An object is traveling such that it has a momentum of magnitude 23.3 kg.m/s and a kinetic energy of 262 J. Determine the following. (a) speed of the object in meters per second. (b) mass of the object in kilograms.

Answers

Answer 1

Explanation:

It is given that,

Momentum of an object, p = 23.3 kg-m/s

Kinetic energy, E = 262 J

(a) Momentum is given by, p = mv

23.3 = mv...........(1)

Kinetic energy is given by, [tex]E=\dfrac{1}{2}mv^2[/tex]

m = mass of the object

v = speed of the object

[tex]E=\dfrac{1}{2}\times (mv)\times v[/tex]

[tex]262=\dfrac{1}{2}\times 23.3\times v[/tex]

v = 22.48 m/s

(2) Momentum, p = mv

[tex]m=\dfrac{p}{v}[/tex]

[tex]m=\dfrac{23.3\ kg-m/s}{22.48\ m/s}[/tex]

m = 1.03 Kg

Hence, this is the required solution.

Answer 2
Final answer:

An object with momentum 23.3 kg.m/s and kinetic energy of 262J is traveling at a speed of approximately 30.21 m/s and its mass is approximately 0.771 kg based on the physics principles of kinetic energy and momentum.

Explanation:

The question involves the physics concepts of momentum and kinetic energy. We are given the momentum (p) of 23.3 kg.m/s and the kinetic energy (KE) of 262 J of an object.

(a) The formula for kinetic energy is KE = 0.5 * m * v^2, where m is the mass of the object and v is its velocity. We can rearrange to find v = sqrt((2*KE) / m). The mass can be obtained from the momentum formula, p = m * v, hence m = p / v. Substituting the second equation into the first gives v = sqrt((2 * KE * v) / p), which simplifies to v = sqrt((2 * 262 J) / 23.3 kg.m/s) = 30.21 m/s.

(b) With the velocity calculated in (a), the mass of the object can now be found by rearranging the momentum formula to m = p / v = 23.3 kg.m/s / 30.21 m/s = 0.771 kg.

Learn more about Momentum and Kinetic Energy here:

https://brainly.com/question/35479656

#SPJ3


Related Questions

An object moving in a straight line changes its velocity uniformly from 2m/s to 4 m/s over a distance of 12 m. What was its acceleration? (A) 0.5 m/s^2 (B) 1 m/s^2 (C) 2 m/s^2 (D) 3 m/s^2

Answers

Answer:A

Explanation:

Initial velocity, u = 2m/s

Final velocity, v = 4m/s

Distance covered, s = 12m

Acceleration, a = ?

Using

v² = u² + 2as

2as = v² - u²

a = v²-u²/2s

a = 4²-2²/2 x 12

a = 16-4/24

a = 12/24

a = 0.5m/s²

What current is produced if 1473 sodium ions flow across a cell membrane every 3.4ju8? 0 5.81 pA O 694 pA O 7.76 pA 5.99 pA

Answers

Answer:

69.4 pA

Explanation:

n = number of sodium ions = 1473

e = magnitude of charge on each sodium ion = 1.6 x 10⁻¹⁹ C

t = time taken to flow across the membrane = 3.4 x 10⁻⁶ sec

Total Charge on sodium ions is given as

q = n e                                            eq-1

Current produced is given as

[tex]i = \frac{q}{t}[/tex]

Using eq-1

[tex]i = \frac{ne}{t}[/tex]

Inserting the values

[tex]i = \frac{(1473)(1.6\times 10^{-19})}{3.4\times 10^{-6}}[/tex]

i = 69.4 x 10⁻¹² A

i = 69.4 pA

A sample of blood is placed in a centrifuge of radius 12.0 cm. The mass of a red blood cell is 3.0 ✕ 10^−16 kg, and the magnitude of the force acting on it as it settles out of the plasma is 4.0 ✕ 10^−11 N. At how many revolutions per second should the centrifuge be operated?

Answers

Answer:

167.85 rev / s

Explanation:

r = 12 cm = 0.12 m, m = 3 x 10^-16 kg, F = 4 x 10^-11 N

F = m r w^2

where, w is the angular velocity.

4 x 10^-11 = 3 x 10^-16 x 0.12 x w^2

w = 1054.1 rad / s

w = 2 π f

f = w / 2 π = 1054.1 / (2 x 3.14) = 167.85 rev / s

The number of revolutions given by the calculated frequency value in which the centrifuge would be operated is 167.8 Hz.

Recall :

Frequency, f = ω/2π

Force, F = mω²r

Mass, m = [tex] 3 \times 10^{-16}[/tex]

Force, F = [tex] 4 \times 10^{-11} N[/tex]

Radius, r = 12 cm = 12/100 = 0.12 m

We calculate the angular velocity, ω thus :

ω² = F/mr

ω² = [tex] \frac{4 \times 10^{-11}}{3 \times 10^{-16} \times 0.12 = 11.11 \times 10^{5}[/tex]

ω = [tex] \sqrt{1.11 \times 10^{6}} = 1053.56 rad/s[/tex]

Frequency = 1053.56 ÷ (2π)

Frequency = 167.68 Hz

Therefore, the Number of revolutions per seconds would be about 167.8 Hz

Learn more : https://brainly.com/question/11607177

Hydro-Quebec transmits power from hydroelectric dams in the far north of Quebec to the city of Montreal at 735kV. The lines are 935 km long and are 3.50 cm in diameter. Given the resistivity of copper is 1.68 x 10^-8 Ω.m. a) find the resistance of one of the lines, and b) the current carried by the wire.

Answers

Answer:

a)

16.33 Ω

b)

45009.18 A

Explanation:

a)

L = length of the line = 935 km = 935000 m

d = diameter of the line = 3.50 cm = 0.035 m

ρ = resistivity of the line = 1.68 x 10⁻⁸ Ω.m

Area of cross-section of the line is given as

A = (0.25) πd²

A = (0.25) (3.14) (0.035)²

A = 0.000961625 m²

Resistance of the line is given as

[tex]R=\frac{\rho L}{A}[/tex]

inserting the values

R = (1.68 x 10⁻⁸) (935000)/(0.000961625)

R = 16.33 Ω

b)

V = potential difference across the line = 735 kv = 735000 Volts

i = current carried by the wire

Using ohm's law, current carried by the wire is given as

[tex]i=\frac{V}{R}[/tex]

i = 735000/16.33

i = 45009.18 A

An air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm2, separated by a distance of 1.70 mm. A 21.0-V potential difference is applied to these plates. (a) Calculate the electric field between the plates.

Answers

Answer:

12353 V m⁻¹ = 12.4 kV m⁻¹

Explanation:  

Electric field between the plates of the parallel plate capacitor depends on the potential difference across the plates and their distance of separation.Potential difference across the plates V over the distance between the plates gives the electric field between the plates. Potential difference is the amount of work done per unit charge and is given here as 21 V. Electric field is the voltage over distance.

E = V ÷ d = 21 ÷ 0.0017 = 12353 V m⁻¹

A 1240-kg car is traveling with a speed of 15.0 m/s. What is the magnitude of the horizontal net force that is required to bring the car to a halt in a distance of 31.8 m?

Answers

Answer:

Force required is 4387 N in the opposite direction of motion.

Explanation:

We have equation of motion v² = u² + 2as

      v = 0m/s , u = 15 m/s, s = 31.8 m

  Substituting

         0² = 15² + 2 x a x 31.8

          a = -3.54 m/s²

So, deceleration = 3.54 m/s²

Force = Mass x Acceleration

          = 1240 x -3.54 = -4387 N

So force required is 4387 N in the opposite direction of motion.

An electron travels undeflected in a path that is perpendicular to an electric feld of 8.3 x 10 v/m. It is also moving perpendicular to a magnetic field with a magnitude of 7.3 x 103 T. If the electric field is turned off, at what radius would the electron orbit? O 124 x 10*m 889 x 104 m O 9.85 x 104m O 1.06 x 10o m

Answers

Answer:

[tex]8.6\cdot 10^{-18} m[/tex]

Explanation:

Initially, the electron is travelling undeflected at constant speed- this means that the electric force and the magnetic force acting on the electron are balanced. So we can write

q E = q v B

where

q is the electron's charge

[tex]E=8.3\cdot 10 V/m[/tex] is the electric field magnitude

v is the electron's speed

[tex]B=7.3\cdot 10^3 T[/tex] is the magnitude of the magnetic field

Solving for v,

[tex]v=\frac{E}{B}=\frac{8.3 \cdot 10 V/m}{7.3\cdot 10^3 T}=0.011 m/s[/tex]

Then the electric field is turned off, so the electron (under the influence of the magnetic field only) will start moving in a circle of radius r. Therefore, the magnetic force will be equal to the centripetal force:

[tex]qvB= m \frac{v^2}{r}[/tex]

where

[tex]q=1.6\cdot 10^{-19} C[/tex] is the electron's charge

[tex]m=9.11\cdot 10^{-31} kg[/tex] is the electron's mass

Solving for r, we find the radius of the electron's orbit:

[tex]r=\frac{mv}{qB}=\frac{(9.11\cdot 10^{-31} kg)(0.011 m/s)}{(1.6\cdot 10^{-19} C)(7.3\cdot 10^3 T)}=8.6\cdot 10^{-18} m[/tex]

The radioactive isotope of lead, Pb-209, decays at a rate proportional to the amount present at time t and has a half-life of 3.3 hours. If 1 gram of this isotope is present initially, how long will it take for 80% of the lead to decay? (Round your answer to two decimal places.)

Answers

Apologies for the other person’s answer.

The half-life of an isotope describes the amount of time for half of the radioactive substance to decay into another form - in this case, the half life of this lead isotope is 3.3 hours.

We will use the two equations that are made for radioactive decay:

k = (ln(2))/ (t1/2)

k = (1/(to))ln(No/Nt),

where “t1/2” describes the half-life time (3.3 hours), “No” (actually “N zero”) refers to the amount of the original radioactive substance (how much was there initially), “Nt” refers to the amount of radioactive substance at some time “to”, and “to” (actually “t zero”) describes the amount of time required to reach the amount defined by “Nt”. It’s a lot.

We can assign the information given in the question to each of these:

t1/2= 3.3 hours
No = 1 gram
Nt = 0.2 grams (80% decayed)

Now, we just need to simplify the equations using these values.

k = ln2/(t1/2) = ln2 / 3.3 hours = 0.21

0.21 = (1/(to))ln(No/Nt) = (1/(to))ln(1/0.2) = (1/(to))(1.60944)

0.21 = (1.60944/(to))

to = 7.664 hours

It will take approximately 7.664 hours for the sample of lead to decay by 80 percent.

Hope this helps!

Final answer:

The question inquires about the time needed for 80% of Pb-209 to decay, knowing its half-life is 3.3 hours. By applying the exponential decay formula, we calculate that approximately 7.39 hours are required for 80% of Pb-209 to decay.

Explanation:

The question involves the concept of radioactive decay and specifically asks how long it will take for 80% of Pb-209 to decay, given that its half-life is 3.3 hours. To find the time required for 80% of the lead to decay, we use the half-life formula and the property that radioactive decay is an exponential process. Since 80% decay means 20% remains, we set up the equation based on the exponential decay formula: N = N0(1/2)(t/T), where N is the remaining amount of substance, N0 is the initial amount, t is the time elapsed, and T is the half-life of the substance.

Substituting the given values and solving for t, we find:

N0 = 1 gram (100% initially)

N = 0.2 grams (20% remains)

T = 3.3 hours

Thus, the equation becomes 0.2 = 1(1/2)(t/3.3). Solving for t gives us the time required for 80% decay.

After calculations, the result is that it takes approximately 7.39 hours for 80% of the Pb-209 to decay. This showcases the practical application of exponential decay and half-life in determining the amount of a radioactive substance that remains after a given period.

A 350-g air track cart is traveling at 1.25 m/s and a 280-g cart traveling in the opposite direction at 1.33 m/s. What is the speed of the center of mass of the two carts?

Answers

Answer:

The speed of the center of mass of the two carts is 0.103 m/s

Explanation:

It is given that,

Mass of the air track cart, m₁ = 350 g = 0.35 kg

Velocity of air track cart, v₁ = 1.25 m/s

Mass of cart, m₂ = 280 g = 0.28 kg

Velocity of cart, v₂ = -1.33 m/s (it is travelling in opposite direction)

We need to find the speed of the center of mass of the two carts. It is given by the following relation as :

[tex]v_{cm}=\dfrac{m_1v_1+m_2v_2}{m_1+m_2}[/tex]

[tex]v_{cm}=\dfrac{0.35\ kg\times 1.25\ m/s+0.28\ kg\times (-1.33\ m/s)}{0.35\ kg+0.28\ kg}[/tex]

[tex]v_{cm}=0.103\ m/s[/tex]

Hence, this is the required solution.

A marble is dropped from a toy drone that is 25 m above the ground, and slowly rising with a vertical velocity of 0.8 m/s. How long does it take the marble to reach the ground?

Answers

Answer:

2.18 s

Explanation:

H = - 25 m ( downwards)

U = - 0.8 m/s

g = - 9.8 m/s^2

Let time taken is t.

Use second equation of motion

H = u t + 1/2 g t^2

- 25 = - 0.8 t - 1/2 × 9.8 × t^2

4.9 t^2 + 0.8 t - 25 = 0

By solving we get

t = 2.18 s

A block of mass 0.240 kg is placed on top of a light, vertical spring of force constant 5 200 N/m and pushed downward so that the spring is compressed by 0.096 m. After the block is released from rest, it travels upward and then leaves the spring. To what maximum height above the point of release does it rise? (Round your answer to two decimal places.)

Answers

Answer:

10.19 m

Explanation:

Energy is conserved, so elastic energy stored in spring = gravitational energy of block.

1/2 kx² = mgh

h = kx² / (2mg)

h = (5200 N/m) (0.096 m)² / (2 × 0.240 kg × 9.8 m/s²)

h = 10.19 m

A particle moves in a straight line and has acceleration given by a(t) = 12t + 10. Its initial velocity is v(0) = −5 cm/s and its initial displacement is s(0) = 9 cm. Find its position function, s(t).

Answers

Answer:

The position function is [tex]s_{t}=2t^3+5t^2-5t+9[/tex].

Explanation:

Given that,

Acceleration [tex]a =12t+10[/tex]

Initial velocity [tex]v_{0} = -5\ cm/s[/tex]

Initial displacement [tex]s_{0}=9\ cm[/tex]

We know that,

The acceleration is the rate of change of velocity of the particle.

[tex]a = \dfrac{dv}{dt}[/tex]

The velocity is the rate of change of position of the particle

[tex]v=\dfrac{dx}{dt}[/tex]

We need to calculate the the position

The acceleration is

[tex]a_{t} = 12t+10[/tex]

[tex]\dfrac{dv}{dt} = 12t+10[/tex]

[tex]a_{t}=dv=(12t+10)dt[/tex]

On integration both side

[tex]\int{dv}=\int{(12t+10)}dt[/tex]

[tex]v_{t}=6t^2+10t+C[/tex]

At t = 0

[tex]v_{0}=0+0+C[/tex]

[tex]C=-5[/tex]

Now, On integration again both side

[tex]v_{t}=\int{ds_{t}}=\int{(6t^2+10t-5)}dt[/tex]

[tex]s_{t}=2t^{3}+5t^2-5t+C[/tex]

At t = 0

[tex]s_{0}=0+0+0+C[/tex]

[tex]C=9[/tex]

[tex]s_{t}=2t^3+5t^2-5t+9[/tex]

Hence, The position function is [tex]s_{t}=2t^3+5t^2-5t+9[/tex].

Final answer:

To find the position function of a particle given acceleration a(t) = 12t + 10, one integrates twice. The first integral gives the velocity function, the second gives the position or displacement function. These are determined to be v(t) = 6t^2 + 10t - 5 and s(t) = 2t^3 +5t^2 - 5t + 9, respectively.

Explanation:

The subject of this problem involves calculating the position function, or displacement, of a particle given an acceleration function, initial velocity, and initial position. In this case, acceleration is given by a(t) = 12t + 10.

To find the velocity function, v(t), you integrate the acceleration function: ∫a(t) dt = ∫(12t + 10) dt = 6t^2 + 10t + C1, where C1 is the constant of integration. We know that v(0) = −5 cm/s, so C1 is -5: the full velocity function is v(t) = 6t^2 + 10t - 5.

We then integrate the velocity function to find the position function, s(t): ∫v(t) dt = ∫(6t^2 + 10t - 5) dt = 2t^3 +5t^2 - 5t + C2. Given s(0) = 9 cm, we find C2 = 9. The position function s(t) is therefore s(t) = 2t^3 +5t^2 - 5t + 9.

Learn more about Particle displacement here:

https://brainly.com/question/29691238

#SPJ11

An 92-kg football player traveling 5.0m/s in stopped in 10s by a tackler. What is the original kinetic energy of the player? Express your answer to two significant figures and include the appropriate units. What average power is required to stop him? Express your answer to two significant figures and include the appropriate units.

Answers

Explanation:

It is given that,

Mass of the football player, m = 92 kg

Velocity of player, v = 5 m/s

Time taken, t = 10 s

(1) We need to find the original kinetic energy of the player. It is given by :

[tex]k=\dfrac{1}{2}mv^2[/tex]

[tex]k=\dfrac{1}{2}\times (92\ kg)\times (5\ m/s)^2[/tex]

k = 1150  J

In two significant figure, [tex]k=1.2\times 10^3\ J[/tex]

(2) We know that work done is equal to the change in kinetic energy. Work done per unit time is called power of the player. We need to find the average power required to stop him. So, his final velocity v = 0

i.e. [tex]P=\dfrac{W}{t}=\dfrac{\Delta K}{t}[/tex]

[tex]P=\dfrac{\dfrac{1}{2}\times (92\ kg)\times (5\ m/s)^2}{10\ s}[/tex]

P = 115 watts

In two significant figures, [tex]P=1.2\times 10^2\ Watts[/tex]

Hence, this is the required solution.  

A 6.0-μF air-filled capacitor is connected across a 100-V voltage source. After the source fully charges the capacitor, the capacitor is immersed in transformer oil (of dielectric constant 4.5). How much ADDITIONAL charge flows from the voltage source, which remained connected during the process?

Answers

Answer:

[tex]2.1\cdot 10^{-3} C[/tex]

Explanation:

The initial charge stored on the capacitor is given by

[tex]Q_0 =C_0 V[/tex]

where

[tex]C_0 = 6.0 \mu F = 6.0 \cdot 10^{-6}F[/tex] is the initial capacitance

V = 100 V is the potential difference across the capacitor

Solving the equation,

[tex]Q_0 = (6.0 \cdot 10^{-6}F)(100 V)=6.0 \cdot 10^{-4}C[/tex]

The charge stored in the capacitor when inserting the dielectric is

[tex]Q = k Q_0[/tex]

where

k = 4.5 is the dielectric constant

Substituting,

[tex]Q=(4.5)(6.0 \cdot 10^{-4}C)=2.7\cdot 10^{-3}C[/tex]

So the additional charge is

[tex]\Delta Q=Q-Q_0 = 2.7 \cdot 10^{-3}C - 6.0 \cdot 10^{-4}C=2.1\cdot 10^{-3} C[/tex]

Final answer:

The additional charge that flows into the capacitor once it is immersed in transformer oil (of dielectric constant 4.5) and kept connected to the source is 2100 μC.

Explanation:

The question involves a capacitor that is connected across a 100-V voltage source and then submerged in transformer oil. The capacitor initially charges to capacity while in the air. When a capacitor is then immersed in a material with a dielectric constant, its ability to store charge improves. Here, the dielectric constant of the transformer oil is given as 4.5, suggesting that the capacitor's capacity to store charge will increase 4.5 times as compared to when it was in air.

The additional charge that flows into the capacitor can be calculated using the formula for the charge in a capacitor, Q = CV. The initial charge (Q1) on the capacitor when it was in air would be Q1 = CV1 = 6.0 μF * 100 V = 600 μC. After immersing in transformer oil, the capacitance would increase by a factor of 4.5, giving a new capacitance C2 = 4.5 * 6.0 μF = 27.0 μF. The new charge (Q2) would be Q2 = CV2 = 27.0 μF * 100 V = 2700 μC. Hence the additional charge that's flown from the source would be Q2 - Q1 = 2700 μC - 600 μC = 2100 μC.

Learn more about Capacitors and Dielectrics here:

https://brainly.com/question/34032783

#SPJ3

An object is moving east, and it’s velocity changes from 65m/s to 25m/s in 10 seconds. Which describes the acceleration?

Answers

Answer:

4 m/s2 in negative acceleration

Explanation:

If An object is moving east, and it’s velocity changes from 65m/s to 25m/s in 10 seconds, it is 4 m/s2 in negative acceleration.

Hope this helps!

Answer:

[tex]-4\frac{m}{s^2}[/tex]

Explanation:

The object changes its speed over some time, this means that there is an acceleration.

It has a uniformly accelerated movement.

The Formula for finding speed in a uniformly accelerated motion is

[tex]a=\frac{V_{f}-V_{o}}{t}[/tex]

[tex]V_{o}= 65\frac{m}{s}\\V_{f}= 25\frac{m}{s} \\t= 10s[/tex]

Replace

[tex]a=\frac{(25-65)\frac{m}{s} }{10 s}\\ a=\frac{-40\frac{m}{s} }{10s}\\a= -4\frac{m}{s^2}[/tex]

Acceleration gives us a negative value this means that it is slowing.

A 19.4 cm pendulum has a period of 0.88 s. What is the free-fall acceleration at the pendulum's location?

Answers

Answer:

Acceleration due to gravity value

[tex]=9.89m/ {s}^{2} [/tex]

Explanation:

Time period of simple pendulum is given by the expression

[tex]T=2\pi\sqrt{\frac{l}{g}} \\ [/tex]

Here we have

T = 0.88 s

l = 19.4 cm = 0.194 m

Substituting

[tex]0.88=2\pi\sqrt{\frac{0.194}{g}}\\\\\frac{0.194}{g}=0.0196\\\\g=9.89m/s^2 \\ [/tex]

Acceleration due to gravity value

[tex]=9.89m/s^2 \\ [/tex]

A projectile is shot from the edge of a cliff 140 m above ground with an initial speed of 120 m/s at an angle of 38 degrees above the horizontal. What is the time taken by the projectile to hit the ground 140 m below the cliff?(g = 9.8 m/s²)

Answers

Answer:

17 seconds

Explanation:

In the y direction:

y = y₀ + v₀ᵧ t + ½ gt²

0 = 140 + (120 sin 38) t + ½ (-9.8) t²

4.9 t² - 73.9 t - 140 = 0

Solve with quadratic formula:

t = [ -b ± √(b² - 4ac) ] / 2a

t = [ 73.9 ± √((-73.9)² - 4(4.9)(-140)) ] / 9.8

t = -1.7, 16.8

Since t can't be negative, t = 16.8.  Rounding to 2 sig-figs, the projectile lands after 17 seconds.

The bending of light as it moves from one medium to another with differing indices of refraction is due to a change in what property of the light? A) amplitude B) period C) frequency D speed E) Color

Answers

Answer:

D]  speed

Explanation:

Ramon and Sally are observing a toy car speed up as it goes around a circular track. Ramon says, “The car’s speeding up, so there must be a net force parallel to the track.” “I don’t think so,” replies Sally. “It’s moving in a circle, and that requires centripetal acceleration. The net force has to point to the center of the circle.” Do you agree with Ramon, Sally, or neither

Answers

Answer:

Neither

Explanation:

In this situation, the net force acting on the toy car moving in the circle has two components:

- There is a component which is tangential (parallel) to the circle - we can understand this by the fact that the car is speeding up: this means that its tangential speed is changing, so it has a tangential acceleration, therefore there must be a component of the force tangential to the circle (parallel to the circle)

- There is a component which is radial to the circle, pointing towards the centre - this is called centripetal force. This is due to the fact that the car is constantly changing direction of motion: so, there must be a force that causes this change in direction of the car, and this force points towards the centre of the circle, and it is called centripetal force.

Select the impulse-momentum bar charts for the next problems. A 1.0-kg block moving to the right at speed 3.0 m/s collides with an identical block also moving to the right at a speed 1.0 m/s. Both blocks stick together and move to the right. What is their speed after collision?

Answers

Answer with Explanation:

since the two blocks move (stick) together, the collision is inelastic, which does not conserve kinetic energy.  So do not use kinetic energy consideration.

Fortunately, in such a situation, momentum is still conserved.

Momentum of 1.0 kg block

= 1.0 * 3.0 = 3.0 kg-m/s

Momentum of second block

= 1.0 * 1.0 = 1.0 kg-m/s

Total mass after collision = 1.0+1.0 = 2.0 kg

Common velocity after collision

= total momentum / total mass

= (3.0+1.0)/2.0 = 2.0 m/s

A tiny object carrying a charge of +35 μC and a second tiny charged object are initially very far apart. If it takes 32 J of work to bring them to a final configuration in which the +35 μC object i is at x = 1.00 mm, y = 1.00 mm, and the other charged object is at x = 1.00 mm, y = 3.00 mm (Cartesian coordinate system), find the magnitude of the charge on the second object. (k = 1/4πε 0 = 8.99 × 109 N · m2/C2)

Answers

Final answer:

The magnitude of the charge on the second object is 0.025 μC and its sign is negative because it is required work to bring the two charges together, suggesting these are opposite charges and repel each other.

Explanation:

The problem can be solved using the formula for the work done on a charge moving in an electric field, which is determined by the formula W = k * q1 * q2 / r, where k is the Coulomb's constant (8.99 × 10⁹ N · m²/C²), q1 and q2 are the charges, and r is the distance between them. From the problem, we know W = 32J, q1 = +35 μC, and r = 2.00 mm (the difference in the y-coordinates). Solving for q2 gives q2 = W * r / (k * q1) = 32J * 2.00 x 10⁻³m / (8.99 × 10⁹ N · m²/C² * 35 x 10⁻⁶C) = approximately -0.025 μC. Therefore, the magnitude of the charge on the second object is 0.025 μC, and its sign is negative because it takes work to bring the two charges together.

Learn more about Electric Charge and Field here:

https://brainly.com/question/27091125

#SPJ12

A bullet is shot at an angle of 32° above the horizontal on a level surface. It travels in the air for 6.4 seconds before it strikes the ground 92m from the shooter. What was the maximum height reached by the bullet?

Answers

Answer:

H = 4.12 m

Explanation:

As we know that horizontal range is the distance moved in horizontal direction

Since horizontal direction has no acceleration

so here we have

[tex]Range = v_x T[/tex]

here we know that

[tex]v_x = vcos32[/tex]

so from above formula

[tex]92 = (vcos32)(6.4)[/tex]

[tex]v = 16.95 m/s[/tex]

now we have maximum height is given as

[tex]H = \frac{(vsin32)^2}{2g}[/tex]

[tex]H = \frac{(16.95 sin32)^2}{2(9.8)}[/tex]

[tex]H = 4.12 m[/tex]

There are competitions in which pilots fly small planes low over the ground and drop weights, trying to hit a target. A pilot flying low and slow drops a weight; it takes 2.0 s to hit the ground, during which it travels a horizontal distance of 100 m. Now the pilot does a run at the same height but twice the speed. How much time does it take the weight to hit the ground? How far does it travel before it lands?

Answers

Answer:

2.0 s, 200 m

Explanation:

Time to hit the ground depends only on height.  Since the plane is at the same height, the weight lands at the same time as before, 2.0 s.

Since the plane is going twice as fast, the weight will travel twice as far (ignoring air resistance).  So it will travel a horizontal distance of 200 m.

Answer:

1) 2 seconds

2) 200 m

Explanation:

1) Fall time at initial speed [tex]s_{1}[/tex] = [tex]t_{1}[/tex]

  Fall time at final speed [tex]s_{2}[/tex] = [tex]t_{2}[/tex]

  Initial fall height [tex]h_{1}[/tex] at initial speed = Final fall height [tex]h_{2}[/tex] at final speed i.e [tex]h_{1}[/tex] = [tex]h_{2}[/tex]

s = speed

t = time

h = height

Therefore, since fall time depends on fall height where acceleration due to gravity (g) is constant,

Fall time at [tex]s_{1}[/tex] = Fall time at [tex]s_{2}[/tex]

i.e [tex]t_{1}[/tex] = [tex]t_{2}[/tex] = 2.0 s

Time taken to land = 2.0 s

2) Initial distance traveled ([tex]S_{1}[/tex]) at initial speed [tex]s_{1}[/tex] = 100 m

   Final speed [tex]s_{2}[/tex] is double initial speed i.e [tex]s_{2}[/tex] = [tex]2s_{1}[/tex]

Therefore, since distance traveled is directly proportional to speed,

Final distance traveled [tex]S_{2}[/tex] at final speed [tex]s_{2}[/tex] is double initial distance [tex]S_{1}[/tex]

i.e [tex]S_{2}[/tex] = [tex]2S_{1}[/tex]

    [tex]2S_{1}[/tex] = 2 x 100 m = 200 m

Distance traveled = 200 m

How many electrons leave a 9.0V battery every minute if it is connected to a resistance of 1.4?? O 80x 1020 O 6.7x 1020 O 5.1 x 1021 O 24x 1021

Answers

Answer:

2.4 x 10^21

Explanation:

V = 9 V, R = 1.4 ohm, t = 1 minute = 60 second

Use Ohm's law

V = I R

I = V / R

I = 9 / 1.4

I = 6.43 A

Now use Q = I t

Q = 6.43 x 60 = 385.7 C

Number of electrons passing in 1 minute , n

= total charge in one minute / charge of one electron

n = 385.7 / (1.6 x 10^-19) = 2.4 x 10^21

106 m/s in a uniform 1.9 x 105 N/C electric field. The field accelerates the Problem 6: An electron has an initial velocity of 5.25 electron in the direction opposite to its initial velocity. Part (a) What is the direction of the electric field? MultipleChoice 1) The field is in the direction of the electron's initial velocity 2) The field is in the direction to the right of the clectron's initial velocity 3) The ficld is in the opposite dircction of the elcctron's initial velocity 4) The field is in another direction not listed here Part (b) How far does the electron travel before coming to rest in m? Numeric : A numeric value is expected and not an expression Part (c) How long does it take the clectron to come to rest in s? Numeric A numeric value is expected and not an expression. Part (d) What is the magnitude of the electron's velocity (in m/s) when it returns to its starting point in the opposite direction of its initial velocity? Numeric : A numeric value is expected and not an expression

Answers

(a) 1) The field is in the direction of the electron's initial velocity

The electric field is in a direction opposite to the initial velocity of the electron.

Let's remind that, when an electric charge is immersed in an electric field:

- if the charge is positive, the charge experiences a force in the same direction as the electric field direction

- if the charge is negative, the charge experiences a force in the opposite direction to the electric field direction

In this case, we have an electron: so the electric force exerted on the electron will be in a direction opposite to the direction of the electric field. Since the electron is accelerated in a direction opposite to the electron's initial velocity, this means that the electric force is in a direction opposite to the initial velocity, and so the electric field must be in the same direction as the electron's initial velocity.

(b) [tex]4.13\cdot 10^{-4} m[/tex]

We have:

Electron's initial velocity: [tex]u=5.25\cdot 10^6 m/s[/tex]

Electric field magnitude: [tex]E=1.9 \cdot 10^5 N/C[/tex]

Electron charge: [tex]q=-1.6\cdot 10^{-19} C[/tex]

Mass of the electron: [tex]m=9.11\cdot 10^{-31}kg[/tex]

The electric force exerted on the electron is:

[tex]F=qE=(-1.6\cdot 10^{-19} C)(1.9\cdot 10^5 N/C)=-3.04\cdot 10^{-14}N[/tex] (the negative sign means the direction of the force is opposite to its initial velocity)

The electron's acceleration is given by:

[tex]a=\frac{F}{m}=\frac{3.04\cdot 10^{-14} N}{9.11\cdot 10^{-31} kg}=-3.34\cdot 10^{16} m/s^2[/tex]

Now we can use the SUVAT equation:

[tex]v^2 - u^2 = 2ad[/tex]

where

v = 0 is the final speed (the electron comes to rest)

d is the total distance travelled by the electron

Solving for d,

[tex]d=\frac{v^2-u^2}{2a}=\frac{0-(5.25\cdot 10^6 m/s)^2}{2(-3.34\cdot 10^{16} m/s^2)}=4.13\cdot 10^{-4} m[/tex]

(c) [tex]1.57\cdot 10^{-10}s[/tex]

We can use the following equation:

[tex]a=\frac{v-u}{t}[/tex]

where we have

[tex]a=-3.34\cdot 10^{16}m/s^2[/tex] is the electron's acceleration

v = 0 is its final speed

[tex]u=5.25\cdot 10^6 m/s[/tex] is the initial speed

t is the time it takes for the electron to come at rest

Solving for t,

[tex]t=\frac{v-u}{a}=\frac{0-(5.25\cdot 10^6 m/s)}{-3.34\cdot 10^{16} m/s^2}=1.57\cdot 10^{-10}s[/tex]

(d) [tex]5.25\cdot 10^6 m/s[/tex]

This part of the problem is symmetrical to the previous part. In fact, the force exerted on the electron is the same as before (in magnitude), but in the opposite direction. This also means that the acceleration is the same (in magnitude), but in the opposite direction.

So we have:

u = 0 is the initial speed of the electron

[tex]a=3.34\cdot 10^{16}m/s^2[/tex]

[tex]d=4.13\cdot 10^{-4} m[/tex] is the distance covered to go back

So we can use the following equation:

[tex]v^2 - u^2 = 2ad[/tex]

to find v, the new final speed:

[tex]v=\sqrt{u^2 +2ad}=\sqrt{0^2 + 2(3.34\cdot 10^{16} m/s^2)(4.13\cdot 10^{-4} m)}=5.25\cdot 10^6 m/s[/tex]

A bearing is designed to ____ A reduce friction B. support a load C.guide moving parts such as wheels, shafts and pivots D. all of the above

Answers

Answer:

Option (A)

Explanation:

A ball bearing is a device which is use to reduce the friction.

The outer rim of the bearing is fixed with the part of machine and inner rim is fitted into shafts. Now the shafts rotates and only the small spheres in the bearing will rotate. The friction can be further reduced by apply the oil or grease to the bearing.

A particle travels in a circular orbit of radius 21 m. Its speed is changing at a rate of 23.1 m/s2 at an instant when its speed is 37.2 m/s. What is the magnitude of the acceleration (in m/s?) of the particle?

Answers

The particle has an acceleration vector with one component directed toward the center of its orbit, and the other directing tangentially to its orbit. Call these components [tex]\vec a_c[/tex] ([tex]c[/tex] for center) and [tex]\vec a_t[/tex] ([tex]t[/tex] for tangent). Then its acceleration vector has magnitude

[tex]|\vec a|=\sqrt{\|\vec a_c\|^2+\|\vec a_t\|^2}[/tex]

We have

[tex]\|\vec a_c\|=\dfrac{\|\vec v\|^2}r[/tex]

where [tex]\|\vec v\|[/tex] is the particle's speed and [tex]r[/tex] is the radius of orbit, so

[tex]\|\vec a_c\|=\dfrac{\left(37.2\frac{\rm m}{\rm s}\right)^2}{21\,\rm m}=65.9\dfrac{\rm m}{\mathrm s^2}[/tex]

We're given that the particle's speed changes at a rate of 23.1 m/s^2. Its velocity vector points in the same direction as [tex]\vec a_t[/tex], i.e. perpendicular to [tex]\vec a_c[/tex], so

[tex]\|\vec a_t\|=23.1\dfrac{\rm m}{\mathrm s^2}[/tex]

Then the magnitude of the particle's acceleration is

[tex]\|\vec a\|=\sqrt{\left(65.9\dfrac{\rm m}{\mathrm s^2}\right)^2+\left(23.1\dfrac{\rm m}{\mathrm s^2}\right)^2}=\boxed{69.8\dfrac{\rm m}{\mathrm s^2}}[/tex]

Final answer:

The magnitude of the acceleration of the particle is approximately 70.55 m/s^2, calculated by using the formulas for combined radial and tangential acceleration in circular motion.

Explanation:

In this physics problem, the particle not only moves around in a circle but is also experiencing an increase in speed which is a case of combined radial and tangential acceleration. Radial acceleration, known as centripetal acceleration (ar), is the result of the change in direction of the velocity vector, while tangential acceleration (at) comes from changes in speed.

The total acceleration of an object in circular motion is given by:

a = sqrt((ar^2) + (at^2))

Centripetal acceleration can be calculated using the formula ar = v^2 / r, where: v = speed (37.2 m/s), r = radius of the circle (21 m). This gives us ar = (37.2^2) / 21, which approximately equals 66.62 m/s^2.

The tangential acceleration is given in the problem: at = 23.1 m/s^2.

We therefore calculate the total acceleration using the formula above which gives us:

a = sqrt((66.62^2) + (23.1^2)) which approximately equals 70.55 m/s^2.

Learn more about Acceleration in Circular Motion here:

https://brainly.com/question/33720661

#SPJ2

A set of crash tests consists of running a test car moving at a speed of 11.4 m/s (25.08 m/h) into a solid wall. Strapped securely in an advanced seat belt system, a 55 kg (121 lbs) dummy is found to move a distance of 0.78 m from the moment the car touches the wall to the time the car is stopped. Calculate the size of the average force which acts on the dummy during that time.

Answers

Answer:

4582 N

Explanation:

The initial speed of the test car is

u = 11.4 m/s

While the final speed is

v = 0

The displacement of the test car during the collision is

d = 0.78 m

So we can find the acceleration of the car by using the following SUVAT equation:

[tex]v^2 - u^2 = 2ad\\a=\frac{v^2-u^2}{2d}=\frac{0-(11.4)^2}{2(0.78)}=-83.3 m/s^2[/tex]

Now we can find the average force acting on the dummy by using Newton's second law:

F = ma

Where m = 55 kg is the mass. Substituting,

[tex]F=(55 kg)(-83.3 m/s^2)=-4582 N[/tex]

So the size of the average force is 4582 N.

Tom kicks a soccer ball on a flat, level field giving it an initial speed of 20 m/s at an angle of 35 degrees above the horizontal. a) How long will the ball be in the air? b) What maximum height will the ball attain? c) How far away from Tom will the ball land? d) What speed will the ball have in the instant just before it lands?

Answers

Answer:

(a) 2.34 s

(b) 6.71 m

(c) 38.35 m

(d) 20 m/s

Explanation:

u = 20 m/s, theta = 35 degree

(a) The formula for the time of flight is given by

[tex]T = \frac{2 u Sin\theta }{g}[/tex]

[tex]T = \frac{2 \times 20 \times Sin35 }{9.8}[/tex]

T = 2.34 second

(b) The formula for the maximum height is given by

[tex]H = \frac{u^{2} \times Sin^{2}\theta }{2g}[/tex]

[tex]H = \frac{20^{2} \times Sin^{2}35 }{2 \times 9.8}[/tex]

H  = 6.71 m

(c) The formula for the range is given by

[tex]R = \frac{u^{2} \times Sin 2\theta }{g}[/tex]

[tex]R = \frac{20^{2} \times Sin 2 \times 35}{9.8}[/tex]

R = 38.35 m

(d) It hits with the same speed at the initial speed.

A planet of mass m 6.75 x 1024 kg is orbiting in a circular path a star of mass M 2.75 x 1029 kg. The radius of the orbit is R 8.05 x107 km. What is the orbital period (in Earth days) of the planet Tplanet?

Answers

The planet's orbital period is about 388 days

[tex]\texttt{ }[/tex]

Further explanation

Centripetal Acceleration can be formulated as follows:

[tex]\large {\boxed {a = \frac{ v^2 } { R } }[/tex]

a = Centripetal Acceleration ( m/s² )

v = Tangential Speed of Particle ( m/s )

R = Radius of Circular Motion ( m )

[tex]\texttt{ }[/tex]

Centripetal Force can be formulated as follows:

[tex]\large {\boxed {F = m \frac{ v^2 } { R } }[/tex]

F = Centripetal Force ( m/s² )

m = mass of Particle ( kg )

v = Tangential Speed of Particle ( m/s )

R = Radius of Circular Motion ( m )

Let us now tackle the problem !

[tex]\texttt{ }[/tex]

Given:

mass of the planet = m = 6.75 × 10²⁴ kg

mass of the star = M = 2.75 × 10²⁹ kg

radius of the orbit = R = 8.05 × 10⁷ km = 8.05 × 10¹⁰ m

Unknown:

Orbital Period of planet = T = ?

Solution:

Firstly , we will use this following formula to find the orbital period:

[tex]F = ma[/tex]

[tex]G \frac{ Mm}{R^2}=m \omega^2 R[/tex]

[tex]G M = \omega^2 R^3[/tex]

[tex]\frac{GM}{R^3} = \omega^2[/tex]

[tex]\omega = \sqrt{ \frac{GM}{R^3}}[/tex]

[tex]\frac{2\pi}{T} = \sqrt{ \frac{GM}{R^3}}[/tex]

[tex]T = 2\pi \sqrt {\frac{R^3}{GM}}[/tex]

[tex]T = 2 \pi \sqrt {\frac{(8.05 \times 10^{10})^3}{6.67 \times 10^{-11} \times 2.75 \times 10^{29}}}[/tex]

[tex]T \approx 3.35 \times 10^7 \texttt{ seconds}[/tex]

[tex]T \approx 388 \texttt{ days}[/tex]

[tex]\texttt{ }[/tex]

Learn moreImpacts of Gravity : https://brainly.com/question/5330244Effect of Earth’s Gravity on Objects : https://brainly.com/question/8844454The Acceleration Due To Gravity : https://brainly.com/question/4189441

[tex]\texttt{ }[/tex]

Answer details

Grade: High School

Subject: Physics

Chapter: Circular Motion

[tex]\texttt{ }[/tex]

Keywords: Gravity , Unit , Magnitude , Attraction , Distance , Mass , Newton , Law , Gravitational , Constant

Final answer:

To calculate the orbital period of the planet, convert the radius to meters, substitute the mass of the star and the radius into Kepler's third law, solve for the orbital period squared, and convert to Earth days.

Explanation:

The question involves applying Kepler's third law of planetary motion to calculate the orbital period of a planet revolving around a star. The law relates the orbital period (T) to the radius (r) of the orbit and the mass (M) of the star around which the planet orbits. Kepler's third law can be expressed as:

T² = (4π²/GM) · r³,

where G is the gravitational constant (6.67430 × 10⁻¹¹ m³/kg · s²).

To find the orbital period of the planet:

Convert the radius of the orbit from kilometers to meters (R = 8.05 x 10⁷ km = 8.05 x 10¹ m).Substitute the given values into the equation (G = 6.67430 × 10⁻¹¹ m³/kg · s², M = 2.75 x 10²¹ kg, r = 8.05 x 10¹ m).Solve for T² and then calculate T by taking the square root of T².Convert T from seconds to Earth days by dividing by the number of seconds in a day (86,400 s).

The student will then have the orbital period of the planet in Earth days.

Other Questions
Which action describes the first step in both scientific investigation and technological design?A.researching how solar B.panels work C.identifying a need for a D.solar panelcommunicating to the team that solar panels are easy to installdesigning a solution by sketching a prototype for a solar panel Insulin is a peptide therapeutic used to manage Type 1 diabetes, which affects more than 20 million people worldwide according to the International Diabetes Federation. A significant limitation to the broad distribution and use of insulin to treat Type 1 diabetes is the fact that it must be administered by injection rather than orally. Why is insulin administered by injection and not orally? A university knows from historical data that 25% of students in an introductory statistics class withdraw before completing the class. Assume that 16 students have registered for the course. What is the probability that exactly 2 will withdraw? What is the domain of y=log_5x which branch of the government is responsible for upholding the us constitution Which phrase matches the expression c^3A.) c cubed B.) c increased by 3 C.) the sum of 3 and cD.) 3 cubed Restrict the domain of the function f(x) = (x-2)^2 so it has an inverse. Then determine its inverse function. A 1400kg automobile moving at a maximum speed of 23m/s on a level circular track of readius of 95m. What is the coefficient of friction? Adventures of Huckleberry Finnby Mark Twain (excerpt)This table had a cover made out of beautiful oilcloth, with a red and blue spread-eagle painted on it, and a painted border all around. It come all the way from Philadelphia, they said. There was some books, too, piled up perfectly exact, on each corner of the table. One was a big family Bible full of pictures. One was Pilgrim's Progress, about a man that left his family, it didn't say why. I read considerable in it now and then. The statements was interesting, but tough. Another was Friendship's Offering, full of beautiful stuff and poetry; but I didn't read the poetry. Another was Henry Clay's Speeches, and another was Dr. Gunn's Family Medicine, which told you all about what to do if a body was sick or dead. There was a hymn book, and a lot of other books. And there was nice split-bottom chairs, and perfectly sound, toonot bagged down in the middle and busted, like an old basket. 7 Select all the correct answers. Based on this excerpt from Mark Twains Adventures of Huckleberry Finn, what can be understood about The Pilgrims Progress by John Bunyan? The Pilgrims Progress is about the story of a man who decides to leave his family. The Pilgrims Progress is a family book full of interesting pictures. The Pilgrims Progress gives detailed information about the physical body, such as understanding if a body is sick or dead. The Pilgrims Progress is a book full of beautiful poetry. The Pilgrims Progress is an engaging read, but it can be difficult to understand. Help please thank you! Read the sentence.This book I must have for my report.What is the simple subject?Ibookmyreport What method would you choose to solve the equation 2x2 7= 9? Explain why you chose this method. Help please ..someone Read this excerpt from an essay. What type of essay is this?Even students can get involved and make a difference in their communities. One example is a high school classmate of mine. When she was a freshman, she was very nervous about speaking in public. For a social studies research project, a teacher suggested that she visit a local nursing home. There she discovered that they needed volunteers to read to the residents. She tried it for a week and was hooked. The experience gave her confidence and brought joy to the residents. Over the years, she encouraged her friends to join her and was inspired to start the Community Service Council as a senior project. She wrote her college application essays about the impact of these experiences. Today, shes a college service organizer and an advisor to a state legislator. This is just one example of how to make a difference in your community.A. informative essayB. persuasive essayC. research essayD. narrative essay Fredrick is looking for clerical job opportunities.He wants to make sure he has the right qualifications. What are the minimum requirements for the job roles that Fredrick is applying for?The minimum requirements for the job roles that Fredrick is applying for are __________ and _________skillsFirst blank an associate degree a bachelor's degree a high school diplomaA masters degreeSecond blankDirectingdocumentinggoverning managing which factor that affects biodiversity? After reading an excerpt from The Way to Rainy Mountain, consider the Cherokee Indian creation story, How the World Was Made. Evaluate the tone, format, and style of each of these American Indian stories. What similarities and differences do you recognize? i have five quick modern world studies questions. i will mark you as brainliest.1. what was a cause of the cold war?a. construction of the berlin wallb. formation of NATOc. establishment of the warsaw pactd. soviet fears of western world domination2. what was NOT part of the marshall plan?a. the united states wanted to prevent the spread of communism.b. the united states sponsored a humanitarian effort to rebuild europe.c. american aid was used to rebuild cities and factories.d. the united states established air bases in china.3. which group contains reasonable elements of a policy of containment?GROUP A- economic aid to allies destroyed by war- threats of military retaliation against the enemy- economic aid to enemies destroyed by war- offers of military aid to nations that might become allies- health and education programs in unaligned nationsGROUP B- military intervention in countries aligned with the enemy - boycotts and embargoes against unaligned nations- refusal to negotiate with the enemy- medical aid to poor nations - education programs within ones own country4. which american president committed the united states to a policy of preventing the spread of communism?a. john f. kennedyb. harry trumanc. dwight eisenhowerd. ronald reagan5. which cold war leader would be most likely to agree with the statement shown below?we must recognize that stalin committed a grave mistake by executing hundreds of thousands of people for anti-soviet activities, but now we must move on to create a glorious soviet union. we must focus on strengthening communism and developing our own resources. there is no need to waste our energy waging war on capitalist countries. we can peacefully coexist with the capitalists until they crumble under the weight of their own corruption.a. mao zedongb. chiang kai-shekc. fidel castrod. nikita khrushchev What is a monosynaptic reflex arc? 14. Which one of the following formulas correctly expresses this statement: The number x is equal to another number n plus the square root of 3. A. x = n + 3 B. x = 3n2 C. x = n + 3 D. x = n + 32