The term 'nuclear fallout' describes the radioactive particles released after a nuclear explosion that pose health risks to humans and animals. These particles can cause severe cellular damage by ionizing molecules in living organisms, leading to serious health conditions including various cancers.
Radiation Damage to Biological Systems
After a nuclear explosion, radioactive particles can be released into the environment, known as nuclear fallout. These particles pose a significant health risk to animals and humans upon ingestion or inhalation, as the radiation can cause cellular damage leading to illness or death. The term the student is looking for to complete the sentence is likely 'nuclear fallout'.
Radioactive nuclides emit high-energy particles and electromagnetic waves that, when encountered by living cells, can cause heating, break chemical bonds, or ionize molecules. The most severe biological damage occurs when these emissions ionize molecules, creating highly reactive ions and molecular fragments. This reaction can cause considerable harm to biomolecules within living organisms, leading to malfunctions in normal cell processes and overwhelming the body's repair mechanisms.
An example of such damage is the contamination of the food chain, where radioactive materials like iodine-131 and strontium-90 can become incorporated into human and animal tissues, potentially causing cancers in regions such as the thyroid and bone. Events like the Chernobyl disaster in 1986 illustrate the devastating effects of radioactive contamination, with increased cancer rates observed within the affected populations.
How is 6.3 written in scientific notation? 6.3 mc022-1.jpg 100 63 mc022-2.jpg 10–1 6.3 mc022-3.jpg 101 63 mc022-4.jpg 100
Final answer:
The number 6.3 is expressed in scientific notation as 6.3×10^0.
Explanation:
To express the number 6.3 in scientific notation, we need to follow a standard format where the number is between 1 and 10 followed by an exponent of 10.
For 6.3, this is already the case, so it can be expressed as 6.3×10^0 because any number raised to the power of 0 is equal to 1, so this does not change the value of 6.3.
Therefore, when writing in scientific notation, we are just acknowledging that we could move the decimal zero places and maintain the same value.
Two balls undergo inelastic collision. The y-momentum after the collision is 98 kilogram meters/second, and the x-momentum after the collision is 100 kilogram meters/second. What is the magnitude of the resultant momentum after the collision?
Answer:
D. 1.4 × 10^2 kilogram meters/second
what is an exception to the rule that liquids are less dense than solids.
When an object falls, it trades gravitational potential energy for kinetic energy, accelerating toward the ground. calculate the potential energy change an object of mass m would experience falling from a height h. if there were no air friction, so that all of the energy was converted to kinetic energy, what would its final velocity be in terms of g and h?
If you drop an object from a height of 1.9 m, it will hit the ground in 0.62 s. if you throw a baseball horizontally with an initial speed of 34 m/s from the same height, how long will it take the ball to hit the ground?
A yummy glazed doughnut is shown above. 1) where is the center of mass of this fantastic culinary delight? in the center of the hole. somewhere inside the solid part of the doughnut the center of mass is not defined in cases where mass is missing.
on a very muddy football field, a 120 kg linebacker tackles an 75 kg halfback. immediately before the collision, the linebacker is slipping with a velocity of 8.6 m/s north and the halfback is sliding with a velocity of 7.4 m/s east. What is the magnitude of the velocity at which the two players move together immediately after the collision
The two football players move together at a velocity of 5.99 m/s immediately after the collision. This value was obtained by conserving the momentum of the system: calculating individual momenta before the collision, summing them to obtain total momentum, and then dividing this by the total mass of both players. This is a typical conservation of momentum problem in high school level physics.
Explanation:The situation you're describing is a perfect example of a conservation of momentum problem in physics. In this problem, the two football players can be seen as a system, and their individual momenta before the tackle add up to yield the total momentum of the system after the tackle, when they're moving together.
Momentum is calculated as mass times velocity, so we first calculate the momentum of each player before the collision. For the linebacker: 120kg× 8.6m/s = 1032 kg×m/s north. For the halfback: 75kg× 7.4m/s = 555 kg×m/s east.
These two momentum vectors form a right triangle, with the hypotenuse representing the result vector or total momentum of the system after the tackle. We can use the Pythagorean theorem to calculate the magnitude of this vector: sqrt((1032²)+(555²)) = 1169 kg*m/s.
Since the players are moving together after the collision, the mass we use to find the final velocity should be the total mass of both players: 120kg + 75kg = 195 kg. The magnitude of the velocity at which the two players move together immediately after the collision can then be obtained by dividing the total momentum by the total mass: 1169kg×m/s / 195kg = 5.99 m/s.
Learn more about Conservation of Momentum here:https://brainly.com/question/33316833
#SPJ2
Ice sheet movement rates have varied from about 50 to 320 meters per year for the margins of the ice sheet advancing from the hudson bay region during the ice age. if an ice sheet moved from the southern end of hudson bay to the south shore of present-day lake erie, a distance of 1600 kilometers, what would be the maximum amount of time required?
First let us convert the distance into meters.
distance = 1600 km = 1,600,000 m
Then we get the maximum time by dividing the distance with the smallest movement rate possible, that is:
maximum time = 1,600,000 m / (50 m / year)
maximum time = 32,000 years
Final answer:
Using the minimum movement rate of 50 meters per year, the maximum amount of time required for an ice sheet to travel 1600 kilometers from Hudson Bay to Lake Erie is calculated to be 32,000 years.
Explanation:
The question revolves around calculating the maximum amount of time required for an ice sheet to move from the southern end of Hudson Bay to the south shore of present-day Lake Erie, a distance of 1600 kilometers, given varying movement rates.
First, convert kilometers to meters since the movement rates are given in meters per year. The distance is 1,600 kilometers, which equals 1,600,000 meters. Since we are interested in the maximum amount of time required, we will use the minimum speed of 50 meters per year. This will yield the longest possible time it would take for the ice sheet to cover this distance.
To find the time, we use the formula: Time = Distance / Speed. Substituting the given values: Time = 1,600,000 meters / 50 meters per year = 32,000 years.
Therefore, at a movement rate of 50 meters per year, the maximum amount of time required for an ice sheet to travel from Hudson Bay to Lake Erie would be 32,000 years.
Scientists have proven that genes play no role in self-esteem. Please select the best answer from the choices provided. T F
Scientists have proven that genes play no role in self-esteem is a FALSE statement. In fact, most mental health (including self-esteem) has many connections with genetics.
The OXTR gene is said to be related to our self-esteem. Just a fun fact:
Those with 1 or 2 copies of the OXTR with an "A" allele gene are shown to be the more "negative" type of people with lower self-esteems. Those with 2 copies of the OXTR with a "G" allele gene were said to be more optimistic.
The statement that genes do not affect self-esteem is false. Research has found a connection between certain genes and levels of self-esteem, although genes are not the only influencing factors.
Explanation:The statement that genes play no role in self-esteem is False. It has been scientifically proven that genes play a role in determining an individual's level of self-esteem. Through research studies, it has been observed that there is a connection between specific genes and self-esteem. Such studies involve analyzing the DNA of different individuals and examining the likelihood of these individuals having higher or lower self-esteem, depending on the presence of certain genes.
Genes and Self-EsteemResearch suggests that genes can have an influence on certain personality traits which are associated with self-esteem. For instance, individuals who are naturally more outgoing or socially inclined due to their genetic makeup might have a higher self-esteem than those who are introverted. However, it's important to note that genes are not the only factors that influence self-esteem - environmental factors also play a significant role.
Learn more about Genetics and Self-Esteem here:https://brainly.com/question/31422306
#SPJ5
An object is thrown directly up (positive direction) with a velocity (vo) of 20.0 m/s and do= 0. Determine how long it takes to get to the maximum height of 24.0 m.
Answer:
It takes 2.04s to get to the maximum height
Explanation:
This is a vertical throw problem so it can be treated as a uniform accelerated rectilinear motion. For computing time we are going to use the formula:
[tex]v_{f}=v_{o}+g*t[/tex]
where[tex]v_{f}[/tex] is the final velocity, [tex]v_{o}[/tex] is the initial velocity, [tex]t[/tex] is the time and, [tex]g[/tex] is the gravity.
For solving this kind of problems we need at least three values. The values we have are:
[tex]v_{o} = 20\dfrac{m}{s}[/tex][tex]g = -9.8\dfrac{m}{s^{2}} [/tex] (negative because gravity's direction is oposite from the object's moving direction)[tex]v_{f}=0[/tex] (final velocity equals zero because at maximun height the object stops moving)Now:
[tex]v_{f}=v_{o}+g*t[/tex]
[tex]v_{f}-v_{o}=g*t[/tex]
[tex]\dfrac{v_{f}-v_{o}}{g}=t[/tex]
[tex]\dfrac{0-20}{-9.8}=t[/tex]
[tex]t=2.04s[/tex]
Assuming the dread pirate roberts never misses, how far from the end of the cannon is the ship that you are trying to hit (neglect dimensions of cannon)? answer in units of m.
Final answer:
The distance from the cannon to the ship is 32.0 km, but to calculate initial velocity and maximum height of the shell, additional information such as angle of launch or time is required. The Earth's curvature slightly affects the height of the ocean's surface relative to the ship over long distances.
Explanation:
Assuming the dread pirate Roberts never misses, the distance from the end of the cannon to the ship trying to be hit is the maximum distance the cannon shell can travel, which is 32.0 km when neglecting the dimensions of the cannon and air resistance. To calculate the initial velocity of the shell, we would use the kinematic equations for projectile motion. However, the question does not provide angle of launch or time required for the calculation, so further information would be needed to complete part (a).
For part (b), the maximum height reached by the shell cannot be calculated without additional information such as the launch angle or time of flight. For part (c), the curvature of the Earth impacts the level of the ocean's surface in relation to a straight line extending from the ship. Using the Earth's radius (6.37×10³ km), we can apply the principles of geometry to find the drop in height over a distance of 32.0 km, with the assumption that the ocean surface follows the curvature of the Earth.
What is the analogy heart:_____:stomach:digestive?
Describe how the energy from stars is release?
The energy from stars is released through a process called nuclear fusion, where hydrogen atoms combine to form helium and release a tremendous amount of energy. This energy is in the form of electromagnetic radiation, including visible light, infrared radiation, ultraviolet radiation, and X-rays. Stars release this energy continuously throughout their lifetimes.
Explanation:The energy from stars is released through a process called nuclear fusion. In the core of a star, hydrogen atoms combine to form helium, releasing a tremendous amount of energy in the process. This energy is in the form of electromagnetic radiation, which includes visible light, infrared radiation, ultraviolet radiation, and X-rays.
During nuclear fusion, the mass of the combined helium nucleus is slightly less than the mass of the original hydrogen atoms. This mass difference is converted into energy according to Einstein's famous equation, E=mc^2, where E represents energy, m represents mass, and c represents the speed of light.
Stars release this energy continuously throughout their lifetimes, providing the heat and light that sustains life on Earth and allowing astronomers to study distant objects in the universe.
Learn more about Energy from stars is released through nuclear fusion here:https://brainly.com/question/32550060
#SPJ6
What electric field strength is needed between the electrodes to achieve this deflection?
How can genetic engineering help improve crop production?
a.
Genetic engineering can eliminate the threat of disease to crops.
b.
Genetic engineering removes the need of plants for watering.
c.
Genetic engineering can help reduce the effects of pests and weather on crop production.
d.
Genetic engineering can make crops more susceptible to herbicides.
Answer:
C). Genetic engineering can help reduce the effects of pests and weather on crop production.
Explanation:
If HST has a tangential speed of 7,750 m/s, how long is HST’s orbital period? The radius of Earth is 6.38 × 106 m. s
A cue ball has a mass of 0.5 kg. During a game of pool, the cue ball is struck and now has a velocity of 3 . When it strikes a solid ball with a mass of 0.5 kg, the cue ball comes to a complete stop. What is the new velocity of the solid ball? Round your answer to the nearest whole number.
Answer: 3 m/s
Explanation:
We can solve the problem by using the law of conservation of momentum: during the collision between the two balls, the total momentum of the system before the collision and after the collision must be conserved:
[tex]p_i = p_f[/tex]
The total momentum before the collision is given only by the cue ball, since the solid ball is initially at rest, therefore
[tex]p_i = m_c u_c = (0.5 kg)(3 m/s)=1.5 kg m/s[/tex]
So, the final total momentum will also be
[tex]p_f = 1.5 kg m/s[/tex]
And the total momentum after the collision is given only by the solid ball, since the cue ball is now at rest, therefore:
[tex]p_f = m_s v_s[/tex]
from which we find the velocity of the solid ball
[tex]v_s = \frac{p_f}{m_s}=\frac{1.5 kg m/s}{0.5 kg}=3 m/s[/tex]
3, just did the assignment
What is the resistance of a nichrome wire at 0.0 ∘c if its resistance is 200.00 ω at 11.5 ∘c?
We can use the temperature coefficient of resistance to determine the resistance of the nichrome wire at 0.0 °C. The temperature coefficient of resistance (α) is the amount by which the resistance of a material changes per degree Celsius of temperature change.
Given information:
Resistance of the nichrome wire at 11.5°C = 200.00 Ω
Temperature at which resistance is to be found = 0.0°C
We can use the following formula to find the resistance of the nichrome wire at 0.0°C:
R₂ = R₁ [1 + α (T₂ - T₁)]
Where,
R₁ = Resistance of the wire at temperature T₁
R₂ = Resistance of the wire at temperature T₂
α = Temperature coefficient of resistance
T₁ = Temperature at which R₁ is given
T₂ = Temperature at which R₂ is to be found
Since we are given the resistance of the nichrome wire at 11.5°C, we can take this as R₁ and T₁ as 11.5°C. We also know that the temperature coefficient of resistance for nichrome wire is 0.0004 per °C.
Substituting the given values into the formula, we get:
R₂ = 200.00 Ω [1 + (0.0004/°C) (0.0°C - 11.5°C)]
R₂ = 200.00 Ω [1 - 0.0046]
R₂ = 200.00 Ω (0.9954)
R₂ = 199.08 Ω
Therefore, the resistance of the nichrome wire at 0.0°C is 199.08 Ω.
Nichrome wire resistance at 0.0°C is 199.08 Ω.
Calculate nichrome wire resistance at 0.0°C using its temperature coefficient and resistance at 11.5°C.
The resistance R of a conductor at a temperature T is given by the formula:
[tex]\[ R_T = R_0 \left(1 + \alpha \Delta T\right) \][/tex]
Rearrange the formula to find [tex]\( R_0 \)[/tex] (resistance at 0.0°C):
[tex]\[ R_0 = \frac{R_{11.5}}{1 + \alpha \Delta T} \][/tex]
[tex]\( \Delta T \)[/tex]= 11.5 °C - 0.0°C = 11.5°C
Substitute the values:
[tex]\[ R_0[/tex]= 200.00Ω/(1 + (0.0004°C* 11.5°C))
[tex]\[ R_0[/tex] = 200.00Ω/(1 + 0.0046)
[tex]\[ R_0[/tex] = 200.00Ω/(1.0046)
[tex]\[ R_0[/tex] = 199.08 Ω
HELP PLEASE? :(
Which pair of atoms will form an ionic compound?
A) One atom of oxygen and two atoms of fluorine
B) One atom of calcium and two atoms of chlorine
C) One atom of nitrogen and three atoms of fluorine
D) Two atoms of nitrogen and four atoms of oxygen
The pair of atoms that will form an ionic compound is "One atom of calcium and two atoms of chlorine.". The correct option is B.
What is an ionic compound?In an ionic compound, one atom gives up one or more electrons to another atom, resulting in positively charged cations and negatively charged anions that are attracted to each other due to electrostatic forces.
Here in the question
In option B, calcium (Ca) has two valence electrons, while chlorine (Cl) has seven valence electrons. To obtain a stable octet configuration, calcium will lose two electrons to form a Ca2+ cation, and two chlorine atoms will each gain one electron to form Cl- anions. The resulting compound, CaCl2, is an ionic compound with a crystal lattice structure held together by electrostatic forces between the oppositely charged ions.
Option A involves two non-metals, and they typically form covalent compounds, not ionic compounds.
Option C is similar to option A and also involves two non-metals, which typically form covalent compounds.
Option D involves two non-metals, and although the atoms can bond covalently, the compound formed would be a polar molecule, not an ionic compound.
Therefore, The correct option is B i. e One atom of calcium and two atoms of chlorine which forms an ionic compound.
To know more about covalent bonds click:
https://brainly.com/question/12773038
#SPJ2
Is the distance on a round-trip positive, negative, or zero?
The distance of every object in a round trip is always positive
Distance is a scalar quantity, the total distance of an object in any trip is the total path covered by the object from the starting point to the finish point.
In a round trip, the object start's from one point and makes a circular movement, then returns to the same starting point. The total distance of the object is the equivalent to the circumference of the circle. This measurement will be a positive value.On the other hand, the displacement of the object will be zero. Displacement is the change in the position of an object.
Thus, we can conclude that the distance of every object in a round trip is always positive while the displacement is zero.
Learn more here: https://brainly.com/question/18158577
A. Calculate the diffraction limit of the human eye, assuming a wide-open pupil so that your eye acts like a lens with diameter 0.8 centimeter, for visible light of 500-nanometer wavelength.
Express your answer using two significant figures.
B. How does this compare to the diffraction limit of a 10-meter telescope?
Express your answer using two significant figures.
C. Now remember that humans have two eyes that are approximately 7 centimeters apart. Estimate the diffraction limit for human vision, assuming that your "optical interferometer" is just as good as one eyeball as large as the separation of two regular eyeballs.
Express your answer using two significant figures.
Answer:
a) 16 arc seconds
b) 1250
c)1.785 arc seconds
Explanation:
Given data:
lens diameter = 0.8 cm
wavelength 500 nm
a) the diffraction of the eye is given as
[tex]= 2.5\times 10^5 \frac{\lmbda}{D}[/tex] arc seconds
[tex]= 2.5\times 10^5 \frac{5\times 10^{-7}}{8\times 10^{-3}}[/tex] arc seconds
= 16 arc seconds
b) we know that
[tex]\frac{DIffraction\ limit\ of\ eye}{diffraction\ limit\ of\telescope}[/tex]
[tex]= \frac{2.5\times 10^5(\frac{\lambda}{D_{eye}})}\frac{2.5\times 10^5(\frac{\lambda}{D_{telescope}})}[/tex]
[tex]\frac{\theta_{eye}}{\theta_{telescope}} = \frac{10}{8\times 10^{-3}} = 1250[/tex]
c) [tex]\theta_{eye} = 2.5\times 10^{5} \frac{5\times 10^{-7}}{7\times 10^{-2}}[/tex][tex]\theta_{eye} = 1.78\ arc\ second[/tex]
Final answer:
The diffraction limit of the human eye with a pupil diameter of 0.8 cm for 500 nm light is 7.6 × 10⁻⁵ radians. Compared to a 10-meter telescope, which has a diffraction limit of 6.1 × 10⁻⁸ radians, the telescope's resolution is significantly finer. If the human's two eyes acted as an optical interferometer, the limit would be approximately 8.7 × 10⁻⁶ radians.
Explanation:
Calculating the Diffraction Limit of the Human Eye and Comparison with a Telescope
A. To calculate the diffraction limit of the human eye, we can use the formula θ = 1.22 λ / D, where θ is the angle of resolution, λ is the wavelength of light, and D is the diameter of the lens or pupil. For the human eye with a wide-open pupil diameter of 0.8 cm and a light wavelength of 500 nm, the diffraction limit (θ) is approximately:
θ = 1.22 × 500 × 10⁻⁹ m / 0.008 m = 7.62 × 10⁻⁵ radians.
To express this answer with two significant figures, the diffraction limit is 7.6 × 10⁻⁵ radians.
B. For a 10-meter telescope with the same wavelength of light, the diffraction limit (θ) is calculated as:
θ = 1.22 × 500 × 10⁻⁹ m / 10 m = 6.1 × 10⁻⁸ radians,
which to two significant figures is 6.1 × 10⁻⁸ radians. This shows the much finer angular resolution of the telescope compared to the human eye.
C. Estimating the diffraction limit for human vision when considered as an 'optical interferometer' with two eyes 7 centimeters apart acting as one, we find that the effective diameter is now 7 cm instead of 0.008 m, and thus the diffraction limit (θ) is:
θ = 1.22 × 500 × 10⁻⁹ m / 0.07 m = 8.74 × 10⁻⁶ radians,
which to two significant figures is 8.7 × 10⁻⁶ radians.
What must be the pressure difference between the two ends of a 2.0-km section of pipe, 25 cm in diameter, if it is to transport oil?
the pressure difference between the two ends of a 2.0-km section of pipe, 25 cm in diameter, if it is to transport oil 10206.8139295042 Pa
what is viscosity ?the viscosity can be defined as the resistance that a fluid will flow when sliding one sheet over another.
Kinematic viscosity can be defined as its unit only depend on kinematic units (m / s ^ 2) and not physical properties such as mass.
Viscosity is described as both liquids and gases, it refers to the ability of a gas or liquid to resist flow.
In other words, it exists between the molecules of a fluid, which resists its flow.
To learn more about viscosity , refer to the link:
https://brainly.com/question/23999611
#SPJ2
2. Why was it important to examine both the color and the streak of your minerals? Think about streak and explain why it’s called a mineral’s “true color”. Answer in at least 2 sentences.
The examination of color and streak are the physical tests that are performed on the minerals to know their exact origin.
Two or more rocks or minerals can have similar color but they are unrelated in their origin and chemical composition. A color test can give false indication that two minerals or two rocks belong to the same type. A streak test can give direct indication of same or different origin as the mineral or rock is pressed against a hard substratum it liberates a powdery color residue which can be used to examine the exact color of the rock or mineral.Hence, this can be stated that a streak is useful to give true color of the mineral.
Learn more about mineral:
https://brainly.com/question/13729191
Which of these atoms is most likely to share electrons with other atoms?
It is the second one or the one with the letter F
In a bumper car arena, two cars of equal mass are heading straight toward each other. The orange one is traveling at a speed of 5 meters per second. The green one is traveling at a speed of 2 meters per second. Which of the forces most affects the motion of the bumper cars after they collide?
Answer: The force of orange car will affect the motion of the bumper cars after their collision.
Explanation:
Let the mass of both the car be 'm' travelling straight towards each other with time [tex]t_1 and t_2[/tex]
Velocity of orange car =[tex]v_1[/tex] =5m/s
Velocity of green car =[tex]v_2[/tex] =2m/s
Force of orange car =[tex]F_1=ma_1=m\frac{v_1}{t}=m\frac{5m/s}{t_1}[/tex]
[tex]F_1\times t_1=Impulse(I_1)=ma\times 5m/s[/tex]...(1)
Force of green car = [tex]F_2=ma_2=m\frac{v_2}{t}=m\frac{2m/s}{t_2}[/tex]
[tex]F_2\times t_2=Impulse(I_2)=m\times 2m/s[/tex]...(2)
From the above two expression of we see that Impulse is directly proportional to velocity. So, the car with higher velocity will be having impulse. When the orange car bumper car collides with green car the impulse of orange car will be more. With high Impulse the Force on orange car will also be more.
Hence,the force of orange car will affect the motion of the bumper cars after their collision.
Answer:
C. The other car, USA Testprep.
Explanation:
if a snail starts at a position of 67cm and moves to a final position of 104 cm what is the displacement
If the spheres are 19.6 meters above the ground, the time required for the aluminum sphere to reach the ground is
(1) 1s
(2) 2s
(3) 8s
(4) 4s
Answer:
(2) 2s
Explanation:
Remember that the time that it takes an object to fall from a certain distance is only determined by the force with which the object is pulled towards the center of the earth which is gravity, so any object with 0 velocity will drop at the same rate to the ground when dismissing resistance from the air, in to calculate this you just have to use the next formula:
[tex]H=\frac{g*t^2}{2}\\ t=\sqrt{\frac{2H}{g} }[/tex]
So we just insert the data that we have into the formula:
[tex]t=\sqrt{\frac{2H}{g} }\\t=\sqrt{\frac{2*19,6}{9,81} }\\t=\sqrt{4}\\ t=2 seconds[/tex]
A force of 80 N is exerted on an object on a frictionless surface for a distance of 4 meters. If the object has a mass of 10 kg, calculate its velocity. v =
Answer: The velocity of the object will be 8m/s.
Explanation:
Force exerted on the object = 80 N
Distance displaced by object by the action of force = 4 m
Mass of the object = 10 kg
Velocity gained by the object = v
Kinetic energy of the object = Work done on the object
[tex]\frac{1}{2}mv^2=Force\times displacement[/tex]
[tex]\frac{1}{2}\times 10\times v^2=80 N\times 4 m[/tex]
[tex]v^2=64 m^2/s^2[/tex]
[tex]v=8 m/s[/tex]
The velocity of the object will be 8m/s.
In an elastic collision, an object with momentum 12 kg·m/s collides with another. the final momenta of each are 14 kg∙m/s and 16 kg∙m/s respectively. what was the initial momentum of the second object
We know that in an elastic collision the moments of the both the objects is conserved i.e
Intial momentum of object1 + Intial momentum of object2 =Final momentum of object1 + Final momentum of object2
Intial momentum of object1 =12 kg.m/s
Intial momentum of object2 = P (assume that P is the momentum)
Final momentum of object1= 14 kg.m/s
Final momentum of object2 =16 kg.m/s
On substituting all values we get
12 + P =14 kg.m/s + 16 kg.m/s
P = -18 kg.m/s
(-ve sign indicates the second object was moving in the opposite direction to the object1 before collision )
Therefore the initial momentum of the second object was 18 kg.m/s.
Consider a steel guitar string of initial length l=1.00m and cross-sectional area a=0.500mm2. the young's modulus of the steel is y=2.0×1011n/m2. how far (δl) would such a string stretch under a tension of 1500 n? express your answer in millimeters using two significant figures.
The steel guitar string stretches by 15 mm under a tension of 1500 N.
To determine how far a steel guitar string stretches under a tension force, we use principles from materials science, specifically Young's modulus and Hooke's law.
Identify the given values:
Initial length, l = 1.00 m
Cross-sectional area, a = 0.500 mm² = 0.500 × 10⁻⁶ m²
Young's modulus, Y = 2.0 × 1011 N/m²
Tension force, F = 1500 N
Use the formula for elongation:
δl = (F × l) / (Y × a)
Substitute the given values into the formula:
[tex]\delta l = \frac{1500 \, \text{N} \times 1.00 \, \text{m}}{2.0 \times 10^{11} \, \text{N/m}^2 \times 0.500 \times 10^{-6} \, \text{m}^2} \\[/tex]
Calculate the result:
[tex]\delta l = \frac{1500 \times 1.00}{2.0 \times 10^{11} \times 0.500 \times 10^{-6}} \\[/tex]
[tex]\delta l = \frac{1500}{1.0 \times 10^5} = 0.015 \, \text{m} = 15 \, \text{mm}[/tex]
The string stretches by 15 mm when a tension of 1500 N is applied.