An electron charge e mass m and a positron charge e mass m revolve around their common center of mass under the influence of their attractive coulomb force Find the speed v of each particle in terms of e m k and their separation L

Answers

Answer 1

Answer: v = 2π2 Kme2 Z / nh

Explanation:

The formula for velocity of an electron in the nth orbit is given as,

v = 2π2 Kme2 Z / nh

v = velocity

K = 1/(4πε0)

m= mass of an electron

e = Charge on an electron

Z= atomic number

h= Planck’s constant

n is a positive integer.


Related Questions

How many GL are there in 8.52 x 10^10 fl oz?

Answers

Answer:

2.52 x  10^10

Explanation:

1 Gl = 33814022600 fl Oz = 3.38 x 10^10 fl oz

 x = 8.52 x 10^10 fl oz

8.52 x 10^10 = 3.38 x 10^10x

x = 8.52 x 10^10 /  3.38 x 10^10

x = 2.52071005917 = 2.52 x  10^10

x = 2.52 x  10^10

a sample of lead has a mass of 150.0 g what amount of lead in moles does the sample contain

Answers

Answer:

0.723 mol        

Explanation:

Mole -

Moles is denoted by given mass divided by the molecular mass ,

Hence ,

n = w / m

n = moles ,

w = given mass ,

m = molar mass .

From the information of the question ,

w = 150.0 g

As we known the molar mass of lead is -

m = 207.2 g/mol

Hence , the value for the sample of mole can be calculated by using the above formula ,

n = w / m  

putting the respective values ,

n = 150.0 g /  207.2 g/mol = 0.723 mol

Final answer:

A 150.0 g sample of lead contains 0.724 moles, calculated by dividing the mass of the sample by lead's atomic mass of 207.2 g/mol.

Explanation:

The question asks for the calculation of the number of moles of lead in a 150.0 g sample. Using the atomic mass of lead (207.2 g/mol), which is the average atomic mass considering all its naturally occurring isotopes, the calculation is straightforward.

First, the mass of the lead sample is divided by lead's atomic mass to find the number of moles:

Moles of lead = mass of lead sample / atomic mass of lead = 150.0 g / 207.2 g/mol

Therefore, 0.724 moles of lead are present in a 150.0 g sample.

The half-lives for the forward and reverse reactions that are first order in both directions are 24ms and 39 ms, respectively. Calculate the corresponding relaxation time (s) for the return to equilibrium after a temperature jump. Please enter your answer with two significant figures (unit: s).

Answers

Explanation:

The given data is as follows.

            [tex](t_{\frac{1}{2}})_{1}[/tex] = 24 ms,

            [tex](t_{\frac{1}{2}})_{2}[/tex] = 39 ms,

where,    [tex](t_{\frac{1}{2}})_{1}[/tex] = half-life for the forward reaction

              [tex](t_{\frac{1}{2}})_{2}[/tex] = half-life for the backward reaction

It is known that the formula for first-order reaction is as follows.

                      [tex]t_{\frac{1}{2}} = \frac{0.693}{K}[/tex]

Therefore,  

              [tex]K_{1} = \frac{0.693}{(t_{\frac{1}{2}})_{1}}[/tex]

                        = [tex]\frac{0.693}{24 ms}[/tex]

                        = 0.0289 [tex]ms^{-1}[/tex]

              [tex]K_{2} = \frac{0.693}{(t_{\frac{1}{2}})_{2}}[/tex]

                        = [tex]\frac{0.693}{39 ms}[/tex]

                        = 0.0178 [tex]ms^{-1}[/tex]

Hence, formula for the relaxation time is as follows.

               [tex]\tau = \frac{1}{K_{1} + k_{2}}[/tex]

                       = [tex]\frac{1}{(0.0289 + 0.0178) ms^{-1}}[/tex]

                       = 21.41 ms

Thus, we can conclude that the corresponding relaxation time(s) for the return to equilibrium after a temperature jump is 21.41 ms.

Determine whether each carbohydrate is best described as a monosaccharide, a disaccharide, or a polysaccharide

Answers

Answer options from an alternative source

fructose                               lactose                              starch glucose                                                                            cellulose

Answer:

fructose -monosaccharide                               lactose  - disaccharide                            starch  - polysaccharideglucose - monosaccharide                                                                           cellulose - polysaccharide

Explanation:

Monosaccharides are carbohydrates that are the simplest form of a sugar. They cannot be further broken down into smaller carbohydrates, and represent the basic building block for carbohydrates. Monosaccharides can form disaccharides, which are the sugar formed when two monosaccharides join together, or polysaccharides, which are chains of monosaccharides.

Final answer:

Carbohydrates can be categorized as monosaccharides, disaccharides, or polysaccharides based on the number of sugar units they contain. Monosaccharides have one, disaccharides have two, while polysaccharides have multiple sugar units.

Explanation:

The type of carbohydrate is determined by the number of sugar units it contains. Monosaccharides consist of one sugar unit, examples being glucose and fructose. Disaccharides consist of two sugar units, with lactose and sucrose being examples. Polysaccharides contain many sugar units, with examples including starch and cellulose.

Learn more about Carbohydrates here:

https://brainly.com/question/1373821

#SPJ3

The density of SiO2 is 2.27 g cm-3. Given that its structure is amorphous, calculate the number of molecules per unit volume, in nm-3. Compare your result with (a) and comment on what happens when the surface of an Si crystal oxidizes. The atomic masses of Si and O are 28.09 and 16,respectively

Answers

Answer:

Explanation:

Oxidation is defined as the reaction of oxygen and a substrate which could be a metal, non-metal etc. Pure Silicon can be found to be too reactive and hence forms alloys with non-metals.

Therefore, oxidation of silicon will form a layer of silicon dioxide on the surface of the silicon and hence, the crystal Silicon structure is partly lost with the formation of an amorphous SiO2. An example of a feasible oxidation of silicon is thermal oxidation which follows the equation:

Si + 2H2O -> SiO2 + 2H2

Si + O2 -> SiO2

Final answer:

The number of SiO2 molecules per unit volume in nm-3 is calculated to be 22.8 molecules per nm³ based on the density and molar mass of SiO2. This calculation reveals the considerable volume expansion that occurs when the surface of a Si crystal oxidizes to form SiO2, potentially impacting semiconductor properties.

Explanation:

To calculate the number of SiO2 molecules per unit volume in nm-3, we first need to find the molar mass of SiO2. The atomic masses of Si and O are 28.09 and 16, respectively. Thus, the molar mass of SiO2 is 28.09 + 2(16) = 60.09 g/mol.

Given the density of SiO2 is 2.27 g/cm3, we can calculate the number of moles in 1 cm3 as follows:

Number of moles = density / molar mass = 2.27 g/cm3 / 60.09 g/mol = 0.0378 mol/cm3.Since 1 mol contains Avogadro's number of molecules (6.022 x 1023 molecules/mol), the number of molecules in 1 cm3 is 0.0378 mol/cm3 x 6.022 x 1023 = 2.28 x 1022 molecules/cm3.Converting cm3 to nm3, where 1 cm3 equals 1 x 1021 nm3, the number of molecules per nm3 is (2.28 x 1022) / (1 x 1021) = 22.8 molecules/nm3.

Regarding the effect of surface oxidation on a Si crystal, the expansion of volume during the transformation from Si to SiO2 implies that the material becomes less densely packed with increased volume. Given that 0.44 Å of Si is used to obtain 1.0 Å of SiO2, this indicates that the oxidation process introduces more space within the structure due to the larger volume of SiO2 compared to Si. This expansion could affect the electrical and mechanical properties of silicon components, particularly in semiconductor applications, where precise control of material properties is essential.

A lithium atom starts from rest at a position x = xo and falls toward zinc atom with an acceleration that depends on their separation as a(x) = 4Eϵ/m { 12 (σ^12/σ^13) -6 (σ^6/σ^7) where ϵ, m, and σ are positive constants, and the zinc atom stays fixed at position x = 0, Assume that xo > 2^(1/6)σ. a. Find an expression for how the velocity of the moving lithium atom depends on x. (It will also depend on ϵ, m, xo and σ) b. What is the distance of closest approach of the the two atoms (in terms of σ and xo)?

Answers

Answer:

Please refer to the attachment for answers.

Explanation:

Please refer to the attachment for explanation

A reaction in which a substance reacts with oxygen, emitting heat and forming oxygen-containing compounds is an example of a(n):

A) acid-base reaction.
B) combustion reaction.
C) precipitation reaction.
D) gas evolution reaction.

Answers

Answer: B) combustion reaction.

Explanation:

A) acid-base reaction: When an acid reacts with a base, to form metal salt and water, this type of reaction is Acid Base reaction.

Example: [tex]HCl+NaOH\rightarrow NaCl+H_2O[/tex]

B) combustion reaction: When a hydrocarbon reacts with oxygen to produce carbon dioxide and water, this type of reaction is combustion reaction.

[tex]CH_4+2O_2\rightarrow CO_2+2H_2O[/tex]

C) precipitation reaction: a reaction in which aqueous solution of two compounds on mixing react to form an insoluble compound which separate out as a solid are called precipitation reactions.

[tex]Na_2SO_4(aq)+BaCl_2(aq)\rightarrow BaSO_4(s)+NaCl(aq)[/tex]

D) gas evolution reaction: a reaction in which one of the product is formed as a gas.

[tex]CaCO_3(s)\rightarrow CaO(s)+CO_2(g)[/tex]

Predict whether each of the following bonds is ionic, polar, covalent, or nonpolar covalent:

a) Si--O;
b) K--Cl;
c) S--F;
d) P--Br;
e) Li--O;
f) N--P.

Answers

Predict whether each of the following bonds is no polar covalent, polar covalent, or ionic

Bond. Electro negativity Type of bond

Si- O

k-Cl

I-I

C-H

a) Si--O: Polar Covalent

b) K--Cl: Ionic

c) S--F: Polar Covalent

d) P--Br: Polar Covalent

e) Li--O: Ionic

f) N--P: Covalent

a) Si--O: Polar Covalent. Silicon (Si) and oxygen (O) have different electronegativities, causing unequal sharing of electrons. The oxygen atom attracts electrons more strongly, resulting in a partial negative charge on oxygen and a partial positive charge on silicon.

b) K--Cl: Ionic. Potassium (K) and chlorine (Cl) have significantly different electronegativities. K transfers an electron to Cl, forming K⁺ and Cl⁻ ions held together by electrostatic attraction.

c) S--F: Polar Covalent. Sulfur (S) and fluorine (F) have distinct electronegativities, leading to unequal electron sharing. F pulls electrons more, inducing partial charges on both atoms.

d) P--Br: Polar Covalent. Phosphorus (P) and bromine (Br) have differing electronegativities, causing uneven electron distribution and partial charges on the atoms.

e) Li--O: Ionic. Lithium (Li) and oxygen (O) have a significant electronegativity difference. Li loses an electron to O, resulting in Li⁺ and O²⁻ ions, held together by electrostatic forces.

f) N--P: Covalent. Nitrogen (N) and phosphorus (P) have similar electronegativities, allowing for equal electron sharing in a covalent bond.a) Si--O: Polar Covalent.

Learn more about Polar Covalent, here:

https://brainly.com/question/13149066

#SPJ3

A reaction was performed in which 1.500 g of camphor was reduced by an excess of sodium borohydride to make 1.036 g of isoborneol. Calculate the theoretical yield and percent yield for this reaction.

Answers

Answer: The percent yield of the reaction is 68.16 %.

Explanation:

To calculate the number of moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]      .....(1)

For camphor:

Given mass of camphor = 1.500 g

Molar mass of camphor = 152.23 g/mol

Putting values in equation 1, we get:

[tex]\text{Moles of camphor}=\frac{1.500g}{152.23g/mol}=9.85\times 10^{-3}mol[/tex]

The chemical equation for the reaction of camphor and sodium borohydride follows:

[tex]\text{Camphor}+NaBH_4\rightarrow \text{Isoborneol}[/tex]

As, sodium borohydride is present in excess. It is an excess reagent. So, camphor is the limiting reagent because it limits the formation of products.

By Stoichiometry of the reaction:

1 mole of camphor produces 1 mole of isoborneol

So, [tex]9.85\times 10^{-3}mol[/tex] of camphor will produce = [tex]\frac{1}{1}\times 9.85\times 10^{-3}mol=9.85\times 10^{-3}mol[/tex] of isoborneol

Now, calculating the mass of isoborneol from equation 1, we get:

Molar mass of isoborneol = 154.25 g/mol

Moles of isoborneol = [tex]9.85\times 10^{-3}[/tex] moles

Putting values in equation 1, we get:

[tex]9.85\times 10^{-3}mol=\frac{\text{Mass of isoborneol}}{154.25g/mol}\\\\\text{Mass of isoborneol}=(9.85\times 10^{-3}mol\times 154.25g/mol)=1.52g[/tex]

To calculate the percentage yield of isoborneol, we use the equation:

[tex]\%\text{ yield}=\frac{\text{Experimental yield}}{\text{Theoretical yield}}\times 100[/tex]

Experimental yield of isoborneol = 1.036 g

Theoretical yield of isoborneol = 1.52 g

Putting values in above equation, we get:

[tex]\%\text{ yield of isoborneol}=\frac{1.036g}{1.52g}\times 100\\\\\% \text{yield of isoborneol}=68.16\%[/tex]

Hence, the percent yield of the reaction is 68.16 %.

What is the minimum number of moles of sodium borohydride required to fully reduce 0.55 grams of benzophenone? Enter only the number with two significant figures.

Answers

Answer:

see explanation below

Explanation:

In this case, is pretty easy. This is a reduction reaction to form the respective alcohol.

Now for each mole of benzophenone that it's present, reacts with 1 mole of Sodium borohydryde, so, all we need to do, is to calculate the moles of benzophenone presents and these, would be the same moles of NaBH4 so:

moles Benzophenone : m/MM

The molar mass of benzophenone reported is 182.22 g/mol so:

moles Benzophenone = 0.55/182.22 = 3.02x10⁻³ moles

so the moles of NaBH₄ = 3.02x10⁻³ moles

A chemist measures the amount of bromine liquid produced during an experiment. He finds that 1.33 g of bromine liquid is produced. Calculate the number of moles of bromine liquid produced. Round your answer to 3 significant digits.

Answers

Answer:

8.32×10⁻³ moles of liquid Br₂ were produced.

Explanation:

You have the mass of bromine liquid produced and you must calculate the moles. Therefore you divide mass / molar mass Br

Bromine is a diatomic molecule, Br₂ so molar mass is 159.8 g/mol

1.33 g / 159.8 g/mol = 8.32×10⁻³ moles

How much heat (kJ) is absorbed by 229.1 g of water in order for the temperature to increase from 25.00∘C to 32.50∘C?

Q2) Calculate the amount of heat required to raise the temperature of a 34 g sample of water from 9 ∘C to 23 ∘C.

Answers

Answer:

(Q1) 9.42 kJ.

(Q2) 1.999 kJ

Explanation:

Heat: This is a form of Energy that brings about the sensation of warmth.

The S.I unit of Heat is Joules (J).

The heat of a body depend on the mass of the body, specific heat capacity, and temperature difference. as shown below

Q = cm(t₂-t₁) ........................ Equation 1

(Q1)

Q = cm(t₂-t₁)

Where Q = amount of heat absorbed, c = specific heat capacity of water, m = mass of water, t₁ = initial temperature, t₂ = final temperature.

Given: m = 229.1 g = 0.2991 kg, t₁ = 25.0 °C, 32.50 °C

Constant: c = 4200 J/kg.°C

Substituting into equation 1

Q = 0.2991×4200(32.5-25)

Q = 1256.22(7.5)

Q = 9421.65 J

Q = 9.42 kJ.

Hence the heat absorbed = 9.42 kJ

(Q2)

Q = cm(t₂-t₁)

Where Q = amount of heat required, c = specific heat capacity of water, m = mass of water, t₁ = initial temperature, t₂ = final temperature.

Given: m = 34 g = 0.034 kg, t₁ = 9 °C, t₂ = 23 °C

Constant: c = 4200 J/kg.°C

Q = 0.034×4200(23-9)

Q = 142.8(14)

Q = 1999.2 J

Q = 1.999 kJ.

Thus the Heat required = 1.999 kJ

Final answer:

To calculate the amount of heat absorbed by water, you can use the formula Q = mcΔT.

Explanation:

To calculate the amount of heat absorbed by water in order for the temperature to increase, you can use the formula:

Q = mcΔT

where Q is the heat absorbed, m is the mass of water, c is the specific heat capacity of water, and ΔT is the change in temperature.

For the first question, the specific heat capacity of water is 4.18 J/g⋅°C. Substitute the given values into the formula to calculate the heat absorbed.

For the second question, you can follow the same steps using the given mass, specific heat capacity, and change in temperature.

Learn more about Calculating heat absorbed by water here:

https://brainly.com/question/31496548

#SPJ3

What is the frequency of green light that has a wavelength of 543 nm? (c = 3.00 x 10⁸ m/s)

Answers

Answer:

ν =  5.53 x 10⁶ Hz

Explanation:

The frequency of a radiation, ν ,is inversely  propotional  to its wavelength, and is given  by:

ν =  c/λ  where

ν = frequency

c: speed of light, 3 x 10⁸ m/s

λ: wavelength in m

Think of frequency as the number of waves per second.

We can directly compute the answer by first converting the wavelength to m for unit consistency and then plugging the values.

1 m = 10⁹ nm

543 nm x ( 1 m /  10⁹ nm ) = 5.43 x 10⁻⁷ m

ν =  c/λ  = 3 x 10⁸ m/s / 5.43 x 10⁻⁷ m = 5.53x 10¹⁴ s⁻¹

In the metric system the unit s⁻¹ is called Hertz.

ν = 5.53 x 10¹⁴  Hz

Final answer:

The frequency of green light with a wavelength of 543 nm is approximately 5.52 x 10^14 Hz.

Explanation:

The frequency of electromagnetic waves can be calculated using the equation: frequency = speed of light / wavelength. In this case, we have a wavelength of 543 nm and the speed of light is 3.00 x 10^8 m/s. First, we need to convert the wavelength to meters. There are 1 x 10^9 nm in a meter, so the wavelength is 543 x 10^-9 m. Plugging these values into the equation, the frequency of the green light is approximately 5.52 x 10^14 Hz.

Learn more about frequency of light here:

https://brainly.com/question/33559395

#SPJ3

Compounds in a and b were named incorrectly. On a sheet of paper draw the molecule that fits the given description. From the structure you drew determine the correct IUPAC name. Write the correct IUPAC name in the blank.

a) 4-methyl-3-propylheptane
(I answered 4-ethyl-3-methylheptane and it was incorrect)

b) 2-ethyl-6,6,6-trimethylhexane

Answers

Answer:

a. 4—ethyl—5—methyloctane

b. 2,2,6—trimethyloctane

Explanation:Please see attachment for explanation

4-hydroxypentanal reacts with one equivalent of methanol to form a cyclic acetal.
Draw curved arrows to show the movement of electrons in this step of the reaction mechanism.

Answers

Answer:

Explanation:

The equation is given as:

CH3CHOHC2H4CHO + CH3OH --> CYCLIC ACETAL + H2O

This above equation is carried out in the presence of a strong acid. There are five mechanisms employed and they are:

Step 1:

Initial formation of the hemiacetal which takes several steps

Step 2:

Addition of a proton. The hemicetal is protonated on the hydroxyl group (-OH group)

Step 3:

As seen a bond is broken to give the H2O molecule and a resonance stabilized cation.

The carbonyl group on the cation is enriched with the oxygen-18 got from the H2O molecule as seen in the mechanism.

Step 4:

An attraction occurs between electrophile and nucleophile i.e the stabilised cation and the lone paids of the methanol.

Step 5:

Finally, a proton (+) is removed from the molecule by a lone pair of electron on the methanol.

Attached are the Steps 1 - 5 mechanism below

If the metabolic rate of eggs at 25oC is 0.3 ml O2/hr and their metabolic rate at 35oC is 0.6 ml O2/hr, what is the Q10

Answers

Answer:

Q₁₀ = 2

Explanation:

The Q₁₀ can be calculated by the following equation:

[tex] Q_{10} = \frac{R_{2}}{R_{1}}^{10^{\circ} C/(T_{2}-T_{1})} [/tex]

where R: is the rate and T: is the temperature

With R₁=0.3 ml O₂/h, R₂=0.6 ml O₂/h, T₁=25 °C and T₂=35 °C, the Q₁₀ is:

[tex] Q_{10} = \frac{0.6 ml O_{2}/h}{0.3 ml O_{2}/h}^{10^{\circ} C/(35 -25)^{\circ} C} = 2 [/tex]

Therefore the Q₁₀ temperature coefficient of eggs is 2.

I hope it helps you!

What is the name of this molecule?
Η Η Η
Η
Η
Η
H-C-C-C-C- C- C-H
Η Η Η Η Η Η
Ο
Pentane
Ο
B. 2-pentane
C. Hexyne
D. Hexane

Answers

Answer: The name of the above compound is Hexane

Explanation: The Formula for Homolougous series i.e Alkane family is CnH2n+2

The number of the Carbon above is 6 and the number of the Hydrogen is 14.

That means it corroborates with the above formula for the alkame family

C6H(2×6)+2 =C6H12+2

Final answer is C6H14

From the number 6 means "Hex" with the family name "ane"

The name results to Hexane

g Isopropyl methyl ether is slightly soluble with water because the oxygen atom of ethers with or fewer carbon atoms can form a few hydrogen bonds with water.
True/False

Answers

Answer:

True

Explanation:

The isopropyl methyl ether is a polar molecule because its dipole moment is different from 0. The ether is formed by a molecule of oxygen between carbons, in this case, the oxygen is bonded to an isopropyl, which has 3 carbons, and to a methyl, with only one carbon, so, the dipole, which is the polar difference between the atoms, will be stronger in the isopropyl bond.

Because of that, the oxygen will have a partial negative charge. The water is also a polar substance, and "like dissolve like". Because water has a dipole in the hydrogen and in the oxygen, the hydrogen of it may bond with the oxygen of the ether, forming a hydrogen bond, which is strong.

Deprenyl is an enzyme inhibitor that helps prevent the metabolism of dopamine in the brain. The chemical formula of Deprenyl is C13H17NHCl. The appropriate dose for treating Parkinson’s disease is 100 μg/(day*kg body weight). For a 70 kg

Answers

Answer:

0.007 g of deprenyl dose is required fro the patient with body mass of 70 kilograms.

Explanation:

The dose for treating Parkinson’s disease = 100 μg/kg body weight

Mass of patient's body = 70 kg

Amount of dose of deprenyl required = 100 μg/kg × 70 kg = 7,000 μg

1 μg = 0.00001 g

7,000 μg = 7,000 × 0.000001 g = 0.007 g

0.007 g of deprenyl dose is required fro the patient with body mass of 70 kilograms.

Final answer:

Deprenyl is a chemical compound used as a treatment for Parkinson's disease. It works by inhibiting the enzyme that breaks down dopamine, increasing dopamine levels in the brain. The appropriate dose for treating Parkinson's disease with Deprenyl is 100 μg/day per kg of body weight.

Explanation:

Deprenyl is a chemical compound with the formula C13H17NHCl. It is an enzyme inhibitor that helps prevent the metabolism of dopamine in the brain. Deprenyl is commonly used as a treatment for Parkinson's disease, a neurodegenerative disorder characterized by a loss of dopaminergic neurons.


Deprenyl works by inhibiting the enzyme monoamine oxidase-B (MAO-B), which is responsible for breaking down dopamine in the brain. By preventing the breakdown of dopamine, Deprenyl helps to increase dopamine levels, which can alleviate symptoms of Parkinson's disease.

The appropriate dose of Deprenyl for treating Parkinson's disease is 100 μg/day per kg of body weight. For example, for a 70 kg individual, the appropriate dose would be 7000 μg or 7 mg per day.

Draw the structures of the starting materials needed to make 2-methylhept-3-yne in the spaces provided. The starting materials may be any bromoalkane having five carbons or fewer.

Answers

Answer: answered

Explanation:

In an aqueous solution of a certain acid the acid is 4.4% dissociated and the pH is 3.03. Calculate the acid dissociation constant Ka of the acid. Round your answer to 2 significant digits.

Answers

Answer:

4.1x10⁻⁵

Explanation:

The dissociation of an acid is a reversible reaction, and, because of that, it has an equilibrium constant, Ka. For a generic acid (HA), the dissociation happens by:

HA ⇄ H⁺ + A⁻

So, if x moles of the acid dissociates, x moles of H⁺ and x moles of A⁻ is formed. the percent of dissociation of the acid is:

% = (dissociated/total)*100%

4.4% = (x/[HA])*100%

But x = [A⁻], so:

[A⁻]/[HA] = 0.044

The pH of the acid can be calcualted by the Handersson-Halsebach equation:

pH = pKa + log[A⁻]/[HA]

3.03 = pKa + log 0.044

pKa = 3.03 - log 0.044

pKa = 4.39

pKa = -logKa

logKa = -pKa

Ka = [tex]10^{-pKa}[/tex]

Ka = [tex]10^{-4.39}[/tex]

Ka = 4.1x10⁻⁵

Final answer:

To calculate the acid dissociation constant Ka, use the pH to find the hydrogen ion concentration [H+], then determine the initial concentration of the acid before dissociation, and finally calculate Ka using the formula [H+]^2 / initial concentration. The Ka value for the acid in question is approximately 4.1 × 10^-6.

Explanation:

To calculate the acid dissociation constant Ka of the acid based on the given information, we can follow these steps:

First, determine the hydrogen ion concentration [H+] using the pH value. The pH is the negative logarithm of the hydrogen ion concentration. Since the pH is 3.03, [H+] = 10-3.03.Next, calculate the initial concentration of the acid before dissociation. The acid is 4.4% dissociated, which means that 4.4% of the initial concentration has turned into hydrogen ions and its conjugate base. If we denote the initial concentration as C, then the concentration of [H+] is 0.044 × C.Using the value of [H+], we can solve for C. C = [H+] / 0.044.Finally, the Ka value is calculated by dividing the concentration of the hydrogen ions by the initial concentration, which is [H+]^2 / C.

Let's perform the calculations:

[H+] = 10-3.03 = 9.33 × 10-4 MC = 9.33 × 10-4 M / 0.044 = 2.12 × 10-2 MKa = (9.33 × 10-4 M)^2 / 2.12 × 10-2 M = 4.1 × 10-6

Therefore, the acid dissociation constant Ka for the acid is approximately 4.1 × 10-6.

You need to make 10 mL of 2 mg/mL solution of protein and you have 25 mg/mL solution. How much protein solution and water do you need to mix in order to make the required solution?

Answers

Answer:

The protein solution needed is 0.8mL and the water needed 1000mL

Explanation:

C1 = 2 mg/mL

V1 = 10 mL

C2 = 25 mg/mL

V2 =?

C1V1 = C2V2

2 x 10 = 25 x V2

V2 = 20/ 25

V2 = 0.8mL

The protein solution needed is 0.8mL and the water needed 1000mL

Are the bonds in each of the following substances ionic, nonpolar covalent, or polar covalent?

(a) S8
(b) RbCl
(c) PF3
(d) SCl2
(e) F2(f) SF2

Answers

Answers :

Solution of each part is given below.

Explanation:

a) [tex]S_8[/tex]     non polar covalent  ( because each sulphur atom shares electron and the net dipole moment is zero.)

b) RbCl    ionic  ( Rb have good tendency to donate electron and chlorine is too electro negative therefore they make strong ionic bond.)

c) [tex]PF_3[/tex]   polar covalent ( because of triagonal pyramidal geometry and strong electronegativity of F atom it is polar and covalency is due to the share of electron with each F atom.)

d) [tex]SCl_2[/tex]  polar covalent ( because of tetrahedral geometry and sharing of electrons between S and Cl.)

e) [tex]F_2[/tex]   non polar covalent ( because of linear geometry they are non polar and bond between them is formed due to sharing electrons.)

f) [tex]SF_3[/tex]   polar covalent ( because of T- shape geometry they are non polar and due to sharing of electrons they are polar covalent.)

Hence, this is the required solution.

The nature or type of bonds formed by molecules and compounds are greatly influenced by the chemical properties of the element.

Data;

S8RbClPF3SCl2F2SF2Bonds in the Compounds

The chemical properties of an element often affects how it bonds with other elements to form a compound. In this case, we have several compounds given.

S8: This is a non-polar covalent molecule.

RbCl: This is an ionic compound because it consists of very strong electropositive and electronegative elements.

PF3: This is a polar covalent compound due to the nature of phosphorous.

SCl2: This is a polar covalent compound

F2: This is a non-polar covalent compound

Sf3: This is a polar covalent compound

Learn more on types of bonds here;

https://brainly.com/question/9817093

How many electrons move past a fixed reference point every tttd = 1.25 psps if the current is iii = 4.8 μAμA ? The charge on a single electron is about â1.6Ã10â19Câ1.6Ã10â19C .

Answers

Answer:

38 electrons

Explanation:

From Faraday's first law of electrolysis which states that during electrolysis, the mass of a substance deposited at the electrode is proportional to the quantity of electricity passing through it. Mathematically , M ∝ Q

but M = zQ and from electricity, Q =It, hence the equation becomes M = zIt.

where M = Mass of substance deposited in g, and Q =Quantity of electricity in coulombs(C)

I = current in ampere(A)

t = time in seconds

z = Chemical Equivalent in g/C

hence, given t = 1.25 ps and i = 4.8 μA

Using Q = It = 1.25 ps × 4.8 μA , converting the ps (pico secs) to secs and micro ampere to ampere, Q = 1.25 × 10-12s  × 4.8 × 10-6A = 6 × 10-18C

From 1 mole of electron is equal to the quantity of charge which is also equal to 96500C/mol,

Hence, number of moles of electrons =  6 × 10-18C / 96500C/mol

number of moles = 6.218 ×10-5 × 10-18  = 6.218 × 10-23moles

Recalling that, number of moles = number of electrons / Avogadro's constant and Avogardos constant = 6.023 × 10raised to the power of 23/mol

number of electrons = number of moles × 6.023 × 1023/mol

number of electrons = 6.218 × 10-23moles × 6.023 × 1023/mol  = 37.50 which is approximately 38

Hence 38 electrons moved past the fixed reference point.

Final answer:

To calculate the number of electrons that move past a fixed reference point, use the formula: Number of electrons = (Current × Time × Charge on a single electron) / Electron charge. Plugging in the given values, the number of electrons is approximately 1.875 × 10^10 electrons.

Explanation:

To calculate the number of electrons that move past a fixed reference point, we can use the formula:

Number of electrons = (Current × Time × Charge on a single electron) / Electron charge

Plugging in the given values, we have:

Number of electrons = (4.8 μA × 1.25 ps × 10^-12 C) / (1.6 × 10^-19 C)

Simplifying the expression, we find that the number of electrons is approximately 1.875 × 10^10 electrons.

Learn more about Calculating the number of electrons in a current here:

https://brainly.com/question/35993063

#SPJ3

Imagine that you are given the mass spectra of these two compounds, but the spectra are missing the compound names.
Which peaks occur in one isomer but not the other isomer?
That is, which peaks could be used to distinguish one isomer from the other?

Answers

The structures of the isomers and the m/z values of their peaks are not given in the question. The complete question is provided in the attachment

Answer:

Compound 2 (2,5-dimethylhexane) will not have the peaks at 29 and 85 m/z

Explanation:

The fragmentation of molecules by electron ionization of mass spectrometer occurs according to Stevenson's Rule, which states that "The most probable fragmentation is the one that leaves the positive charge on the fragment with the lowest ionization energy". This is much like the Markovnikov's Rule in organic chemistry which has predicted the formation of most stable carbocation and the addition of hydrogen halide to it.

The mass spectra of compound 1 (2,4-dimethylhexane) will contain all the m/z values mentioned in the question. Each peak indicate towards homologous series of fragmentation product of the compound 1. The first peak can be attributed to ethyl carbocation (m/z = 29), with the increase of 14 units the next peak indicates towards propyl carbocation (m/z = 43) and onwards until molecular ion peak of 114 m/z.

Compound 2 (2,5-dimethylhexane) structure shows that the cleavage  of C-C bond will not yield a stable ethyl and hexyl carbocation. Hence, no peaks will be observed at 29 and 85 m/z. The absence of these two peaks can be used to distinguish one isomer from the other.

Nitrogen forms a number of compounds with oxygen, for example, Nitrous oxide, N2O is 63.65% by mass.

A second compound, which contains two atoms of nitrogen per molecule, is 36.86% N by mass. How many oxygen atoms are in the second compound? Write your answer as a whole number.

Answers

Answer: there are 3 atoms of oxygen in the compound, and the compound is N2O3

Explanation:Please see attachment for explanation

Final answer:

The nitrogen-containing compound is 36.86% nitrogen by mass, and after calculating, it is determined that the compound contains three oxygen atoms.

Explanation:

The question asks how many oxygen atoms are in a nitrogen-containing compound given that the compound is 36.86% nitrogen by mass and contains two nitrogen atoms per molecule. To find out, we start by using the percent composition of nitrogen to determine the total molecular mass of the compound. Nitrogen has an atomic mass of 14.01 amu, and since there are two nitrogen atoms, that contributes 28.02 amu to the molecular mass. Since nitrogen makes up 36.86% of the compound by mass, we calculate the total molecular mass of the compound by dividing the mass of nitrogen in the compound by the percentage of nitrogen (28.02 amu / 0.3686), which equals approximately 76 amu as the molar mass of the compound.

Now we subtract the mass contributed by nitrogen from the total molecular mass to find the mass of oxygen in the molecule (76 amu - 28.02 amu). This leaves approximately 47.98 amu for the oxygen atoms. Oxygen has an atomic mass of approximately 16 amu, so by dividing the mass of oxygen by the atomic mass of oxygen (47.98 amu / 16 amu), we find there are about 3 oxygen atoms in the molecule.

Therefore, the second compound contains three oxygen atoms, and you would write the answer as a whole number: 3.

A solution was made by dissolving 25 g of potassium malonate K2C3H2O4 (MM=180.2 g/mol) in water. The total volume of that solution is 455 ml.

a) calculate the pH of that solution

b) calculate the concentration of malonic acid (H2C3H2O4) in that solution

c) what would happen to concentration of malonic acid (increase or decrease in the above solution if pH is decreased by addition of 12 M HCL?

Explain your answer using net ionic equations and Le chatelier's principle.

Answers

Answer:

a) pH = 9.8

b) 2.2 x 10⁻⁸ = [ H₂C₃H₂O₄ ]

c) decrease

Explanation:

The equilibriums involved in this question are:

C₃H₂O₄²⁻ + H₂O  ⇄  HC₃H₂O₄⁻ + OH⁻  (1) Kb₁ =[HC₃H₂O₄⁻][OH⁻]/[C₃H₂O₄²⁻ ]

HC₃H₂O₄⁻ + H₂O ⇄  H₂C₃H₂O₄ +OH⁻ (2) Kb₂=[ H₂C₃H₂O₄]/[OH⁻]/[HC₃H₂O₄⁻]

The kas for malonic acid, H₂C₃H₂O₄, from reference tables are:

Ka (H₂C₃H₂O₄ )=  1.4 x 10⁻³  

Ka ( HC₃H₂O₄⁻ ) = 2.0 x 10⁻⁶

a) We can calculate the Kbs for the conjugate bases of the weak malonic acid from Kw = Ka x Kb

Kb (C₃H₂O₄²⁻) = 10⁻¹⁴  / 2.0 x 10⁻⁶  =5.0 x 10⁻⁹

Kb (HC₃H₂O₄⁻)= 10⁻¹⁴ / 1.0 x 10⁻³   = 7.1  x 10⁻¹²

Given the magnitudes of the Kbs ( Kb₂ is approximately 1000 times Kb1 ) , to  calculate pOh we can neglect the contribution from (2). We then treat this problem as any equilibrium:

[K₂C₃H₂O₄] = 25 g/180.2 g/mol / 0.455 L = 0.30 M

  Conc               C₃H₂O₄²⁻ + H₂O   ⇄   HC₃H₂O₄⁻ + 0H⁻

I   0.30                     0                                  0               0

C    -x                                                           +x             +x

E    0.30 - x                                                    x              x

Kb (C₃H₂O₄²⁻)  = [ HC₃H₂O₄⁻ ] [OH⁻]/ [ C₃H₂O₄²⁻] = x² / 0.30 - x ≅  x² /0.30

x² /.030 = 5.0 x 10⁻⁹  ⇒ x = √(0.30 x  5.0 x 10⁻⁹ ) = 7.1 x 10⁻⁵ = [ÒH⁻]

(Verifying our approximation was good 7.1 x 10⁻⁵ / 0.30 = 2.4 x 10⁻⁴ so our approximation checks)

pOH = -log 7.1 x 10⁻⁵  = 4.2

pH = 14 -4.2 = 9.8

b)  To answer this part we take equilibrium (2 ) and set up our usual ICE table to solve for the concentration of malonic acid:

Conc (M)                      HC₃H₂O₄⁻ + H₂O  ⇄   H₂C₃H₂O₄ + OH⁻    (2)

I                                     7.1 x 10⁻⁵                             0              0

C                                       -x                                     +x             +x

E                                   7.1 x 10⁻⁵ -x                           x                x

7.1 x 10⁻⁵ - x ≅ 7.1 x 10⁻⁵

[ H₂C₃H₂O₄ ] [OH⁻] / [HC₃H₂O₄⁻] = Kb₂ = 7.1 x 10⁻¹² = x² / 7.1 x 10⁻⁵

x = √(7.1 x 10⁻¹² x  7.1 x 10⁻⁵) = 2.2 x 10⁻⁸ = [ H₂C₃H₂O₄ ]Again our approximation checks since [HC₃H₂O₄⁻] is almost 1000 times [ H₂C₃H₂O₄ ]

c) From eqn (1) :

C₃H₂O₄²⁻ + H₂O   ⇄   HC₃H₂O₄⁻ + OH⁻    

The salt  K₂C₃H₂O₄ will react completely with the added acid, thereby decreasing the C₃H₂O₄²⁻ concentration, and according to Le Chateliers principle the system will shift to the left and the OH⁻ at equilibrium will decrease ( as also does [HC₃H₂O₄⁻] ) therefore the pOH will increase and the pH will decrease ( less OH⁻ higher pOH, smaller pH )

Final answer:

Calculate the pH of the solution, determine the concentration of malonic acid, and explain the impact of adding HCl on the concentration of malonic acid in the solution.

Explanation:

a) Calculate the pH of the solution:

Calculate the molarity of the potassium malonate solution.

Use the dissociation of K2C3H2O4 and the autoionization of water to find the concentration of OH- ions.

Convert the OH- concentration to pH using the formula pH = 14 - pOH.

b) Calculate the concentration of malonic acid:

Set up an equilibrium expression for the dissociation of malonic acid.

Use the pH calculated in part (a) to determine the concentration of malonic acid.

c) Impact of adding HCl:

The addition of HCl will shift the equilibrium towards the formation of malonic acid, leading to an increase in its concentration.

Based on the thermodynamic properties provided for water, determine the amount of energy released for 155.0 g of water to go from 39.0 °C to -36.5°C. Property Melting point Boiling point AHfus AHvap Cp (s) Value 0.0 100.0 6.01 40.67 37.1 75.3 33.6 Units oC kJ/mol kJ/mol J/mol.oc J/mol C mol oC Cp (g)

Answers

Answer : The amount of energy released will be, -88.39 kJ

Solution :

The process involved in this problem are :

[tex](1):H_2O(l)(39.0^oC)\rightarrow H_2O(l)(0^oC)\\\\(2):H_2O(l)(0^oC)\rightarrow H_2O(s)(0^oC)\\\\(3):H_2O(s)(0^oC)\rightarrow H_2O(s)(-36.5^oC)[/tex]

The expression used will be:

[tex]\Delta H=[m\times c_{p,l}\times (T_{final}-T_{initial})]+m\times (-\Delta H_{fusion})+[m\times c_{p,l}\times (T_{final}-T_{initial})][/tex]

where,

[tex]\Delta H[/tex] = heat available for the reaction = ?

m = mass of water = 155.0 g

[tex]c_{p,s}[/tex] = specific heat of solid water = [tex]2.01J/g^oC[/tex]

[tex]c_{p,l}[/tex] = specific heat of liquid water = [tex]4.18J/g^oC[/tex]

= enthalpy change for fusion = [tex]6.01kJ/mole=6010J/mole=\frac{6010J/mole}{18g/mole}J/g=333.89J/g[/tex]

Molar mass of water = 18 g/mole

Now put all the given values in the above expression, we get:

[tex]\Delta H=[155.0g\times 4.18J/g^oC\times (0-(39.0))^oC]+155.0g\times -333.89J/g+[155.0g\times 2.01J/g^oC\times (-36.5-0)^oC][/tex]

[tex]\Delta H=-88392.625J=-88.39kJ[/tex]

Therefore, the amount of energy released will be, -88.39 kJ

The total energy released when 155.0 g of water cools from 39.0 °C to -36.5°C is approximately -89.0 kJ, calculated by summing the energy changes for the liquid cooling, phase change, and solid cooling.

To calculate the amount of energy released when 155.0 g of water cools from 39.0 °C to -36.5°C, we first determine the heat released during the temperature drops above and below the freezing point, along with the energy released during the phase change from liquid to solid (freezing). We will use the provided thermodynamic properties, namely the specific heat capacities for liquid water (Cp = 75.3 J/mol°C) and solid water (Cp(s) = 37.1 J/mol°C), along with the enthalpy of fusion (AHfus = 6.01 kJ/mol).

The steps are as follows:

Convert the mass of water (155.0 g) to moles using the molar mass of water (18.015 g/mol).Calculate the heat released (q) in cooling the water from 39.0 °C to 0°C using the formula q = m⋅Cp⋅ΔT for liquid water.Calculate the energy released during the phase change using q = m⋅AHfus.Calculate the heat released in cooling the water from 0°C to -36.5°C using q = m⋅Cp(s)⋅ΔT for solid water.Add the energies from steps 2, 3, and 4 to find the total energy released.

Now, let's calculate the values:

Number of moles (n) = 155.0 g / 18.015 g/mol = 8.605 molesq1 = m⋅Cp⋅ΔT = 8.605 mol × 75.3 J/mol°C × (0°C - 39.0°C) = -25727.3 Jq2 = m⋅AHfus = 8.605 mol × 6010 J/mol = -51709.05 Jq3 = m⋅Cp(s)⋅ΔT = 8.605 mol × 37.1 J/mol°C × (0°C - (-36.5°C)) = -11591.9 J

The total energy released is q1 + q2 + q3 = -25727.3 J - 51709.05 J - 11591.9 J = -89028.25 J

The total energy released when 155.0 g of water cools from 39.0 °C to -36.5°C is approximately -89.0 kJ.

An intravenous infusion contains 5 mg of zoledronic acid (RECLAST ) in 100 mL. If the infusion is to be administered in 15 minutes, how many (a) milligrams of zoledronic acid and (b) milliliters of infusion must be administered per minute? And (c), using a drip set that delivers 20 drops/milliliter, how many drops per minute must be infused?

Answers

Answer:

a) 0.33 mg/min

b) 6.67 mL/min

c) 133.4 drops/min

Explanation:

a) The mass flow indicates how much mass is flowing (in this case is being administrated) in a "piece" of time, thus, it's the total mass administrated by the total time:

mf = 5mg/15min

mf = 0.33 mg/min

So, 0.33 mg of the acid will be administrated per minute.

b) Now, we must calculate the volume flow, which is the total volume divided by the time:

Vf = 100mL/15 min

Vf = 6.67 mL/min

So, 6.67 mL of the infusion will be administrated per minute.

c) The drops flow, is the drop delivery ( 20 drops/mL) multiplied by the volume flow:

df = 20drops/mL * 6.67 mL/min

df = 133.4 drops/min

So, it must be infused 133.4 drops per minute.

Final answer:

To administer an intravenous infusion containing 5 mg of zoledronic acid in 100 mL over 15 minutes, 0.33 mg of zoledronic acid and 6.67 mL of infusion should be administered per minute. Using a drip set that delivers 20 drops/mL, the infusion should be given at a rate of 133.33 drops per minute.

Explanation:

An intravenous infusion contains 5 mg of zoledronic acid in 100 mL. To calculate the amount to be administered per minute:

(a) To find how many milligrams of zoledronic acid must be administered per minute: Convert 15 minutes to 1 minute: 5 mg x (1 minute / 15 minutes) = 5 mg / 15 = 0.33 mg/min

(b) To find how many milliliters of infusion must be administered per minute: 100 mL x (1 minute / 15 minutes) = 100 mL / 15 = 6.67 mL/min

(c) To calculate the drops per minute: Convert 6.67 mL/min x 20 drops/mL = 133.33 drops/min

A 45.30 g sample of solid mercury is initially at –59.00°C. If the sample is heated at constant pressure ( = 1 atm), kJ of heat are needed to raise the temperature of the sample to 30.00°C.

Answers

Answer:

0.165kJ

Explanation:

Formula to use for such a question is;

Energy = number of mole x molar gas constant x change in temperature

Number of mole = reacting mass of mercury / molar mass of mercury = 45.30/200.58 = 0.226moles

Change in temperature = final temperature - initial temperature = 30 - (-59) =30 + 59 = 89 Kelvin

E = nRT = 0.226 x 8.314 x 89

Energy = 165.35Joules

Energy in kJ = 165.35/1000 = 0.165kJ

Other Questions
The Constitutions necessary and proper clause allows the national government to claim ______ powers, logical extensions of the powers explicitly granted to it. Perform the requested operation or operations.f(x) = 4x + 9, g(x) = 4x2Find (f + g)(x).16x3 + 36xfour x plus nine divided by four x squared.4x + 9 - 4x24x + 9 + 4x2 Members at the star theather pay $30.00 per month plus 1.95 for each movie. Nonmembers pay the regular $7.95 admission fee. How many movies would both a member and a nonmember have to see in a month to pay the same amount? Considering an economic system, converting products made by producers into varieties sought by consumers is the role of ___________.A. Factory supervisorsB. Upstream partnersC. Third-party logisticsD. Marketing intermediariesE. Price consultants Morganton Company makes one product and it provided the following information to help prepare the master budget for its first four months of operations:a.The budgeted selling price per unit is $65. Budgeted unit sales for June, July, August, and September are 9,300, 24,000, 26,000, and 27,000 units, respectively. All sales are on credit.b.Forty percent of credit sales are collected in the month of the sale and 60% in the following month.c.The ending finished goods inventory equals 30% of the following months unit sales.d.The ending raw materials inventory equals 20% of the following months raw materials production needs. Each unit of finished goods requires 4 pounds of raw materials. The raw materials cost $2.50 per pound.e.Thirty percent of raw materials purchases are paid for in the month of purchase and 70% in the following month.f.The direct labor wage rate is $14 per hour. Each unit of finished goods requires two direct labor-hours.g.The variable selling and administrative expense per unit sold is $1.90. The fixed selling and administrative expense per month is $63,000.2. What are the expected cash collections for July?3. What is the accounts receivable balance at the end of July?4. According to the production budget, how many units should be produced in July?5. If 105,200 pounds of raw materials are needed to meet production in August, how many pounds of raw materials should be purchased in July?6. What is the estimated cost of raw materials purchases for July?7. If the cost of raw material purchases in June is $158,880, what are the estimated cash disbursements for raw materials purchases in July?8. What is the estimated accounts payable balance at the end of July?9. What is the estimated raw materials inventory balance at the end of July?10. What is the total estimated direct labor cost for July assuming the direct labor workforce is adjusted to match the hours required to produce the forecasted number of units produced?11. If the company always uses an estimated predetermined plantwide overhead rate of $9 per direct labor-hour, what is the estimated unit product cost? Trey is taking out a loan for $85000. It is a 20-year loan with an APR of 5.85% what will his monthly payment be? A compressor receives air at 290 K, 100 kPa and a shaft work of 5.5 kW from a gasoline engine. It is to deliver a mass flow rate of 0.01 kg/s air to a pipeline. Assuming a constant-pressure specific heat of Cp = 1.004 kJ/kg-K for the air, determine the maximum possible exit pressure of the compressor Does anyone know how to do this? Anika receives $0.11 in royalties each time her new song is played on the radio, and $0.38 in royalties for each digital download from a website. During January, her song was played an average of 150 times per day and downloaded a total of 3100 times. Approximately how much did Anika receive in royalties? Note that January has 31 days.$1200$2050$1690$400 6.1 Raunak took 5 moles of carbon atoms in a containe m Krish also took 5moles of sodium atoms in another container of the same weight(a) Whose container is heavier?(b) Whose container has more number of atoms? It is a busy morning at the coffee shop. "I asked for a caramel shot; there's none in this coffee!" demands one impatient customer. "This coffee's caffeinated, and I cannot tolerate caffeine," barks another. "You are right. I'm sorry. Here is a tall with a caramel shot," the harried barista apologizes to the first customer. "All right, I will pour you another," she tells the second customer, even though she knows the woman's coffee really was decaffeinated. In signal detection terms, the first customer's remark reflects a _____. The second customer's statement indicates a _____. What is the role of specialized cells in the body? Choose the correct answer.Specialized cells perform specific functions for the body, enabling the organism to survive.Specialized cells create stem cells for differentiation.Specialized cells, made from stem cells, can change roles to fit the needs of the organism, enabling the organism to survive. simplify: m + 15 + m + 15 + m - 30 + 2m + 2m - 20 anna can type 123 words in 3 minutes. Caroline can type 220 words in 5 minutes . Who can type fastest what is Stalin trying to do in his speech? What method is he trying to accomplish his goal The largest building in the world by volume is the boeing 747 plant in Everett, Washington. It measures approximately 632 m long, 710 yards wide, and 112 ft high. what is the cubic volume in feet, convert your result from part a to cubic meters. 13. "I compute that Dublin would take off annually about twenty thousand carcasses, and the restof the kingdom (where probably they will be sold somewhat cheaper) the remaining eightythousand."Which of these is nearest in meaning to the word carcasses, as it is used in the passage above?O mineralsvegetablescorpsesfoodstuffs Saul believes in the Golden Rule and desperately wants people to view him as a good person. Most likely, he is in which level of moral development? _____ is building and maintaining relationships with people whose interests are similar to one's own or with whom relationships could bring advantages to the firm. In 1966 the National Highway Safety Act charged which of the following agencies with the development of emergency medical service standards? A) U.S. Department of Transportation B) U.S. Department of the Interior C) U.S. Department of Health Services D) U.S. Department of Homeland Security What does prioritization help you to do? Steam Workshop Downloader