Final answer:
The question requires calculating the new surface area of the face of an iron cube after it undergoes thermal expansion due to a temperature increase, using the concepts of thermal physics.
Explanation:
The question revolves around the thermal expansion of an iron cube when its temperature rises. The expansion can be understood through physics, specifically the concepts of thermal physics. To find the new surface area after the cube has been heated, we need to calculate the new length of an edge using the coefficient of linear thermal expansion for iron and the temperature change. Once the new edge length is determined, the new surface area of a face can be calculated by squaring the length of one edge. Since cubic expansion affects each dimension equally, the change in surface area can be determined by considering the square of the ratio of the new edge length to the original edge length.
The mass of an electron is 9.11×10−31 kg. If the de Broglie wavelength for an electron in a hydrogen atom is 3.31×10−10 m, how fast is the electron moving relative to the speed of light? The speed of light is 3.00×108 m/s.
Answer: The electron moves slower than the speed of light
Explanation:
The de Broglie wavelength [tex]\lambda[/tex] is given by the following formula:
[tex]\lambda=\frac{h}{p}[/tex] (1)
Where:
[tex]h=6.626(10)^{-34}\frac{m^{2}kg}{s}[/tex] is the Planck constant
[tex]p[/tex] is the momentum of the atom, which is given by:
[tex]p=m_{e}v[/tex] (2)
Where:
[tex]m_{e}=9.11(10)^{-28}g=9.11(10)^{-31}kg[/tex] is the mass of the electron
[tex]v[/tex] is the velocity of the electron (the value we want to find)
Substituting (2) in (1):
[tex]\lambda=\frac{h}{m_{e}v}[/tex] (3)
Finding [tex]v[/tex] :
[tex]v=\frac{h}{m_{e}\lambda}[/tex] (4)
[tex]v=\frac{6.626(10)^{-34}\frac{m^{2}kg}{s}}{(9.11(10)^{-31}kg)(3.31(10)^{-10}m/s)}[/tex] (5)
Finally:
[tex]v=2.197(10)^{6} m/s[/tex]>>> This is the velocity of the electron, which compared to the [tex]v=3(10)^{8} m/s[/tex] of the light is quite slower.
The electron's speed relative to the speed of light is calculated using the de Broglie wavelength formula, which determines the velocity of the electron. The formula is rearranged to solve for velocity and the given details are inserted into the formula to obtain the answer.
Explanation:The electron's speed can be determined in relation to the speed of light using the de Broglie wavelength formula, which states that an electron's wavelength equals Planck's constant (6.63 x 10^-34 m^2 kg/s) divided by the electron's momentum. Momentum is the product of mass and velocity. The speed of the electron is then calculated by rearranging the formula to solve for velocity.
Given:
de Broglie wavelength, λ = 3.31×10−10 m
Mass of electron, m = 9.11x10^-31 kg
Planck's constant, h = 6.63 x 10^-34 m^2 kg/s
Speed of light, c = 3.00×10^8 m/s
Calculation:
Velocity of the electron, v = h / (m * λ)
The velocity of the electron relative to the speed of light is therefore v/c.
https://brainly.com/question/34225181
#SPJ12
What type of energy conversion occurs at the moment fireworks explode?
chemical energy converts into light, heat and sound energy
Answer: Rapid Oxidation
Explanation:
In fireworks, the energy source is the rapid oxidation (burning or exploding) of gunpowder and other flammable chemicals. This burning causes the formation of gases that are heated and expand.
This rapid expansion involves three forms of energy : 1) The motive force to carry aerial fireworks into the sky, and to separate parts of them, 2) The heated molecules that give off radiance (visible light) in various forms of displays, and 3) The energetic vibration of air molecules that creates the sound of explosions.
The resistance of 100 W bulb is less than resistance of 40 W bulb. Explain the reason.
Ok so we know that electric power is:
[tex]P=UI=I^2R[/tex]
If we express resistance.
[tex]R=\dfrac{P}{I^2}[/tex]
Now if you have 100W of power you will probably get a bigger resistance than with 40W of power.
However here it says that the resistance of 40W bulb is bigger than 100W bulb. Which means the statement is incorrect.
Hope this helps.
r3t40
The focal length of a lens is determined by the curve of the lens and the material that the lens is made from. (5 points) is this true or false??
Answer:
true
Explanation:
if the lens is curved differently or the material is changed then it would affect where the image is which is calculated using the focal point.
sorry I know I'm late but please let me know if I'm right, mark brainliest, and have a great day :)
Atomic nuclei of almost all elements consist of
The atomic nuclei of almost all elements consist of protons and neutrons.
The nucleus of an atom has very small dimensions. However, it occupies its central part and concentrates more than 99% of its total mass.
It is in the nucleus that the protons (positive charge) and neutrons (neutral charge) are found.
The half-life of the radioactive element beryllium-13 is 5 × 10-10 seconds, and half-life of the radioactive element beryllium-15 is 2 × 10-7 seconds. The half-life of is times greater than the half-life of .
Explanation:
The half-life [tex]h[/tex] of a radioactive isotope refers to its decay period, which is the average lifetime of an atom before it disintegrates.
In this case, we are given the half life of two elements:
beryllium-13: [tex]h_{B-13}=5(10)^{-10}s=0.0000000005s[/tex]
beryllium-15: [tex]h_{B-15}=2(10)^{-7}s=0.0000002s[/tex]
As we can see, the half-life of beryllium-15 is greater than the half-life of beryllium-13, but how great?
We can find it out by the following expression:
[tex]h_{B-15}=X.h_{B-13}[/tex]
Where [tex]X[/tex] is the amount we want to find:
[tex]X=\frac{h_{B-15}}{h_{B-13}}[/tex]
[tex]X=\frac{2(10)^{-7}s}{5(10)^{-10}s}[/tex]
Finally:
[tex]X=400[/tex]
Therefore:
The half-life of beryllium-15 is 400 times greater than the half-life of beryllium-13.
A hockey puck is set in motion across a frozen pond. If ice friction and air resistance are neglected, the forcerequired to keep the puck sliding at constant velocity isA) the weight of the puck divided by the mass of the puck.B) the mass of the puck multiplied by 9.8 meters per second per second.~qual to the weight of the puck.'i.£l/ero newtons.E) none of these.
Answer:
Zero Newtons
Explanation:
Newton's second law of motion states that the net force applied to an object is equal to the product between the object's mass and its acceleration:
[tex]F=ma[/tex]
In this case, we want the hockey puck to slide at constant velocity - constant velocity means zero acceleration:
a = 0
And so this means also that the net force is zero:
F = 0
However, the problem says that ice friction and air resistance are negligible - so there are no forces acting on the hockey puck. This means that the puck will continue its motion at constant velocity if we don't apply any other force on it.
Final answer:
Zero newtons. option D
Explanation:
The question pertains to the concept of Newton's first law of motion, which states that an object in motion will remain in motion with a constant velocity, and an object at rest will remain at rest, unless acted upon by a net external force.
In the scenario where a hockey puck is set in motion across a frictionless surface such as a frozen pond, and where air friction is also neglected, the force required to keep the puck sliding at constant velocity is zero newtons.
This is because once the puck is in motion, no additional force is needed to maintain its state of motion. In reality, ice isn't perfectly frictionless and air resistance is usually present, causing the puck to eventually slow down.
However, in the theoretical scenario presented, with no force opposing the puck's motion, no additional force is required to maintain its constant velocity, according to Newton's first law of motion.
Which of the following represents an image that is located behind a mirror?
A. +di
B. -do
C. +do
D. -di
Explanation:
There are some conventions while solving the problems based on mirrors. All parameters are taken like x-y coordinate system.
All the measurements are done from the optical centre of the mirror.
[tex]d_i[/tex] is the image distance
[tex]d_o[/tex] is the object distance
[tex]-d_i[/tex] is the image distance which is formed behind the mirror.
[tex]-d_o[/tex] is the object distance when an object is placed behind the mirror.
So, [tex]-d_i[/tex] shows the image that is located behind the mirror. Hence, this is the required solution.
Which best describes what forms in nuclear fission?A. two smaller, more stable nucleiB. two larger, less stable nucleiC. one smaller, less stable nucleusD. one larger, more stable nucleus
In nuclear fission, a heavy nucleus splits into two smaller, more stable nuclei, releasing a large amount of energy. These smaller nuclei are more stable because they are closer to the most stable nuclear configuration found in nickel and iron-sized nuclei.
Nuclear fission is the process in which a heavy nucleus splits into two smaller, more stable nuclei, accompanied by the release of energy. This occurs particularly with nuclei that have a mass number higher than 92. During fission, the original nucleus divides into two fragments that are not necessarily equal in size, but are usually closer to the size of iron-56, which is the most stable size for a nucleus. A notable example is the fission of uranium-235, where the nucleus splits into two smaller fragments and releases additional free neutrons and energy in the form of gamma rays.
The larger nucleus undergoing fission must rearrange its nucleons towards a configuration that is closer to that of the most stable nuclei, which are around the size of nickel and iron. This implies that during fission, the resulting nuclei are generally smaller and more stable compared to the original one. Therefore, the correct description of what forms in nuclear fission is two smaller, more stable nuclei (Option A).
A 10-kg piece of aluminum sits at the bottom of a lake, right next to a 10-kg piece of lead, which is much denser than aluminum. Which one has the greater buoyant force on it? Please explain. Answer: B - the aluminum
A) Both have the same buoyant force.
B) the aluminum
C) the lead
D) It cannot be determined without knowing their volumes.
The buoyant force on a submerged object is the weight of the water it displaces ... the water it pushes out of the way. That amount is simply the volume of the submerged object. So the more volume is submerged, the greater will be the buoyant force acting on it.
Since Aluminum is less-dense than lead, the same 10kg of Aluminum needs a bigger container to hold it than 10kg of lead needs. The aluminum needs more volume to hold the same mass.
The aluminum displaces more water. So the buoyant force acting on the aluminum is greater than the buoyant force acting on the lead. (B) .
I'm guessing this is a big part of the reason why fishing sinkers are not made of aluminum.
Aluminum has greater buoyant force than lead.
To determine the answer, we need to know about the buoyant force.
What is buoyant force?Buoyant force is experienced by an object when moving in water (or any liquid substance) along the opposite direction of motion. It is a frictional force in water.This force is exerted by water. The magnitude of the force is given as the weight of water displaced corresponding to that volume at which the sinked object displaces the water.I.e. buoyant force=density of water × volume × g. Where volume= volume of the object sink in the water (it is also the volume of water displaced by the object.)Which has more buoyant force between aluminum and lead?According to question, the masses of aluminum and lead are same (10Kg). As masses are same, so their volume is inversely proportional to the density.Since, the aluminum has less density than lead, it has more volume than lead.We know that the buoyant force depends on the volume of sinked object. So as the aluminum has more volume than lead, it has more buoyant force.Thus, we can conclude that aluminum has greater buoyant force than lead.
Learn more about the buoyant force here:
brainly.com/question/1113383
#SPJ2
Two pans of water are on different burners of a stove. One pan of water is boiling vigorously, while the other is boiling gently. What can be said about the temperature of the water in the two pans? Two pans of water are on different burners of a stove. One pan of water is boiling vigorously, while the other is boiling gently. a. The pan which is boiling vigorously has greater temperature. b. The pan which is boiling vigorously has less temperature. c. The temperature of water in both the pans is the same.
Answer:
The correct answer is C.
Explanation:
Answer:
It's C
Explanation:
Observations show that interstellar clouds can have almost any shape and
what is the electric force acting between two charges of -0.0045 C and -0.0025 C that are 0.0060 m apart? Use Fe=kq1q2/r^2 and k = 9.00 x 10^9 N*m^2/C^2
A. 1.7 x 10^7 N
B. -1.7 x 10^7 N
C. -2.8 x 10^9 N
D. 2.8 x 10^9 N
Answer:
D. 2.8 × 10⁹ N
Explanation:
The force between two charges is directly proportional to the amount of charges at the two points and inversely proportional to the square of distance between the two points.
Fe= k Q₁Q₂/r²
Q₁= -0.0045 C
Q₂= -0.0025 C
r= 0.0060 m
k= 9.00 × 10 ⁹ Nm²/C²
Fe= (9.00 × 10 ⁹ Nm²/C²×-0.0045 C×-0.0025 C)/0.0060²
=2.8 × 10⁹ N
Answer:
D. 2.8 x 10^9 N
Explanation:
A P E X
A frequency generator sends a 550 Hz sound wave through both water and ice.
What is the difference in wavelength between the wave produced in ice and the wave produced in water?
Δλ = 3.103 m.
To solve this problem we have to know the speed of sound in both elements water and ice.
Element Speed of sound
Water (25°C) 1493 m/s
Ice 3200 m/s
The velocity of a wave is given by the equation v = λf, where λ is the wavelength, and f is the frecuency of the wave.
In order to calculate the wavelength we have to clear λ in the equation v = λf, resulting:
λ = v/f
Calculating the wavelength in both elements:
λ(water) = 1493 m/s / 550 Hz = 2.715 m
λ(ice) = 3200 m/s / 550 Hz = 5.818 m
So, the difference in wavelength between the wave produced in ice and the wave produced in water is:
Δλ = λ(water) - λ(ice) = 5.818 m - 2.715 m
Δλ = 3.103 m
Answer:
3.1 m
Explanation:
A 5.0-kg object is pulled along a horizontal surface at a constant speed by a 15-n force acting 20° above the horizontal. How much work is done by this force as the object moves 6.0 m?
Answer:
84.6 J
Explanation:
The work done by the force is given by
[tex]W=Fd cos \theta[/tex]
where
W is the work done
F = 15 N is the force applied
d = 6.0 m is the displacement
[tex]\theta=20^{\circ}[/tex] is the angle between the force's direction and the displacement
Substituting the numbers into the equation, we find
[tex]W=(15 N)(6.0 m)cos 20^{\circ} =84.6 J[/tex]
A 5.0 kg object is pulled by a 15-N force acting 20 °C above the horizontal. After moving for 6.0 m, the work done is 85 J.
What is work?In physics, work is the energy transferred to or from an object via the application of force along a displacement.
A 5.0 kg object is pulled by a 15-N force acting 20 ° above the horizontal. We can calculate the work done after the object moved 6.0 m using the following expression.
W = F × s × cosθ
W = 15 N × 6.0 m × cos 20° = 85 J
where,
W is the work.F is the force.s is the displacement.θ is the angle between F and s.A 5.0 kg object is pulled by a 15-N force acting 20 °C above the horizontal. After moving for 6.0 m, the work done is 85 J.
Learn more about work here: https://brainly.com/question/62183
Two manned satellites approaching one another at a relative speed of 0.150 m/s intend to dock. The first has a mass of 2.50 ✕ 103 kg, and the second a mass of 7.50 ✕ 103 kg. If the two satellites collide elastically rather than dock, what is their final relative velocity? Adopt the reference frame in which the second satellite is initially at rest and assume that the positive direction is directed from the second satellite towards the first satellite.
When two satellites collide elastically, the total momentum before the collision is equal to the total momentum after the collision. However, the final velocities and the change in kinetic energy cannot be determined without additional information.
Explanation:When two satellites collide elastically, the total momentum before the collision is equal to the total momentum after the collision. We can start by calculating the initial momentum:
Initial momentum = mass of the first satellite × velocity of the first satellite + mass of the second satellite × velocity of the second satellite
Plugging in the values:
Initial momentum = (2.50 × 10³ kg)(0.150 m/s) + (7.50 × 10³ kg)(0)
Since the second satellite is initially at rest (velocity = 0), the initial momentum simplifies to:
Initial momentum = (2.50 × 10^3 kg)(0.150 m/s) = 375 kg·m/s
Since momentum is conserved, the total momentum after the collision is also 375 kg·m/s. Let's assume the final velocities of the satellites are v1 and v2:
Final momentum = (2.50 × 10³ kg)(v1) + (7.50 × 10³ kg)(v2)
Setting the initial and final momenta equal to each other:
Initial momentum = Final momentum
375 kg·m/s = (2.50 × 10³ kg)(v1) + (7.50 × 10³ kg)(v2)
We can't solve for the individual velocities with only this equation, but we can use the fact that the satellites collide elastically. In an elastic collision, the total kinetic energy before the collision is equal to the total kinetic energy after the collision.
Using the formula for kinetic energy:
Kinetic energy = 1/2 × mass × velocity²
The initial kinetic energy is:
Initial kinetic energy = (1/2)(2.50 × 10³ kg)(0.150 m/s)² + (1/2)(7.50 × 10³ kg)(0)²
Simplifying:
Initial kinetic energy = (1/2)(2.50 × 10³ kg)(0.150 m/s)² = 56.25 J
The final kinetic energy is:
Final kinetic energy = (1/2)(2.50 × 10³ kg)(v1)² + (1/2)(7.50 × 10³ kg)(v2)²
Setting the initial and final kinetic energies equal to each other:
Initial kinetic energy = Final kinetic energy
56.25 J = (1/2)(2.50 × 10³ kg)(v1)² + (1/2)(7.50 × 10³ kg)(v2)²
Unfortunately, this equation cannot be solved with the given information and assumptions. We would need additional information, such as the angle of collision, to solve for the individual velocities and kinetic energies.
You walk 45 m to the north, then turn 90° to your right and walk another 45 m How far are you from where you originally started? a.45 m b.41 m c.85 m d.64 m
Why are objects that fall near earth’s surface rarely in free fall?
Answer:
Because of the presence of air resistance
Explanation:
When an object is in free fall, ideally there is only one force acting on it:
- The force of gravity, W = mg, that pushes the object downward (m= mass of the object, g = acceleration of gravity)
However, this is true only in absence of air (so, in a vacuum). When air is present, it exerts a frictional force on the object (called air resistance) with upward direction (opposite to the motion of free fall) and whose magnitude is proportional to the speed of the object.
Therefore, it turns out that as the object falls, its speed increases, and therefore the air resistance acting against it increases too; as a result, the at some point the air resistance becomes equal (in magnitude) to the force of gravity: when this happens, the net acceleration of the object becomes zero, and so the speed of the object does not increase anymore. This speed reached by the object is called terminal velocity.
Answer: Gravity does not act on objects near Earth’s surface.
Explanation:
If Jerome is swinging on a rope and transferring energy from gravitational potential energy to kinetic energy, ________ is being done.
Explanation:
A force that leads to movement of an object is known as work.
The energy present in an object due to its position in a gravitational field is known as gravitational potential energy.
Kinetic energy is the energy obtained by an object due to its motion.
For example, when Jerome is swinging on a rope then there occurs movement in the swing due to which the swing has kinetic energy.
Since, a force has been applied on the swing to make it move. Hence, a work is also done.
Therefore, we can conclude that if Jerome is swinging on a rope and transferring energy from gravitational potential energy to kinetic energy, work is being done.
Answer:
the answer is B ( work )
Explanation:
A.) compression
B.) work
C.) radiation
D.) energy creation
The two stars in a certain binary star system move in circular orbits. The first star, Alpha, has an orbital speed of 36 km/s. The second star, Beta, has an orbital speed of 12 km/s. The orbital period is 137 d. a) What is the mass of the star alpha? b) What is the mass of the star beta?
Explanation:
Given:
Va = 36 km/s = 3.6×10⁴ m/s
Vb = 12 km/s = 1.2×10⁴ m/s
T = 137 d = 1.18×10⁷ s
For each star, circumference = velocity * time:
2π R = V T
R = V T / (2π)
So Ra = Va T / (2π), and Rb = Vb T / (2π).
Sum of the forces on Alpha:
Ma Va² / Ra = G Ma Mb / (Ra + Rb)²
Va² / Ra = G Mb / (Ra + Rb)²
Mb = Va² (Ra + Rb)² / (G Ra)
Similarly, sum of the forces on Beta:
Mb Vb² / Rb = G Ma Mb / (Ra + Rb)²
Vb² / Rb = G Ma / (Ra + Rb)²
Ma = Vb² (Ra + Rb)² / (G Rb)
First, calculate Ra and Rb:
Ra = (3.6×10⁴) (1.18×10⁷) / (2π)
Ra = 6.78×10¹⁰
Rb = (1.2×10⁴) (1.18×10⁷) / (2π)
Rb = 2.26×10¹⁰
Therefore, the mass of Alpha is:
Ma = (1.2×10⁴)² (6.78×10¹⁰ + 2.26×10¹⁰)² / (6.67×10⁻¹¹ × 2.26×10¹⁰)
Ma = 7.81×10²⁹ kg
And the mass of Beta is:
Mb = (3.6×10⁴)² (6.78×10¹⁰ + 2.26×10¹⁰)² / (6.67×10⁻¹¹ × 6.78×10¹⁰)
Mb = 2.34×10³⁰ kg
Ocean waves with 15 meters between wave crests travel with a velocity of 3 meters per second. With what frequency will these ocean waves pass under an anchored boat?(v = f λ)Ocean waves with 15 meters between wave crests travel with a velocity of 3 meters per second. With what frequency will these ocean waves pass under an anchored boat?(v = f λ)Ocean waves with 15 meters between wave crests travel with a velocity of 3 meters per second. With what frequency will these ocean waves pass under an anchored boat?(v = f λ)Ocean waves with 15 meters between wave crests travel with a velocity of 3 meters per second. With what frequency will these ocean waves pass under an anchored boat?(v = f λ)
Answer:
0.2 Hz
Explanation:
The frequency of a wave is given by
[tex]f=\frac{v}{\lambda}[/tex]
where
f is the frequency
v is the speed of the wave
[tex]\lambda[/tex] is the wavelength
For the ocean waves in this problem,
[tex]\lambda=15 m[/tex] is the wavelength
v = 3 m/s is the speed
So their frequency is
[tex]f=\frac{3 m/s}{15 m}=0.2 Hz[/tex]
The frequency of ocean waves passing under an anchored boat can be calculated using the wave equation v = f λ. In this case, the velocity of the waves is given as 3 meters per second and the distance between wave crests (wavelength) is given as 15 meters. The frequency at which these ocean waves pass under an anchored boat is 0.2 Hz.
Explanation:The frequency of ocean waves passing under an anchored boat can be calculated using the wave equation v = f λ, where v is the velocity of the waves, f is the frequency, and λ is the wavelength.
In this case, the velocity of the waves is given as 3 meters per second and the distance between wave crests (wavelength) is given as 15 meters. We need to find the frequency.
Using the wave equation, we can rearrange it to solve for frequency as f = v / λ. Substituting the given values, we get f = 3 m/s / 15 m = 0.2 Hz.
Therefore, the frequency at which these ocean waves pass under an anchored boat is 0.2 Hz.
Nuclear fusion within the sun takes place within the
Answer:
Within the core
Explanation:
The core of the sun (and of every star) is the central part of the star, the hottest one.
Its temperature is about 10 million Kelvin degrees and more - and this temperature is enough to allow the nuclei of hydrogen to overcome the electrostatic repulsion between each other and come close enough to initiate the nuclear fusion.
The nuclear fusion is the process that produces energy in a star: in a nuclear fusion reaction, the nuclei of hydrogen fuse together to form nuclei of helium, and since the mass of the final products is less than the mass of the initial products, part of the mass is converted into energy, according to Einstein's famous equation
[tex]E=mc^2[/tex]
WHOEVER ANSWERS CORRECTLY GETS BRAINLIEST
Which of the following happens when the swing moves from Position B to Position A?
[ ] Both potential energy and kinetic energy of the student increase.
[ ] Both potential energy and kinetic energy of the student decrease.
[ ] Potential energy of the student decreases and kinetic energy of the student increases.
[ ] Kinetic energy of the student decreases and potential energy of the student
Answer: its c
Explanation:
Total energy is conserved.
Energy = potential energy + kinetic energy as other forms of energy are neglected.
Clearly , position A is at a higher position from the ground , so it has more potential energy.
As the energy is conserved , the kinetic energy at A must have decreased making the total energy the same as that during B.
So,to sum it up
potential energy of the student increases and the kinetic energy decreases as he moves from B to A
When the swing goes from Position B to Position A, potential energy increases due to height gain, while kinetic energy decreases as the swing slows down.
Explanation:When a swing moves from Position B (the lowest point) to Position A (a higher point), the potential energy of the student increases while the kinetic energy decreases. This is because as the swing rises, it slows down due to gravity working against the motion, converting kinetic energy into potential energy. At the highest point of the swing (Position A), the swing has its maximum potential energy and minimum kinetic energy. Conversely, as the swing descends back toward Position B, the potential energy is converted back into kinetic energy, increasing the speed of the swing.
Learn more about Energy Conversion on a Swing here:https://brainly.com/question/29243227
#SPJ2
Which of the following is considered to be a vector?
A. Temperature B. Velocity C. Time D. Mass
Answer: B) Velocity
Explanation:
Velocity is a vector quantity. Velocities have both magnitude and direction.
Answer:B. Velocity
Explanation:
What was anton van leeuwenhoek famous for
Answer:
He is known as the first microbiologist and also “the Father of Microbiology” because he was the first to observe bacteria underneath a microscope. He made many other significant discoveries in the field of biology and also made important changes to the microscope.
Explanation:
hope this helps. and if it did pls mark brainliest :)
By what primary heat transfer mechanism does the sun warm the earth?
Explanation:
There are three ways in which heat is transmitted:
1. By Conduction, when the transmission is by the direct contact.
2. By Convection, heat transfer in fluids (like water or the air, for example).
3. By Radiation, by the electromagnetic waves (they can travel through any medium and in vacumm).
So, the space between the Earth and the Sun is vacuum, this means the energy cannot be transmitted by convection, nor conduction. It must be transmitted by electromagnetic waves that are able to travel with or without a medium, and this is called radiation.
How much energy does the sun produce every second?
Light is described as having a dual wave-particle nature. Which piece of evidence provides support for the model of light as a particle?
Young’s double slit experiment showed that light waves show interference.
Light reflects when it hits a surface.
Light refracts when it moves from one medium to another.
Light does not need a medium to travel.
Explanation:
It is now clear that light behaves as a wave and as a particle. It should be noted that the first to propose the corpuscular theory of light was Issac Newton, while the wave theory was initially proposed by Christian Huygens, who was contemporaneous with Newton.
Now, focusing on the corpuscular theory, Newton proposed that light is composed of tiny massless particles, traveling in a straight line and at high speed. In addition, he used the reflection phenomenon of the of light to show that it behaved like particles that when hitting a mirror were reflected by a perfectly elastic collision.
Answer:
Light does not need a medium to travel.
Explanation:
a body covers a semicircle of radius 7cm in 5s .find its linear speed
Ok so we are given the radius of 7cm and time of 5 seconds.
From the data we got we can calculate speed, frequency, perimeter and area of the semicircle.
Let's start with perimeter.
We know that perimeter of circle is [tex]2\pi r[/tex] so the perimeter of semicircle is [tex]\dfrac{2\pi r}{2}[/tex] or simply [tex]\pi r[/tex]
So the perimeter is equal to:
[tex]\pi r=\pi\cdot7\approx\boxed{22cm}[/tex]
So this is the length of a curve or let's say the distance.
Now let's look at the linear speed [tex]s=\dfrac{d}{t}[/tex] where d is distance and t time.
We know the distance and we know the time.
So let's calculate it.
[tex]s=\dfrac{d}{t}=\dfrac{22}{5}=\boxed{4.4\dfrac{cm}{s}}[/tex]
Hope this helps.
r3t40
Why do you see lightning before you hear thunder
Answer: When a lightning bolt travels from the cloud to the ground it actually opens up a little hole in the air, called a channel. Once then light is gone the air collapses back in and creates a sound wave that we hear as thunder. The reason we see lightning before we hear thunder is because light travels faster than sound!
Explanation:
Answer:
Light waves travel faster than sound waves
Explanation: