Alexis took an elevator one floor down from the lobby of her office building to the parking garage. Then she took the elevator back up 5 floors to her office. She described her movement with this expression: 1+5 What was Alexis’ error? She should have used –1 for moving below the lobby. She should have used –5 for moving up 5 floors. She should have used –1 for her movement down and –5 for her movement up. She should have started at zero and then added 6.

Answers

Answer 1

Answer:

Her mistake was that she should have used –1 for moving below the lobby.

Step-by-step explanation:

Lets denote the lobby as Floor zero (0)

- if you go up, you add a positive value to this quantity.

- if you go down, you add a negative value to this quantity.

Lets assume that moving through each floor is equivalent to advancing one unit

* She first took an elevator one floor down

(-1)

Then she took the elevator back up 5 floors to her office

(+5)

Her movement is described by the expression

(-1) + (5)

Her mistake was that she should have used –1 for moving below the lobby.

Answer 2

Answer:

A

Step-by-step explanation:


Related Questions

How do I know they are similar.

Answers

Answer:

The figures are not similar

Step-by-step explanation:

we know that

If two figures are similar, then the ratio of its corresponding sides is proportional and this ratio is called the scale factor

so

Verify

BC/JI=AB/FJ=ED/GH

substitute the given values

5.1/3.6=2.8/2.1=3.7/2.7

1.417=1.333=1.370 ------> is not true

therefore

The figures are not similar

Find the value of the expression 2x3 + 3y2 − 17 when x = 3 and y = 4

Answers

Answer:

85

Step-by-step explanation:

I assume by 2x3 you mean 2x^3 and 3y2 means 3y^2. If so then just plug in the values:

2x^3 + 3y^2 - 17 = ?

2(3)^3 + 3(4)^2 - 17 = ?

2(27) + 3(16) - 7 = ?

54 + 48 - 17

102 - 17 = ?

85 = ?

solve log(x+1)= -x^2 +10

Answers

Answer:

[tex]\boxed{x \approx 3.064}[/tex]

Step-by-step explanation:

There is no general property  that we can use to rewrite:

[tex]log_{a}(u\pm v)[/tex]

Then, we'll solve this problem graphically. Let's say that we have two functions:

[tex]f(x)=log(x+1) \\ \\ g(x)=-x^2 +10[/tex]

[tex]f(x)[/tex] is a logarithmic function translated one unit to the left of the pattern logarithmic function [tex]log(x)[/tex]. On the other hand, [tex]g(x)[/tex] is a parabola that opens downward and whose vertex is [tex](0,10)[/tex]. So:

[tex]f(x)=g(x)[/tex]

implies that we'll find the value (or values) where these two functions intersect. When graphing them, we get that this x-value is:

[tex]\boxed{x=3.064}[/tex]

Then, for [tex]x=3.064[/tex]:

[tex]f(x)=log(x+1) \\ \\ f(3.064)=log(3.064+1) \\ \\ f(3.064)=log(4.064) \\ \\ Using \ calculator: \\ \\ f(3.064) \approx 0.6 \\ \\ \\ g(x)= -x^2 +10 \\ \\ g(3.064)= -(3.064)^2 +10 \\ \\ g(3.064)=-9.388+10 \\ \\ g(3.064) \approx -0.6[/tex]

Which graph is the correct one?

Answers

Answer:

The upper graph

Step-by-step explanation:

We have two quadratic function here

[tex]y=-x^{2} +3x+5\\y=x^{2} +2x\\[/tex]

If we perform the function f(x) + g(x), which is nothing more than the sum of the two functions, we obtain a linear function, since the quadratic terms are eliminated by themselves

[tex]5x+5[/tex]

Your a GENIUS if you help me answer this!!!

suppose you selected a random letter from the word Mississippi.

WHAT is the probability of selecting the following letters

a) The letter S?

b) the letter P?

c) the letter M?

d) What is the probability of NOT selecting the letter I? ​

Answers

Answer:

a) 4/11

b) 2/11

c) 1/11

d) 7/11

answer both questions for seventeen points and i’ll name you brainliest!! Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s)
Consider the equation below.
-2(Bx - 5) = 16
The value of x in terms of b is:________
The value of x when b is 3 is:________

Answers

[tex]\bf -2(bx-5)=16\implies bx-5=\cfrac{16}{-2}\implies bx-5=-8\implies bx=-8+5 \\\\\\ bx=-3\implies \boxed{x=\cfrac{-3}{b}} \\\\[-0.35em] ~\dotfill\\\\ b=3\qquad \qquad x=\cfrac{-3}{\underset{b}{3}}\implies \boxed{b=-1}[/tex]

Three-fourth of x is added to the product of 7 and q.

Translate as algebraic expression

Answers

Answer:

3/4x + (7 × Q)

|

That's an x not multiplication

Answer:

[tex]7q + \frac{3}{4}x[/tex]

Step-by-step explanation:

[tex]\begin{array}{rcl}\text{Product of 7 and q} & = & 7q\\\\\text{Three-fourths of x} & = & \frac{3}{4}x \\\\\text{Three fourths of x added to product of 7 and q} & = & 7q + \frac{3}{4}x \\\\\end{array}[/tex]

What is the interquartile range of this box plot? And how do you find it?

Please and thank you

Answers

Answer:

3.

Step-by-step explanation:

Calculate the median, which is the middle number of an ordered range with an odd number. 3.

Calculate the medians of the bottom and top halves, omitting the middle number. Since these are now even-numbered sets, we'll take the average of the middle two numbers of each. Lower is 1.5, upper is 4.5.

Calculate the difference of the upper median and lower median, so 4.5 - 1.5 = 3.

Solve for x, y, and z. Please show all steps.

Answers

Answer:

I have put my answer in the form (x,y,z)

One solution (3,2,4)

Another solution (-5,-4,-6)

Step-by-step explanation:

I'm going to try to do this by a bunch of substitution.

I'm going to solve first equation for x, second for y, and third for z.

Commutative property x+xy+y=11

Distributive property x(1+y)+y=11

Subtraction property  x(1+y)=11-y

Division property x=(11-y)/(1+y)

I'm going to do the other 2 equations in a similar way:

So the second equation solving for y:    y=(14-z)/(1+z)

The third equation solving for z:  z=(19-x)/(1+x)

I'm going to plug my new first equation into my third equation giving me:

z=(19-[(11-y)/(1+y)])/(1+[(11-y)/(1+y)]

Now I'm going to clean this up by multiplying by compound fraction by (1+y)/(1+y).

z=(19(1+y)-(11-y)]/[1(1+y)+(11-y)]

z=[19+19y-11+y]/[1+y+11-y]

z=[8+20y]/[12]

Simplify

z=(2+5y)/3

Now I'm going to sub this into my non-rewrite of equation 2:

y+(2+5y)/3+y(2+5y)/3=14

Multiply both sides by 3 to clear fractions

3y+(2+5y)+y(2+5y)=42

3y+2+5y+2y+5y^2=42

5y^2+10y+2=42

Subtract 42 on both sides

5y^2+10y-40=0

Divide both sides by 5

y^2+2y-8=0

Factor

(y+4)(y-2)=0

So y=-4 or y=2

If y=-4  then x=(11-(-4))/(1+(-4))=15/-3=-5 and z=(2+5*-4)/3=-18/3=-6

So one solution is (-5,-4,-6)

If y=2 then x=(11-2)/(1+2)=9/3=3 and z=(2+5*2)/3=12/3=4

So another solution is (3,2,4)

opposite angles in parralelograms are?

Answers

Answer:

opposite angles in parralelograms are congruent

Step-by-step explanation:

Answer:

equal

Step-by-step explanation:

Opposite angles in parallelograms are equal.

What is the absolute value of the complex number -4-sqrt2i

Answers

Answer:

=√18

Step-by-step explanation:

The absolute value of a complex number is its distance from zero on graph. The formula for absolute value of a complex number is:

|a+bi|= √(a^2+b^2 )

where a is the real part of the complex number and b is the imaginary part of the complex number.

So for the given number,

a= -4

b=-√2

Putting in the formula:

|-4-√2 i|= √((-4)^2+(-√2)^2 )

= √(16+2)

=√18  ..

ANSWER

[tex]3 \sqrt{2} \: units[/tex]

EXPLANATION

The absolute value of the complex number

[tex] |a +b i| = \sqrt{ {a}^{2} + {b}^{2} } [/tex]

This is also known as the modulus of the complex number.

This implies that:

[tex]| - 4 - \sqrt{2} i| = \sqrt{ {( - 4)}^{2} + {( - \sqrt{2} )}^{2} } [/tex]

[tex]| - 4 - \sqrt{2} i| = \sqrt{ 16 +2 } [/tex]

We simplify further to get;

[tex]| - 4 - \sqrt{2} i| = \sqrt{ 18 } = 3 \sqrt{2} \: units[/tex]

Given the following formula, solve for h.
V = 1/3 pie-r ^2h

a. h= 3v pie-r ^2
b. h= 3v/ 3 pie-r ^2
c. h= v/3 pie-r ^2
d. h= 1/3 pie-r ^2h

Answers

Answer:

[tex]\large\boxed{h=\dfrac{3V}{\pi r^2}}[/tex]

Step-by-step explanation:

[tex]V=\dfrac{1}{3}\pi r^2h\to\text{It's the formula of a volume of a cone}\\\\\text{Solve for}\ h:\\\\\dfrac{1}{3}\pi r^2h=V\qquad\text{multiply both sides by 3}\\\\\pi r^2h=3V\qquad\text{divide both sides by}\ \pi r^2\\\\h=\dfrac{3V}{\pi r^2}[/tex]

The graph of f(t)=7•2^t shows the value of a rare coin in year t. What is the meaning of the y-intercept?

A. Every year, the coin is worth 7 more dollars

B. When it was purchased (year 0), the coin was worth $7

C. In year 1, the coin was worth 14$

D. When it was purchased (year 0), the coin was worth $2

Answers

Answer:

Option B

When it was purchased (year 0) the coin was worth $7

Step-by-step explanation:

we have

[tex]f(t)=7(2)^{t}[/tex]

This is a exponential function of the form

[tex]y=a(b)^{x}[/tex]

where

a is the initial value

b is the base

In this problem we have

a=$7

b=2

b=1+r

so

2=1+r

r=1

r=100%

The y-intercept is the value of the function when the value of x is equal to zero

In this problem

The y-intercept is the value of a rare coin when the year t is equal to zero

[tex]f(0)=7(2)^{0}[/tex]

[tex]f(0)=\$7[/tex]

therefore

The meaning of y-intercept is

When it was purchased (year 0) the coin was worth $7

What is the value of x is?

Answers

Answer:

96

Step-by-step explanation:

Answer:

e^x = -3 = -1*3  

x = ln(-3) = ln(-1) + ln(3)  

= (2n+1)iπ + ln(3)  

where n is any integer. For the principal value, choose n=0:  

= iπ + ln(3)

Step-by-step explanation:

Point C, is a point that is found on AB. AB is translated 3 units up and 10 units to
the right to form APB? Which of the following must be true?
1. Points A', B, and C must be collinear.
II. Ad and 8c must be of equal length.
I. AB and AB? are parallel.
I only
Il only
I and II only
I and III only

Answers

Answer:

I and III only

Step-by-step explanation:

step 1

we know that

In this problem

A, B and C are collinear

so

A', B' and C' are collinear too

because the transformation is a translation

The translation does not modify the shape or length of the figure

AB=A'B'

AC=A'C'

BC=B'C'

step 2

The distance

AA'=BB'=CC'

because AB and A'B' are parallel

A lock has 60 digits, and the combination involves turning right to the first number, turning left to the second number, and turning right to the third number. How many possible combinations are there?

Answers

Final answer:

A lock with 60 digits and a combination involving turning right to the first number, left to the second number, and right to the third number can have 212,400 possible combinations.

Explanation:

A lock with 60 digits and a combination involving turning right to the first number, left to the second number, and right to the third number can have 60 x 59 x 60 possible combinations.

Here's the explanation:

For the first digit, you have 60 options since you can turn right to any of the 60 digits.For the second digit, you have 59 remaining options since you turned left from the first digit and cannot choose the same digit twice.For the third digit, you have 60 options again since you turned right from the second digit.

By multiplying these options together, you get the total number of possible combinations: 60 x 59 x 60 = 212,400.

Final answer:

The total number of possible combinations for a lock with a 60-digit combination, turning right, left, and right is 60 × 60 × 60, leading to 216,000 unique combinations.

Explanation:

To calculate the number of possible combinations for a lock with a 60-digit sequence where you turn right to the first number, left to the second number, and right to the third number, you need to apply the basic principle of counting. Each of the three steps in the combination can be any of the 60 digits, with the choice of one step not affecting the choices for the other steps. Therefore, each step has 60 options, and the total number of possible combinations is the product of these options.

The calculation for the total number of combinations is: 60 × 60 × 60, which simplifies to 60^3. When you calculate that, you get 216,000 possible combinations for the lock.

If tanθ= -3/4 and θ is in quadrant IV, cos2θ=
33/25
-17/25
32/25
7/25
24/25

Answers

Recall that

[tex]\cos2\theta=2\cos^2\theta-1[/tex]

and

[tex]\tan^2\theta+1=\sec^2\theta=\dfrac1{\cos^2\theta}[/tex]

Then

[tex]\cos2\theta=\dfrac2{\tan^2\theta+1}-1\implies\cos2\theta=\boxed{\dfrac7{25}}[/tex]

Answer:

[tex]cos2\theta=\frac{7}{25}[/tex]

Step-by-step explanation:

This is a question of Trigonometric Identities. In addition to this, In quadrant IV the cosine of the angle is naturally negative. This explains the negative value for [tex]tan\theta=-3/4[/tex]

The double angle formula

Let's choose a convenient identity, for the double angle [tex]cos2\theta[/tex]

[tex]\\tan \theta=-3/4 \\ cos2\theta =cos^{2}\theta -sen^{2}\theta\\cos2\theta =2cos^{2}\theta-1\\\\1+tan\theta^{2} =sec^{2}\theta\\\\ 1+(\frac{-3}{4})^{2} =\frac{1}{cos^2 \theta} \\\\\frac{25}{16}=\frac{1}{cos^{2}\theta}\\ cos^{2}\theta=\frac{16}{25}[/tex]

Finally, we can plug it in:

[tex]cos2\theta =2cos^{2}\theta -1\\cos2\theta =2\left ( \frac{16}{25} \right )-1 \Rightarrow cos2\theta=\frac{7}{25}[/tex]

The function f(x) = –x2 − 2x + 15 is shown on the graph. What are the domain and range of the function? The domain is all real numbers. The range is {y|y < 16}. The domain is all real numbers. The range is {y|y ≤ 16}. The domain is {x|–5 < x < 3}. The range is {y|y < 16}. The domain is {x|–5 ≤ x ≤ 3}. The range is {y|y ≤ 16}.

Answers

Answer:

The domain is all real numbers. The range is {y|y ≤ 16}

Step-by-step explanation:

we have

[tex]f(x)=-x^{2}-2x+15[/tex]

This is the equation of a vertical parabola open downward

The vertex is a maximum

Find the vertex of the quadratic equation

[tex]f(x)-15=-x^{2}-2x[/tex]

[tex]f(x)-15=-(x^{2}+2x)[/tex]

[tex]f(x)-15-1=-(x^{2}+2x+1)[/tex]  

[tex]f(x)-15-1=-(x^{2}+2x+1)[/tex]

[tex]f(x)-16=-(x^{2}+2x+1)[/tex]

[tex]f(x)-16=-(x+1)^{2}[/tex]

[tex]f(x)=-(x+1)^{2}+16[/tex] -----> equation in vertex form

The vertex is the point (-1,16)

therefore

The domain is the interval ----> (-∞,∞)  All real numbers

The range is the interval ----> (-∞,16]  All real numbers less than or equal to 16

Answer:

The Answer Is B

Step-by-step explanation:

domain is all real numbers. The range is {y|y ≤ 16}.

The perimeter of the original rectangle on the left is 30 meters. The perimeter of the reduced rectangle on the right is 24
meters.
8 m
Not drawn to scale
What is x, the width of the original rectangle on the left? Round to the nearest hundredth if necessary.
5 meters
8 meters
10 meters
12 meters

Answers

Answer:

5 meters

Step-by-step explanation:

step 1

Find the scale factor

we know that

If two figures are similar, then the ratio of its perimeters is equal to the scale factor

Let

z -----> the scale factor

P1 -----> the perimeter of the reduced rectangle on the right

P2 ----> the perimeter of the original rectangle on the left

[tex]z=\frac{P1}{P2}[/tex]

substitute

[tex]z=\frac{24}{30}=0.8[/tex]

step 2

Find the width of the reduced rectangle on the right

[tex]P1=2(L+W)[/tex]

substitute the given values

we have

[tex]L=8\ m[/tex] ---> see the attached figure to better understand the problem

[tex]24=2(8+W)[/tex]

[tex]12=8+W[/tex]

[tex]W=4\ m[/tex]

step 3

Find the width of the original rectangle on the left

To find the width of the original rectangle on the left, divide the width of the reduced rectangle on the right by the scale factor

so

[tex]W=4/0.8=5\ m[/tex]

Answer:

A. 5 meters

Step-by-step explanation:

which polynomial could be represented by this graph?

Answers

Answer:

[tex]x(x+2)(x-1)(x-3)^2[/tex]

Please let me know the choices to better help you.

Step-by-step explanation:

I see zeros at x=-2 , x=0 , x=1 , x=3.

Any time it makes like a little U or upside down U at a zero you are going to have a even power on your factor (for which the zero occurs).  If it goes through the zero increasing or decreasing (not making a kind of U shaped upside down or upside right), it is an odd power.

So at x=-2, (x+2) is going to have an odd power

So at x=0,  (x-0) or (x+0) or even just x is going to have a odd power

So at x=1,  (x-1) is going to have an odd power

So at x=3, (x-3) is going to have an even power

So the polynomial could be represented by

[tex]x(x+2)(x-1)(x-3)^2[/tex]

Consider the quadratic function f(x) = 2x2 – 8x – 10. The x-component of the vertex is . The y-component of the vertex is . The discriminant is b2 – 4ac = (–8)2 – (4)(2)(–10) = .

Answers

Answer:

Part 1) The x-component of the vertex is 2 and the y-component of the vertex is -18

Part 2) The discriminant is 144

Step-by-step explanation:

we have

[tex]f(x)=2x^{2}-8x-10[/tex]

step 1

Find the discriminant

The discriminant of a quadratic equation is equal to

[tex]D=b^{2}-4ac[/tex]

in this problem we have

[tex]f(x)=2x^{2}-8x-10[/tex]

so

[tex]a=2\\b=-8\\c=-10[/tex]

substitute

[tex]D=(-8)^{2}-4(2)(-10)[/tex]

[tex]D=64+80=144[/tex]

The discriminant is greater than zero, therefore the quadratic equation has two real solutions

step 2

Find the vertex

Convert the quadratic equation into vertex form

[tex]f(x)+10=2x^{2}-8x[/tex]

[tex]f(x)+10=2(x^{2}-4x)[/tex]

[tex]f(x)+10+8=2(x^{2}-4x+4)[/tex]

[tex]f(x)+18=2(x-2)^{2}[/tex]

[tex]f(x)=2(x-2)^{2}-18[/tex] -----> equation in vertex form

The vertex is the point (2,-18)

therefore

The x-component of the vertex is 2

The y-component of the vertex is -18

Answer:

Consider the quadratic function f(x) = 2x2 – 8x – 10.

The x-component of the vertex is

✔ 2

The y-component of the vertex is

✔ –18

The discriminant is b2 – 4ac = (–8)2 – (4)(2)(–10) =

✔ 144

There are 500 passengers on a train.

7/20 of the passengers are men.

40% of the passengers are women.

The rest of the passengers are children.

Answers

Answer:7/20 = 0.35 = 35%=500x.35 =175 men

40%=.40x500 =200 women

200+170=370

500-370

125 children

Step-by-step explanation:

Answer:

There are 175 men, 200 women, and 125 children.

Step-by-step explanation:

7/20 = M/500; M = 175

0.4 x 500 = W; W = 200

175 + 200 + C = 500; C = 125

Select the statement that correctly describes the expression below.
(2.+ 5)2
A. the sum of the square of 2 times x and 5
B. the square of the sum of 2 times x and 5
c. the sum of 2 times x and the square of 5
D. the square of 2 times the addition of x and 5

Answers

Answer:

option B. the square of the sum of 2 times x and 5

Step-by-step explanation:

we have

[tex](2x+5)^{2}[/tex]

we know that

The algebraic expression [tex](2x)[/tex] is equal to the phrase " Two times x" (the number two multiplied by x)

The algebraic expression [tex](2x+5)[/tex] is equal to the phrase " The sum of two times x and 5" (the number two multiplied by x plus the number 5)

The algebraic expression [tex](2x+5)^{2}[/tex] is equal to the phrase " The square of the sum of two times x and 5"

Solve for x. Enter the number, in decimal form, that belongs in the green box.​

Answers

Answer:

x = 9.6

Step-by-step explanation:

The figure is a similar figure and the quadrilaterals (4 sides) created are related to each other by the same ratio.

So we can say:

8 goes with x as (8+12) goes with 24

We can setup a ratio and solve for x:

[tex]\frac{8}{x}=\frac{8+12}{24}\\\frac{8}{x}=\frac{20}{24}\\20x=8*24\\20x=192\\x=\frac{192}{20}\\x=9.6[/tex]

So x = 9.6

The value of x in the figure drawn is 9.6

How to solve for x

we can create a proportional expression thus :

8 = x

(8 + 12) = 24

This means

8 = x

20 = 24

cross multiply

20x = 24 × 8

20x = 192

divide both sides by 20 to isolate x

x = 192/20

x = 9.6

Learn more on similar shapes :https://brainly.com/question/32325828

#SPJ3

Lynda Davis bought a house for $90,000. Her expenses each month
are $70 in depreciation, $50 for property tax, $25 for insurance, $80
for repairs, and $200 for interest. She rents the house for $1,200
per month. (32) What are her total expenses for the month? (33)
– What are her expenses for the year? (34) What is her rental income
for the year? (35) What is her rate of income to the nearest tenth
_ of a percent?


please also tell me how you got the answers. I have to show my work​

Answers

Final answer:

Lynda Davis' total expenses for the month are $425. Her expenses for the year are $5100. Her rental income for the year is $14400. Her rate of income is approximately 282.35%.

Explanation:

To calculate Lynda Davis' total expenses for the month, we need to add up all of her monthly expenses. These include $70 for depreciation, $50 for property tax, $25 for insurance, $80 for repairs, and $200 for interest. So her total monthly expenses would be $70 + $50 + $25 + $80 + $200 = $425.

To calculate her expenses for the year, we can multiply her total monthly expenses by 12 since there are 12 months in a year. So her annual expenses would be $425 * 12 = $5100.

Her rental income for the year would be the monthly rental income of $1200 multiplied by 12. So her rental income for the year would be $1200 * 12 = $14400.

To calculate her rate of income, we need to find the percentage of her rental income compared to her total expenses. We can use the formula: (rental income / total expenses) * 100. So her rate of income would be ($14400 / $5100) * 100 ≈ 282.35%.

What is the distance between the points (-6, 7) and
(-1, 1)? Round to the nearest whole unit.

Answers

distance = √(x1 - x2)^2 + (y1 - y2)^2

distance = √(-6 + 1)^2 + (7 - 1)^2

              = √25 + 36

              = √61

To the nearest whole unit:

√61 = 8

So your answer is:

about 8 units

Answer:

About 8 units

Step-by-step explanation:

I got it right :)

Write 5 × 5 × 5 × 5 using exponents. A. 55 B. 54 C. 52 D. 45

Answers

Answer:

B: 5^4

Step-by-step explanation:

however many of the same numbers is the little exponent

Exponent means exactly repeated multiplications of the same number: [tex]a^b[/tex] means that you have to multiply [tex]a[/tex] by itself [tex]b[/tex] times.

So, [tex]5\times5\times5\times5[/tex] means to multiply 5 by itself 4 times, which is written as [tex]5^4[/tex].

What is the volume of the composite figure? Express the
answer in terms of pi.
144pi mm
168pi mm
312pi mm
456pi mm

Answers

Answer:

[tex]V=312\pi\ mm^{3}[/tex]

Step-by-step explanation:

we know that

The volume of the composite figure is equal to the volume of a semi-sphere plus the volume of the cone

so

[tex]V=\frac{4}{6}\pi r^{3} +\frac{1}{3} \pi r^{2} h[/tex]

we have

[tex]r=6\ mm[/tex]

[tex]h=14\ mm[/tex]

substitute

[tex]V=\frac{4}{6}\pi (6)^{3} +\frac{1}{3} \pi (6)^{2} (14)[/tex]

[tex]V=144\pi +168\pi[/tex]

[tex]V=312\pi\ mm^{3}[/tex]

Answer:

312 πmm^2

Step-by-step explanation:

On edg

Allison can complete a sales route by herself in 6 hours. Working with an associate, she completes the route in 4 hours. How long would it take her associate to complete the route by herself?

Answers

Answer:

So, Allison averages 1/6 of the route every hour, right?

 

1/6 + 1/a = 1/4

 

Once we apply the common denominator, 12a, we only wirk with the numerators.

 

2a + 12 = 3a

a = 12

 

Her associate can finish the route in 12 hours by herself.

Step-by-step explanation:

it would take 12 hours for her associate to complete the route by herself

Further explanation

This problem is related to the speed of completing the route.

To solve this problem, we must state the formula for the speed.

[tex]\large {\boxed {v = \frac{x}{t}} }[/tex]

where:

v = speed of completing the route ( m³ / s )

x = route distance ( m³ )

t = time taken ( s )

Let's tackle the problem!

Allison can complete a sales route by herself in 6 hours.

[tex]\text{Allison Speed} = v_a = x \div t_a[/tex]

[tex]v_a = x \div 6[/tex]

Her associate can complete the route by herself in t_s

[tex]\text{Associate Speed} = v_s = x \div t_s[/tex]

[tex]v_s = x \div t_s[/tex]

Working with an associate, she completes the route in 4 hours

[tex]\text{Total Speed} = v = v_a + v_s[/tex]

[tex]\frac{x}{t} = \frac{x}{t_a} + \frac{x}{t_s}[/tex]

[tex]\frac{1}{t} = \frac{1}{t_a} + \frac{1}{t_s}[/tex]

[tex]\frac{1}{4} = \frac{1}{6} + \frac{1}{t_s}[/tex]

[tex]t_s = \frac{ 6 \times 4 }{6 - 4}[/tex]

[tex]t_s = \frac{ 24 }{2}[/tex]

[tex]t_s = 12 ~ \text{hours}[/tex]

Learn moreInfinite Number of Solutions : https://brainly.com/question/5450548System of Equations : https://brainly.com/question/1995493System of Linear equations : https://brainly.com/question/3291576

Answer details

Grade: High School

Subject: Mathematics

Chapter: Linear Equations

Keywords: Linear , Equations , 1 , Variable , Line , Gradient , Point

A line passes through (–7, –5) and (–5, 4).Write an equation for the line in point-slope form.
Rewrite the equation in standard form using integers.

Answers

Answer:

[tex]\large\boxed{y-4=\dfrac{9}{2}(x+5)}\\\boxed{9x-2y=-53}[/tex]

Step-by-step explanation:

The point-slope form of an equation of a line:

[tex]y-y_1=m(x-x_1)[/tex]

m - slope

The formula of a slope:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

We have the points (-7, -5) and (-5, 4).

Calculate the slope:

[tex]m=\dfrac{4-(-5)}{-5-(-7)}=\dfrac{9}{2}[/tex]

Put it and coordinates of the point (-5, 4) to the equation:

[tex]y-4=\dfrac{9}{2}(x-(-5))[/tex]

[tex]y-4=\dfrac{9}{2}(x+5)[/tex] → the point-slope form

Convert to the standard form Ax + By = C :

[tex]y-4=\dfrac{9}{2}(x+5)[/tex]         multiply both sides by 2

[tex]2y-8=9(x+5)[/tex]        use the distributive property

[tex]2y-8=9x+45[/tex]           add 8 to both sides

[tex]2y=9x+53[/tex]          subtract 9x from both sides

[tex]-9x+2y=53[/tex]           change the signs

[tex]9x-2y=-53[/tex] → the standard form

Other Questions
Which function has only one x-intercept at (-6, 0)?Of(x) = x(x - 6)f(x) = (x - 6)(x 6)f(x) = (x + 6)(x - 6)f(x) = (x + 1)(x + 6) How do the underlined phrases affect the meaning andtone of this passage?They show diversity.They demand change.They celebrate diversity.They express a moral dilemma. Extra points if correct!Thanks-Aparri which best describes the tone in these lines "the fish" Would the answer for 36 be $9.88 or $9.75? What is federalism?What is federalism Oceans produce approximately 80 percent of the oxygen our planet needs to support animal life. Pollution that reaches the ocean through dumping, oil leaks, runoff, and other processes interferes with that oxygen production and poses a real threat to the oxygen content in our atmosphere. If the oxygen content decreases, it is likely that carbon dioxide will increase. This could have dramatic consequences for life as we know it. Which does this passage indicate causes a decrease of oxygen in the atmosphere? which of the following is a three dimensional solid has a circle as its cross section? cone pyramidprism cone 5x sqaure plus 25 divided by 9 When one DNA molecule is copied to make two DNA molecules, the new DNAcontainsA) 25% of the parent DNA.B) 50% of the parent DNA.C) 75% of the parent DNA.D) 100% of the parent DNA.E) none of the parent DNA. became wealthy trading with the East.CarcassonneJerusalemRomeVenice According to the study cited by the U.S. Census Bureau, children who live with married parents grow up with more advantages than children who live with:a divorced parenta single parenta grandparentall of the above Which is a compound-complex sentence?A)The dog began to bark at the visitor, and the cat ran under the chair.B)The teacher had just started the math lesson when the fire alarm bell began to ring.C)After they cleaned their rooms, the boys planned to go swimming, but it started to rain.D)Both the boys and the girls were excited about going to the mountains and spending the night. BRAINLIEST solve the system by substitutionx-y=52x+y=13 What is the range of the function f(x) = 1/2 square root of x ? Anyone Find the value of x so that the line passing through (x, 10) and (-4, 8) has a slope of 2/3.Thanks yall! Which of the following descriptions best describes Canada's population? The Italian merchants sometimes sailed across the Mediterranean Sea to Syria, where they could buy black pepper that had been grown on the southwest coast of India. The tiny dried black peppercorns were the perfect item to trade, because the small ships of the time could carry enough to make a nice profit. From India the pepper was shipped across to Arabia, where camel caravans would carry it all the way to Syria. The Italians could purchase enough pepper in Syria to carry with them to the next Champagne fair. Every count whose cook added the bite of costly black pepper to his food knew he was getting a taste of far distant lands. As late as 1300, Jean de Joieville, a French writer who had actually lived in the Muslim world, still believed that these spices came from the outer edges of the Garden of Eden, located somewhere along the river Nile. There, people cast their nets outspread into the river, at night; and when morning comes, they find in their nets such goods as . . . ginger, rhubarb, wood of aloes, and cinnamon. Sugar Changed the World,Marc Aronson and Marina BudhosWhich details from the text support the central idea of this passage? Check all that apply.sailed across the Mediterranean Sea to Syriagrown on the southwest coast of Indiatiny dried black peppercorns were the perfect item to tradeFrom India the pepper was shipped across to ArabiaJean de Joieville, a French writer . . . actually lived in the Muslim world which of the following points are solutions to the system of inequalities shown below?check all that apply y>6x+7 y A cylinder has a volume of 288x cubic meters and a height of 9 meters. What is the area of the base?