\sin 26.7}{\sin 18.3}[/tex]

[tex]n=1.43[/tex]

We need to critical angle for the liquid when surrounded by air

Using formula of critical angle

[tex]C=\sin^{-1}(\dfrac{1}{n})[/tex]

Put the value into the formula

[tex]C=\sin^{-1}(\dfrac{1}{1.43})[/tex]

[tex]C=44.37^{\circ}[/tex]

(b). Given that,

Incidence angle = 37.5°

Speed of light in mineral [tex]v=2.17\times10^{8}\ m/s[/tex]

We need to calculate the index of refraction

Using formula of index of refraction

[tex]n=\dfrac{c}{v}[/tex]

Put the value into the formula

[tex]n=\dfrac{3\times10^{8}}{2.17\times10^{8}}[/tex]

[tex]n=1.38[/tex]

We need to calculate the angle of refraction

Using Snell's law

[tex]n=\dfrac{\sin i}{\sin r}[/tex]

[tex]\sin r=\dfrac{\sin i}{n}[/tex]

Put the value into the formula

[tex]\sin r=\dfrac{\sin 37.5}{1.38}[/tex]

[tex]r=\sin^{-1}(\dfrac{\sin 37.5}{1.38})[/tex]

[tex]r=26.17^{\circ}[/tex]

Hence, (a). The critical angle for the liquid when surrounded by air is 44.37°

(b). The angle of refraction is 26.17°.

Answer

a) Angle of incidence i  = 26.7°

Angle of refraction r = 18.3°

From Snell’s law index of refraction of the liquid

[tex]n = \dfrac{sin\ i}{sin\ r}[/tex]

[tex]n = \dfrac{sin\ 26.7^0}{sin\ 18.3^0}[/tex]

      n = 1.43

So, critical angle

[tex]C= sin^{-1}(\dfrac{1}{n})[/tex]

[tex]C= sin^{-1}(\dfrac{1}{1.43})[/tex]

       C = 44.33°

b) Angle of incidence, i = 37.5°

  speed of light in mineral oil , v = 2.17 x 10⁸ m/s

  speed of light in air, c = 3 x 10⁸ m/s

refractive index of the oil

 [tex]n = \dfrac{c}{v}[/tex]

 [tex]n = \dfrac{3\times 10^8}{2.17\times 10^8}[/tex]

  n = 1.38

again using Snell's law

[tex]n = \dfrac{sin\ i}{sin\ r}[/tex]

[tex]sin\ r = \dfrac{sin\ i}{n}[/tex]

[tex]sin\ r = \dfrac{sin\ 37.5^0}{1.38}[/tex]

[tex] r = sin^{-1}(0.441)[/tex]

       r = 26.18°

hence, the angle of refraction is equal to r = 26.18°

A small piece of dust of mass m = 4.1 µg travels through an electric air cleaner in which the electric field is 466 N/C. The electric force on the dust particle is equal to the weight of the particle.

(a) What is the charge on the dust particle?
C

(b) If this charge is provided by an excess of electrons, how many electrons does that correspond to?
electrons

Answers

Answer:

Explanation:

mass, m = 4.1 x 10^-6 g

Electric field, E = 466 N/C

Electric force = weight

(a) Electric force = q x E = m x g

where, q be the charge on the dust particle.

q x 466 = 4.1 x 10^-6 x 9.8

q = 8.62 x 10^-8 C

(b) Number of electron  = charge / charge of one electron

n = 8.62 x 10^-8 / (1.6 x 10^-19)

n = 5.4 x 10^11

When setting up a statics problem, does it matter around which point we calculate the torques?

Answers

Answer: Yes, it matters.

Explanation:

Torque is a measure of the ability of an applied force to cause an object to turn and is the rotational analogue to force. In a static system, torque should be measured due to a force and one needs adjust the magnitude of one or more forces.

A glass marble is rubbed against a piece of silk. As a resultthe piece of fabric acquires extra electrons.

What happens to theglass marble?

a)The marble has lost the same number ofelectrons acquired by the piece of silk.

b)The marble acquires a positive charge andrepels the piece of silk.

c)The marble acquires a negative charge andattracts the piece of silk.

d)The marble has acquired the same numberof electrons acquired by the piece of silk.

e)The marble acquires a positive charge andattracts the piece of silk.

f)The marble acquires a negative charge andrepels the piece of silk.

Answers

Answer:

the marble has lost the same number of electrons acquired by the piece of silk.  

the marble acquires a positive charge and attracts the piece of silk.

Explanation:

When an object or a material acquires extra electrons it becomes negatively charged while when it losses electrons it becomes positively charged. The glass marble was rubbed against the silk cloth, and the silk cloth acquires extra electron thereby becoming negatively charged, the same amount of charge the silk cloth acquires was lost from the glass marble thereby causing the marble to become positively charged. Also opposite charges attracts while likes charges repel and due to equal and opposite charge on silk and glass marble, they both will attract each other. thus option A and E is correct.

We have three identical metallic spheres A, B, C. Initially sphere A is charged with charge Q, while B and C are neutral. First, sphere A is brought into contact with sphere B and then separated from it. After that, sphere A is brought into contact with sphere C and then separated from it. Finally, sphere A is brought into contact with sphere B again, and then separated from it.

Answers

Final answer:

When two conducting spheres come into contact, they share their total charge evenly. If sphere A has a charge of -5 nC and sphere B has -3 nC, each sphere will have -4 nC after contact and separation.

Explanation:

When two identical conducting spheres are brought into contact, charge redistribution occurs. The charge will spread evenly across both spheres, because both have equal capacity to hold charge being identical conductors. To find the final charge on each sphere, one must add the initial charges of both spheres and then divide by two because the total charge will be shared equally.

In the scenario given where sphere A has a charge of −5 nC and sphere B has a charge of −3 nC:

Total charge before contact: -5 nC + (-3 nC) = -8 nC

After contact and separation, each sphere will have half the total charge: -8 nC / 2 = -4 nC

Therefore, both sphere A and sphere B will end up with a charge of −4 nC after being brought into contact and separated. The equivalent number of electrons is determined by the charge on each sphere divided by the elementary charge (approximately 1.6 x 10^-19 Coulombs).

The tow spring on a car has a spring constant of 3,086 N / m and is initially stretched 18.00 cm by a 100.0 kg college student on a skateboard. Which of the following is the velocity when the potential energy is 20.0 J?

Select one:

a. This problem cannot be solved without knowing the time because velocity is a function of time.

b. 0.774 m / s

c. 1.00 m / s

d. 0.600 m / s

Answers

Answer:

The velocity of the skateboard is 0.774 m/s.

Explanation:

Given that,

The spring constant of the spring, k = 3086 N/m

The spring is stretched 18 cm or 0.18 m

Mass of the student, m = 100 kg

Potential energy of the spring, [tex]P_f=20\ J[/tex]

To find,

The velocity of the car.

Solution,

It is a case of conservation of energy. The total energy of the system remains conserved. So,

[tex]P_i=K_f+P_f[/tex]

[tex]\dfrac{1}{2}kx^2=\dfrac{1}{2}mv^2+20[/tex]

[tex]\dfrac{1}{2}\times 3086\times (0.18)^2=\dfrac{1}{2}mv^2+20[/tex]

[tex]50-20=\dfrac{1}{2}mv^2[/tex]

[tex]30=\dfrac{1}{2}mv^2[/tex]

[tex]v=\sqrt{\dfrac{60}{100}}[/tex]

v = 0.774 m/s

So, the velocity of the skateboard is 0.774 m/s.

At the equator, the radius of the Earth is approximately 6370 km. A plane flies at a very low altitude at a constant speed of v = 219 m/s. Upon landing, the jet can produce an average deceleration of a=17 m/s^2. How long will it take the plane to circle the Earth at the equator?

Answers

Final answer:

The time it takes for the plane to circle the Earth at the equator is approximately 182588 seconds or about 50.72 hours.

Explanation:

In order to calculate the time it takes for the plane to circle the Earth at the equator, we need to determine the distance of the circumference of the Earth at the equator. The circumference of a circle is given by the formula C = 2πr, where r is the radius of the circle. In this case, the radius is approximately 6370 km. Plugging this value into the formula, we get C ≈ 2π(6370 km) ≈ 40030 km.

Next, we can calculate the time it takes for the plane to travel this distance by using the formula time = distance / speed. The speed of the plane is given as v = 219 m/s, which is equivalent to approximately 0.219 km/s. Therefore, the time it takes for the plane to circle the Earth at the equator is approximately 40030 km / 0.219 km/s ≈ 182588 seconds (or about 50.72 hours).

Learn more about Time to circle the Earth at the equator here:

https://brainly.com/question/30427557

#SPJ12

An old LP record that is originally rotating at 33.3 rad/s is given a uniform angular acceleration of 2.15 rad/s ².
Through what angle has the record turned when its angular speed reaches 72.0 rad/s?

Answers

Answer:

[tex]\theta = 947.7\ rad[/tex]

Explanation:

given,

initial rotating speed = 33.3 rad/s

angular acceleration = 2.15 rad/s²

final angular speed = 72 rad/s

using equation of rotating wheel

[tex]\omega_f = \omega_i + \alpha t[/tex]

[tex]72 = 33.3+ 2.15 t[/tex]

    2.15 t = 38.7

         t = 18 s

now, Again using equation of motion for the calculation of angle

[tex]\theta = \omega_o t +\dfrac{1}{2}\alpha t^2[/tex]

[tex]\theta = 33.3 \times 18 +\dfrac{1}{2}\times 2.15 \times 18^2[/tex]

[tex]\theta = 947.7\ rad[/tex]

the angle record turned is equal to 947.7 radians.

Final answer:

The LP record has turned approximately 1066.51 radians when its angular speed reaches 72.0 rad/s.

Explanation:

To find the angle turned by the LP record when its angular speed reaches 72.0 rad/s, we can use the kinematic equation:

ω^2 = ω0^2 + 2αθ

Where:

ω = final angular velocity = 72.0 rad/s

ω0 = initial angular velocity = 33.3 rad/s

α = angular acceleration = 2.15 rad/s²

θ = angle turned

Plugging in the values:

72.0^2 = 33.3^2 + 2(2.15)θ

Simplifying:

θ = (72.0^2 - 33.3^2) / (2(2.15))

θ ≈ 1066.51 radians

Therefore, the LP record has turned approximately 1066.51 radians when its angular speed reaches 72.0 rad/s.

If an evil genius decided to free the Earth from the Sun by charging both (with an equal charge) to generate an electrical force equal to the gravitational force between them, how much charge would be needed on each?

Answers

Answer:

[tex]2.96866\times 10^{17}\ C[/tex]

Explanation:

G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²

k = Coulomb constant = [tex]8.99\times 10^{9}\ Nm^2/C^2[/tex]

r = Distance between the objects and particles

[tex]q_1=q_2[/tex] = Charges

M = Mass of Sun = [tex]1.989\times 10^{30}\ kg[/tex]

m = Mass of Earth = [tex]5.972\times 10^{24}\ kg[/tex]

Here, the Electric force will balance the gravitational force

[tex]\dfrac{GMm_2}{r^2}=\dfrac{kq_1q_2}{r^2}\\\Rightarrow q=\sqrt{\dfrac{GMm}{k}}\\\Rightarrow q=\sqrt{\dfrac{6.67\times 10^{-11}\times 5.972\times 10^{24}\times 1.989\times 10^{30}}{8.99\times 10^{9}}}\\\Rightarrow q=2.96866\times 10^{17}\ C[/tex]

Charge on each particle will be [tex]2.96866\times 10^{17}\ C[/tex]

If the period of a simple pendulum is T and you increase its length so that it is 4 times longer, what will the new period be? a. T/4b. It is unchanged. C. T/2 d. 2T e. 4T

Answers

Answer:

d. 2T

Explanation:

Period of a simple pendulum: This can be defined as the time taken for a simple pendulum to complete an oscillation.

The S.I unit of the period of a simple pendulum is second (s).

Mathematically the period of a simple pendulum can be represented as

T = 2π√(L/g)................................................ Equation 1

Where T = period of the pendulum, L = length of the pendulum, g = acceleration due to gravity,  π = pie.

Note: If the length of a simple pendulum is increased, the period will also increase, while acceleration due to gravity is constant.

Hence,

T' = 2π√(4L/g) ........................... Equation 2

Where T' is the new period when the length of the pendulum is increased by 4 time its original length.

Dividing equation 1 by equation 2

T/T' = 2π√(L/g)/2π√(4L/g)

T/T' = √L/2√L

T/T' = 1/2

T' = 2T

Thus, the right option is d. 2T

Given two vectors A--> = 4.20 i^+ 7.20 j^ and B--> = 5.70 i^− 2.40 j^ , find the scalar product of the two vectors A--> and B--> .

Find the angle between these two vectors.

Answers

Answer:

[tex]\vec{A}\times \vec{B}=-51.12\hat{k}[/tex]

[tex]\theta=83.2^{\circ}[/tex]

Explanation:

We are given that

[tex]\vec{A}=4.2\hat{i}+7.2\hat{j}[/tex]

[tex]\vec{B}=5.70\hat{i}-2.40\hat{j}[/tex]

We have to find the scalar product and the  angle between these two vectors

[tex]\vec{A}\times \vec{B}=\begin{vmatrix}i&j&k\\4.2&7.2&0\\5.7&-2.4&0\end{vmatrix}[/tex]

[tex]\vec{A}\times \vec{B}=\hat{k}(-10.08-41.04)=-51.12\hatk}[/tex][tex]\hat{k}[/tex]

Angle between two vectors is given by

[tex]sin\theta=\frac{\mid a\times b\mid}{\mid a\mid \mi b\mid}[/tex]

Where [tex]\theta[/tex] in degrees

[tex]\mid{\vec{A}}\mid=\sqrt{(4.2)^2+(7.2)^2}=8.3[/tex]

Using formula[tex]\mid a\mid=\sqrt{x^2+y^2}[/tex]

Where x= Coefficient of unit vector i

y=Coefficient of unit vector j

[tex]\mid{\vec{B}}\mid=\sqrt{5.7)^2+(-2.4)^2}=6.2[/tex]

[tex]\mid{\vec{A}\times \vec{B}}\mid=\sqrt{(-51.12)^2}=51.12[/tex]

Using the formula

[tex]sin\theta=\frac{51.12}{8.3\times 6.2}=0.993[/tex]

[tex]\theta=sin^{-1}(0.993)=83.2[/tex]degrees

Hence, the angle between given two vectors=[tex]83.2^{\circ}[/tex]

Final answer:

The scalar product of vectors A = 4.20 i + 7.20 j and B = 5.70 i - 2.40 j is 6.66. To find the angle between A and B, calculate the magnitudes of each vector and use the cosine formula involving the scalar product and magnitudes.

Explanation:

Finding Scalar Product and Angle Between Two Vectors

To find the scalar product (also known as the dot product) of two vectors A and B, you multiply the corresponding components of the vectors and add them up. For vectors A = 4.20 i + 7.20 j and B = 5.70 i - 2.40 j, the scalar product A · B is:

Scalar Product = (Ax * Bx) + (Ay * By) = (4.20 * 5.70) + (7.20 * -2.40) = 23.94 - 17.28 = 6.66.

To find the angle between the two vectors, we use the formula that involves the scalar product and the magnitudes of the two vectors:

cos(θ) = (A · B) / (|A| * |B|).

First, calculate the magnitudes of A and B:

|A| = √(4.202 + 7.202)|B| = √(5.702 + -2.402)

Then, calculate cos(θ) and finally θ using the arccos function on a calculator. Plug in the scalar product and the magnitudes into the formula to get the angle.

One speaker generates sound waves with amplitude A.
How does the intensity change if we add two more speakers at the same place generating sound waves of the same frequency; one with amplitude 4A in the same phase as the original and the other with the amplitude 2A in the opposite phase?

i) It stays the same.
ii) It is 3x bigger than before.
ii) It is 7x bigger than before.
iv) It is 9x bigger than before.
v) It is 49x bigger than before.

Answers

Answer:

iv) It is 9x bigger than before

Explanation:

As the amplitudes of the new speakers add directly with the original one, taking into account the phase that they have, the composed amplitude of the sound wave is as follows:

At = A + 4A -2A = 3 A

The intensity of the wave, assuming it propagates evenly in all directions, is constant at a given distance from the source, and can be expressed as follows:

I = P/A

where P= Power of the wave source, A= Area (for a point source, is equal to the surface area of a sphere of radius r, where is r is the distance to the source along a straight line)

For a sinusoidal wave, the power is proportional to the square of the amplitude, so the intensity is proportional to the square of the amplitude also.

If the amplitude changes increasing three times, the change in intensity will be proportional to the square of the change in amplitude, i.e., it will be 9 times bigger.

So, the statement iv) is the right one.

A scooter has wheels with a diameter of 120 mm. What is the angular speed of the wheels when the scooter is moving forward at 6.00 m/s?

Answers

To develop this problem we will apply the concepts related to angular kinematic movement, related to linear kinematic movement. Linear velocity can be described in terms of angular velocity as shown below,

[tex]v = r\omega \rightarrow \omega = \frac{v}{r}[/tex]

Here,

v = Lineal velocity

[tex]\omega[/tex]= Angular velocity

r = Radius

Our values are

[tex]v = 6/ms[/tex]

[tex]r = \frac{d}{2} = \frac{120*10^{-3}}{2} = 0.06m[/tex]

Replacing to find the angular velocity we have,

[tex]\omega = \frac{6m/s}{0.06m}[/tex]

[tex]\omega = 100rad/s[/tex]

Convert the units to RPM we have that

[tex]\omega = 100rad/s (\frac{1rev}{2\pi rad})(\frac{60s}{1m})[/tex]

[tex]\omega = 955.41rpm[/tex]

Therefore the angular speed of the wheels when the scooter is moving forward at 6.00 m/s is 955.41rpm

Final answer:

The angular speed of the scooter's wheels when the scooter is moving at 6.00 m/s is 100 rad/sec. This value is calculated using the formula for relating linear velocity, radius, and angular speed, and converting the wheel's diameter to a radius in meters.

Explanation:

To find the angular speed of the scooter's wheels, we need to use the equation that relates linear velocity (v), radius (r), and angular speed (w). This equation is v = r*w where v is the linear speed, r is the radius, and w is the angular speed which we are trying to find.

First, radius r needs to be calculated using the provided diameter as r = diameter / 2 = 120 mm / 2 = 60 mm. Since the linear speed is provided in m/s, we need to convert the radius from mm to m. So, r = 60 mm = 0.06 m.

Then, we can substitute the known values into the equation. 6 m/s = 0.06 m * w, and solve for w: w = (6 m/s) / 0.06 m = 100 rad/s. Therefore, the angular speed of the wheels when the scooter is moving forward at 6.00 m/s is 100 rad/sec.

Learn more about Angular Speed here:

https://brainly.com/question/32114693

#SPJ12

A particle moves along the x axis. It is initially at the position 0.270 m, moving with velocity 0.140 m/s and acceleration 20.320 m/s2. Suppose it moves as a particle under constant acceleration for 4.50 s. Find (a) its position and (b) its velocity at the end of this time interval. Next, assume it moves as a particle in simple harmonic motion for 4.50 s and x 5 0 is its equilibrium position. Find (c) its position and (d) its velocity at the end of this time interval.

Answers

The position and velocity of the particle in equilibrium position at the given parameters are;

A) x = -2.34 m

B) v_x = -1.3 m/s

C) x(4.5) = -0.076 m

D) v = 0.314 m/s

We are given;

Initial distance; x_i = 0.27 m

Initial velocity; v_xi = 0.14 m/s

Acceleration; a_x = - 0.32 m/s²

Time; t = 4.5 s

A) Formula for the particle's position as a function of time under constant acceleration is;

x = x_i + v_xi•t + ½a_x•t²

x = 0.27 + (0.14 × 4.5) + ½(-0.32 × 4.5²)

x = -2.34 m

B) Formula for it's velocity at the end of the time interval is;

v_x = v_xi + a_x•t

v_x = 0.14 + (-0.32 × 4.5)

v_x = -1.3 m/s

C) Formula for position in simple harmonic motion is;

x(t) = A cos(ωt + ϕ)

We know that acceleration is;

a = -ω²x

Thus;

-0.32 = -ω²(0.27)

ω = √(0.32/0.27)

ω = 1.089 rad/s

Now, velocity is the derivative of x(t). Thus;

v(t) = x'(t) = -Aω sin (ωt + ϕ)

At t = 0, we have;

0.14 = -A(1.089) × sin ϕ  - - -(1)

Also, at t = 0,

0.27 = A cos ϕ  - - - (2)

Divide equation 1 by equation 2 to get;

0.14/0.27 = -1.089 tan ϕ

ϕ = tan^(-1) (0.14/(0.27 × -1.089))

ϕ = -25.46°

Thus, putting -25.46° for ϕ in eq 2 gives;

0.27 = A cos (-25.46)

0.27 = A × 0.90183

A = 0.27/0.90183

A = 0.2994

Thus,

x(4.5) = 0.2994 cos((1.089 × 4.5) + (-25.46))

x(4.5) = -0.076 m

D) v = -0.2994 × 1.089 × sin 254.6

v = 0.314 m/s

Read more at; https://brainly.com/question/15089829

Final answer:

The position of the particle after 4.50 s of constant acceleration is 207.360 m, and its velocity is 91.580 m/s. In simple harmonic motion, the position of the particle at the end of 4.50 s is 0 m, and its velocity is -1.080 m/s.

Explanation:

(a) Position:

To find the position of the particle after 4.50 s, we can use the equation x = x0 + v0t + 0.5at^2, where x is the final position, x0 is the initial position, v0 is the initial velocity, a is the acceleration, and t is the time interval.

Plugging in the given values:

x = 0.270 m + (0.140 m/s)(4.50 s) + 0.5(20.320 m/s^2)(4.50 s)^2

x = 0.270 m + 0.630 m + 206.460 m

x = 207.360 m

Therefore, the position of the particle at the end of 4.50 s is 207.360 m.

(b) Velocity:

To find the velocity of the particle at the end of 4.50 s, we can use the equation v = v0 + at, where v is the final velocity.

Plugging in the given values:

v = 0.140 m/s + (20.320 m/s^2)(4.50 s)

v = 0.140 m/s + 91.440 m/s

v = 91.580 m/s

Therefore, the velocity of the particle at the end of 4.50 s is 91.580 m/s.

(c) Position:

Since the particle is in simple harmonic motion, its position can be described by the equation x = x0 + A* sin(ωt + φ), where x0 is the equilibrium position, A is the amplitude, ω is the angular frequency, t is the time, and φ is the phase constant.

Plugging in the given values:

x = 0 + 0.270*sin(4.00 rad/s * 4.50 s + 0)

x ≈ 0.270*sin(18.000 rad)

x ≈ 0.270*sin(π rad)

x ≈ 0 m

Therefore, the position of the particle at the end of 4.50 s in simple harmonic motion is 0 m.

(d) Velocity:

The velocity of the particle in simple harmonic motion can be described by the equation v = A*ω*cos(ωt + φ).

Plugging in the given values:

v = 0.270*4.00*cos(4.00 rad/s * 4.50 s + 0)

v ≈ 1.080*cos(18.000 rad)

v ≈ 1.080*cos(π rad)

v ≈ -1.080 m/s

Therefore, the velocity of the particle at the end of 4.50 s in simple harmonic motion is -1.080 m/s.

Learn more about Particle motion here:

https://brainly.com/question/23148906

#SPJ12

A positively charged glass rod attracts object X. The net charge of object X:A.may be zero or negative.B.may be zero or positive.C.must be negative.D.must be positive.E.must be zero.

Answers

Answer:A

Explanation:

A positively charged glass rod attracts object x. So, object x must be negatively charged or uncharged.

This occurs because opposite charges attract each other or either object x is uncharged and a negative charge is induced in it as glass rod approach the object x.

So option A is correct

Discuss what in particular makes the light bulb a non-ohmic resistor. Specifically, how does temperature affect resistance? Can thermal expansion explain the non-ohmic behavior? If not, describe what happens at the atomic level that accounts for the non-ohmic property

Answers

Final answer:

A light bulb acts as a non-ohmic resistor due to its changing resistance with temperature changes, primarily caused by increased atomic vibrations impeding electron flow. This contrasts with Ohm's Law's assumption of constant resistance, illustrating the complex atomic level interactions that govern a light bulb's resistance and thereby its non-ohmic behavior.

Explanation:

The reason a light bulb is considered a non-ohmic resistor primarily lies in its changing resistance with variations in temperature, a characteristic that defies the principle of Ohm's Law which presumes constant resistance. In a light bulb, particularly an incandescent one, the filament's resistance increases significantly as it heats up from room temperature to its operating temperature. This increase in temperature, and consequently resistance, is not simply due to thermal expansion but is rooted in atomic level interactions.

At the atomic level, as the filament's temperature rises, the atoms inside the metal filament vibrate more vigorously. This enhanced vibration creates more impediments for the free flow of electrons, which is the principal cause of electrical current. Hence, with more obstacles in their path, electrons face increased resistance. This change in resistance with temperature illustrates the non-ohmic behavior as it shows that the resistance isn't constant but varies with temperature. It's clear that thermal expansion plays a role in this scenario, but the key factor is the increased atomic vibrations that hinder electron flow.

The power dissipation in resistors, and by extension in light bulbs, can be described by the equations P = V^2/R and P = I^2R. These seemingly contradictory formulae actually complement each other in explaining how power dissipation can either increase or decrease with rising resistance, depending on whether the scenario is considered from the perspective of voltage or current, further illustrating the complex relationship between these variables in a non-ohmic conductor like a light bulb.

What is the speed of a car going v=1.000mph in SI units? Notice that you will need to change from miles to meters and from hours to seconds. You can do each conversion separately. Use the facts that 1mile=1609m and 1hour=3600s. Express your answer i

Answers

Answer: 0.4469 m/s

Explanation:

First, convert mile into meters.

1 mile = 1609 m

Secondly, convert hour into seconds

1 hour = 3600 s

Finally, convert 1.000 mph to meters per second.

1.000 mph is same as 1 mile / 1 hour

Put SI units we converted earlier.

1 mile / 1 hour = 1609 m / 3600 s

1 mile / 1 hour = 0.4469 m/s

The appropriate solution is "0.4469 m/s". A further explanation is provided below.

According to the question,

Speed of a car, v = 1.000 mph

Given facts:

1 mile = 1609 m1 hour = 3600 s

The speed of the car will be:

= [tex]1 \ mile/hour[/tex]

By substituting the above given values, we get

= [tex]1.000\times \frac{1609 \ m}{3600 \ s}[/tex]

= [tex]1.000\times 0.447[/tex]

= [tex]0.4469 \ m/s[/tex]

Thus the above solution is correct.

Learn more about distance, speed and time here:

https://brainly.com/question/2088319

An uncharged metal sphere hangs from a nylon thread. When a positively chargedglass rod is brought near it, the sphere is drawn toward the rod. But if the spheretouches the rod, it suddenly flies away from the rod. Explain why the sphere is firstattracted and then repelled.

Answers

Answer:

Explanation:

When  a positively charged glass rod is brought near the uncharged sphere (which contains equal amount of positive and negative charge) then it started attracting metal sphere. This occurs because glass rod polarize metal sphere such that negative charge is induced at end near to the rod.

But when rod is touched to sphere it started to repel because some of the rod positive charge goes into metal sphere and thus similar charges repel each other.

       

Julie drives 100 mi to Grandmother's house. on the way to grandmothers h's Julie drives half the distance at 40 mph and half the distance at 60 mph. On her return trip, she drives half the time at 40 mph and half the time at 60 mph.
a) what is Julie's average speed on the way to grandmother's house?
b) what is her average speed in the return trip?

Answers

Answer:

a) On the way to Grandmother´s the average velocity is 48 mi/h.

b) In the return trip, the average velocity is 50 mi/h

Explanation:

Hi there!

The average velocity (AV) is calculated as follows:

AV = Δx / Δt

Where:

Δx = traveled distance = final position - initial position

Δt = elapsed time

a) Let´s find the time it takes Julie to travel 50 mi (half the total distance) at 60 and 40 mph:

At 60 mph:

60 mi/h = 50 mi / Δt

Δt = 50 mi / 60 mi/h = 5/6 h

At 40 mph:

40 mi/h = 50 mi / Δt

Δt = 50 mi / 40 mi/h = 1.25 h

The total time of travel is 1.25 h + 5/6 h = 25/12 h

Then, the AV will be:

AV = 100 mi / 25/12 h = 48 mi/h

On the way to Grandmother´s the average velocity is 48 mi/h.

b)Now let´s calculate the AV on the return trip. During the first half of the trip, the elapsed time is half of the total time (Δt/2) and the traveled distance is unknown, Δx1.

Then, the average velocity during the first half of the trip can be written as follows. :

40 mi/h = Δx1 / (1/2 Δt)

Solving for Δx1:

20 mi/h · Δt = Δx1

During the second half of the trip the average velocity will be:

60 mi/h = Δx2 / (1/2 Δt)

Solving for Δx2:

30 mi/h · Δt = Δx2

The average velocity for the entire trip can be expressed as follows:

AV = Δx / Δt

Δx = Δx1 + Δx2 = 20 mi/h · Δt + 30 mi/h · Δt = 50 mi/h · Δt

Then:

AV = 50 mi/h · Δt / Δt = 50 mi/h

In the return trip, the average velocity is 50 mi/h

If this speed is based on what would be safe in wet weather, estimate the radius of curvature for a curve marked 45 km/hkm/h . The coefficient of static friction of rubber on wet concrete is μs=0.7μs=0.7, the coefficient of kinetic friction of rubber on wet concrete is μk=0.5μk=0.5

Answers

Answer:

 r = 22.78 m

Explanation:

For this exercise let's use Newton's second law

Axis y

                 N- W = 0

                 N = W

X axis

                F = m a

Where the acceleration is centripetal

               a = v² / r

The force is the friction that the formula has

               fr = μ N

               fr = μ mg

Let's replace

            μ m g = m v² / r

           r = v² / μ g

Let's reduce the speed to the SI system

         v = 45 km / h (1000 m / 1 km) (1h / 3600 s) = 12.5 m / s

          r = 12.5 2 / (0.7 9.8)

          r = 22.78 m

A student measures the diameter of a small cylindrical object and gets the following readings: 4.32, 4.35, 4.31, 4.36, 4.37, 4.34 cm (a) What is the average diameter from these readings? (b) What is the standard deviation of these measurements? The student also measured the length of the object to be (0.126 ± 0.005) m and the mass to be object to be (1.66 ± 0.05) kg. Using the method from this week's lab, determine (c) the density and (d) the proportion of error in the density calculation.

Answers

Answer:

a. [tex]\bar{d}=4.34 cm[/tex]

b. [tex]\sigma=0.023 cm[/tex]

c. [tex]\rho=(0.0089\pm 0.00058) kg/cm^{3}[/tex]

Explanation:

a) The average of this values is the sum each number divided by the total number of values.

[tex]\bar{d}=\frac{\Sigma_{i=1}^(N)x_{i}}{N}[/tex]

[tex]x_{i}[/tex] is values of each diameterN is the total number of values. N=6

[tex]\bar{d}=\frac{4.32+4.35+4.31+4.36+4.37+4.34}{6}[/tex]

[tex]\bar{d}=4.34 cm[/tex]

b) The standard deviation equations is:

[tex]\sigma=\sqrt{\frac{1}{N}\Sigma^{N}_{i=1}(x_{i}-\bar{d})^{2}}[/tex]

If we put all this values in that equation we will get:

[tex]\sigma=0.023 cm[/tex]

Then the mean diameter will be:

[tex]\bar{d}=(4.34\pm 0.023)cm[/tex]

c) We know that the density is the mass divided by the volume (ρ = m/V)

and we know that the volume of a cylinder is: [tex]V=\pi R^{2}h[/tex]

Then:

[tex]\rho=\frac{m}{\pi R^{2}h}[/tex]

Using the values that we have, we can calculate the value of density:

[tex]\rho=\frac{1.66}{3.14*(4.34/2)^{2}*12.6}=0.0089 kg/cm^{3}[/tex]

We need to use propagation of error to find the error of the density.

[tex]\delta\rho=\sqrt{\left(\frac{\partial\rho}{\partial m}\right)^{2}\delta m^{2}+\left(\frac{\partial\rho}{\partial d}\right)^{2}\delta d^{2}+\left(\frac{\partial\rho}{\partial h}\right)^{2}\delta h^{2}}[/tex]  

δm is the error of the mass value.δd is the error of the diameter value.δh is the error of the length value.

Let's find each partial derivative:

1. [tex]\frac{\partial\rho}{\partial m}=\frac{4m}{\pi d^{2}h}=\frac{4*1.66}{\pi 4.34^{2}*12.6}=0.0089[/tex]

2.  [tex]\frac{\partial\rho}{\partial d}=-\frac{8m}{\pi d^{3}h}=-\frac{8*1.66}{\pi 4.34^{3}*12.6}=-0.004[/tex]

3. [tex]\frac{\partial\rho}{\partial h}=-\frac{4m}{\pi d^{2}h^{2}}=-\frac{4*1.66}{\pi 4.34^{2}*12.6^{2}}=-0.00071[/tex]

Therefore:

[tex]\delta\rho=\sqrt{\left(0.0089)^{2}*0.05^{2}+\left(-0.004)^{2}*0.023^{2}+\left(-0.00071)^{2}*0.5^{2}}[/tex]

[tex]\delta\rho=0.00058[/tex]

So the density is:

[tex]\rho=(0.0089\pm 0.00058) kg/cm^{3}[/tex]

I hope it helps you!

A glass object receives a positive charge of +3 nC by rubbing it with a silk cloth. In the rubbing process have protons been added to the object or have electrons been removed from it?

Answers

Final answer:

When a glass rod is rubbed with a silk cloth, electrons are removed from the rod, resulting in a positive charge.

Explanation:

When an object, such as a glass rod, is rubbed with a silk cloth, it can acquire a positive charge. In this case, electrons are removed from the object, leaving behind a net positive charge. The process of rubbing causes the cloth to transfer some of its excess electrons to the glass rod, resulting in the glass rod gaining a positive charge.

Ricardo and Jane are standing under a tree in the middle of a pasture. An argument ensues, and they walk away in different directions. Ricardo walks 27.0 m in a direction 60.0 ∘ west of north. Jane walks 16.0 m in a direction 30.0 ∘ south of west. They then stop and turn to face each other. In what direction should Ricardo walk to go directly toward Jane?

Answers

Answer:

the direction that should be walked by Ricardo to go directly to Jane is 23.52 m, 24° east of south

Explanation:

given information:

Ricardo walks 27.0 m in a direction 60.0 ∘ west of north, thus

A= 27

Ax =  27 sin 60 = - 23.4

Ay = 27 cos 60 = 13.5

Jane walks 16.0 m in a direction 30.0 ∘ south of west, so

B = 16

Bx = 16 cos 30 = -13.9

By = 16  sin 30 = -8

the direction that should be walked by Ricardo to go directly to Jane

R = √A²+B² - (2ABcos60)

   = √27²+16² - (2(27)(16)(cos 60))

   = 23.52 m

now we can use the sines law to find the angle

tan θ = [tex]\frac{R_{y} }{R_{x} }[/tex]

         = By - Ay/Bx -Ax

         = (-8 - 13.5)/(-13.9 - (-23.4))

     θ  = 90 - (-8 - 13.5)/(-13.9 - (-23.4))

         = 24° east of south

A stone is dropped into a river from a bridge at a height h above the water. Another stone is thrown vertically down at a time t after the first is dropped. Both stones strike the water at the same time. What is the initial speed of the second stone? Give your answer in terms of the given variables and g. -g

Answers

Answer:

[tex]v_{y_0} = \frac{\frac{g}{2}t(t - 2\sqrt{\frac{2h}{g}})}{\sqrt{\frac{2h}{g}} - t}[/tex]

Explanation:

We will apply the equations of kinematics to both stones separately.

First stone:

Let us denote the time spent after the second stone is thrown as 'T'.

[tex]y - y_0 = v_{y_0}(t+T) + \frac{1}{2}a(t+T)^2\\0 - h = 0 + \frac{1}{2}(-g)(t+T)^2\\(t+T)^2 = \frac{2h}{g}\\T = \sqrt{\frac{2h}{g}}-t[/tex]

Second stone:

[tex]y - y_0 = v_{y_0}T + \frac{1}{2}aT^2\\0 - h = v_{y_0}T -\frac{1}{2}gT^2\\-h = v_{y_0}(\sqrt{\frac{2h}{g}} - t) - \frac{g}{2}(\sqrt{\frac{2h}{g}} - t)^2\\-h = v_{y_0}(\sqrt{\frac{2h}{g}} - t) - \frac{g}{2}(\frac{2h}{g} + t^2 - 2t\sqrt{\frac{2h}{g}})\\-h = v_{y_0}\sqrt{\frac{2h}{g}} - v_{y_0}t - h -\frac{g}{2}t^2 + gt\sqrt{\frac{2h}{g}}\\v_{y_0}(\sqrt{\frac{2h}{g}} - t) = \frac{g}{2}t^2 - gt\sqrt{\frac{2h}{g}}\\v_{y_0} = \frac{\frac{g}{2}t(t - 2\sqrt{\frac{2h}{g}})}{\sqrt{\frac{2h}{g}} - t}[/tex]

Final answer:

The initial speed of the second stone thrown vertically down is the same as its final velocity when it reaches the water, which is given by gt.

Explanation:

To find the initial speed of the second stone, we can use the equation of motion for an object in free fall. The equation is given by: h = ½gt^2, where h is the height of the bridge, g is the acceleration due to gravity, and t is the time taken by the second stone to reach the water.

Rearranging the equation, we can solve for t: t = √(2h/g). Since the second stone is thrown vertically down, its initial velocity is zero. The final velocity of the second stone when it reaches the water is given by: v = gt. Therefore, the initial speed of the second stone is simply the same as its final velocity, which is gt.

Learn more about Stone thrown here:

https://brainly.com/question/32911738

#SPJ3

STOP TO THINK 17.1 Two pulses on a string approach each other at speeds of 1 m/s. What is the shape of the string at t = 6 s?

Answers

Final answer:

At t = 6 seconds, two wave pulses on a string moving toward each other at 1 m/s would have just passed through each other, provided they began more than 6 meters apart. If starting exactly 12 meters apart, they would be overlapping completely at this moment.

Explanation:

Understanding Wave Pulse Interaction on a String

When two wave pulses approach each other on a string, each moving at a speed of 1 m/s, their interaction can be understood through the principles of superposition. At any given moment before and during the overlap, the shape of the string is the sum of the individual displacements of the pulses. So, at t = 6 seconds, since each pulse has traveled a distance of 6 meters toward each other, they would have just passed through each other, assuming that they started more than 6 meters apart. If they started exactly 12 meters apart, at 6 seconds, we would observe them just meeting and overlapping at the midpoint. The string's shape would display features of both pulses combined at the instant of full overlap; thereafter, they would continue on their paths as though they'd passed through each other, effectively unchanged in shape apart from any damping effects.

Other Questions
Let X1, X2, ... , Xn be a random sample from N(, 2), where the mean = is such that [infinity] < < [infinity] and 2 is a known positive number. Show that the maximum likelihood estimator for is ^ = X. What is monarchy?A. rule by a small groupB. rule by the poepleC. rule by a king or queenD. rule by religious E.authoritiesPlz answer fast my phone is abt to die After exposure, your employer must provide you with a copy of the evaluating healthcare professional's written opinion within 15 days. What information must this report contain? Department A occupies 10,000 square feet, Department B occupies 6,000 square feet, and Department C occupies 4,000 square feet. What percent of the total overhead expense should be allocated to Department B?60 percent40 percent30 percent10 percent Solve |2x - 2| < 8 A) { x| x < -3 or x > 5} B) { x|-5 < x < 3} C) { x|-3 < x < 5} What is the wavelength of a sound wave with a frequency of 770 Hz if it speed is 290 m/s? Congress's power to coin money isA. an implied powerB. an enumerated powerC. a non-legislative powerD. an elastic power Limited pediatric pharmacologic research results in drugs being used in the pediatric population despite lacking federally approved indications for use in children. What term describes the use of drugs in this manner? 1 Off label 2 Anecdotal 3 Research equity 4 Informed consent luminum and oxygen react according to the following equation: 4Al(s) +3O2(g) --> 2Al2O3(s) What mass of Al2O3, in grams, can be made by reacting 4.6 g Al with excess oxygen? Pls help me with this question no. 14 asap. will mark brainliest Flywater Inc. is refusing to expand its global operations into North Marland due to the civil wars that frequently occur in the country. This threat of civil wars in the country is an example of:________. Which statement best describes why it is difficult to sell a home during a recession?a.) Mortgage rates are high.b.) Demand greatly decreases.c.)Mortgages become unavailable.d.) Housing prices increase. Which sentence below describes a contact force? A) A baseball bat hits a ball B) A book falls to the floor C) A leaf floats in the air and falls to the ground D) A magnetic force pulls a paper clip toward a magnet Please help!!! When solid NHHS and 0.400 mol NH(g) were placed in a vessel of volume 2.0 L at 24C, the equilibrium [tex]NH_4HS(s) \rightarrow NH_3(g) + H_2S(g)[/tex], for which [tex]K_c = 1.6 x 10^{24}[/tex], was reached. What are the equilibrium concentrations of NH and HS? The nurse leader is teaching the nursing staff about conflicts in an organization. Which statement is inaccurate regarding conflict in an organization? Which of the following is a check on the power of the judicial branch? A. The president overturns a Supreme Court ruling.B. The House of Representatives impeaches a justice.C. The Senate nominates judges for the Supreme Court.D. The Congress rejects a ruling by the Supreme Court. Determine the percent increase in the nominal moment capacity of the section in Problem 2 when including compression steel at top equal to 0.5 the area of the tension steel at the bottom. A beaker contains 175.32g of salt, NaCl(58.44g/mol). Water is added until the final volume is 2 liters. The solution should be described as A. 87.66MB. 29.22MC. 3MD. 1ME. 1.5M _____________________a way in which to understand how clients change, as well as what motivates them to change.It can be used to teach case conceptualization, and build appropriate stage related interventions into treatment plans. Marketing by a service firm to effectively train and motivate its customer-contact employees and all the supporting service people to work as a team to provide customer satisfaction is called ___________________ marketing. Steam Workshop Downloader