A voltmeter is connected to the terminals of the battery; the battery is not connected to any other external circuit elements. What is the reading of the voltmeter V? Express your answer in volts. Use three significant figures.

Answers

Answer 1

Answer:

12 volts.

Explanation:

Equal to the emf of battery. internal resistance won't count because the internal resistance is only apparent when a current passes through the battery.

Answer 2

The voltmeter reading is the terminal voltage, which is slightly less than the EMF due to the internal resistance of the battery and the small current drawn by the voltmeter. The exact value in volts is not provided due to the unknown internal resistance.

When a voltmeter is connected to the terminals of a battery without any other external circuit elements, it measures the terminal voltage of the battery.This terminal voltage (V) is related to the electromotive force (emf, denoted as E) of the battery by the equation V = E - Ir, where I is the current flowing through the voltmeter and r is the internal resistance of the battery.Due to the small but nonzero current drawn by the voltmeter, the reading will be slightly less than the actual EMF of the battery.Since the internal resistance is not known precisely, the voltmeter reading cannot exactly equal the emf.

Related Questions

A long solenoid that has 1,140 turns uniformly distributed over a length of 0.415 m produces a magnetic field of magnitude 1.00 10-4 T at its center. What current is required in the windings for that to occur?

Answers

Answer:

Therefore,

Current required is , I

[tex]I = 0.0289\ Ampere[/tex]

Explanation:

Given:

Turns = N = 1140

length of solenoid = l = 0.415 m

Magnetic Field,

[tex]B = 1.00\times 10^{-4}\ T[/tex]

To Find:

Current , I = ?

Solution:

If N is the number of turns in the length, the total current through the rectangle is NI. Therefore, Ampere’s law applied to this path gives

[tex]\int {B} \, ds= Bl=\mu_{0}NI[/tex]

Where,  

B = Strength of magnetic field

l = Length of solenoid

N = Number of turns

I = Current

[tex]\mu_{0}=Permeability\ in\ free\ space=4\pi\times 10^{-7}\ Tm/A[/tex]

Therefore,

[tex]I =\dfrac{Bl}{\mu_{0}N}[/tex]

Substituting the values we get

[tex]I =\dfrac{1.00\times 10^{-4}\times 0.415}{4\times 3.14\times 10^{-7}\times 1140}=0.0289\ Ampere[/tex]

Therefore,

Current required is , I

[tex]I = 0.0289\ Ampere[/tex]

A circular coil has a 18.0 cm radius and consists of 25.0 closely wound turns of wire. An externally produced magnetic field of magnitude 3.00 mT is perpendicular to the coil. (a) If no current is in the coil, what magnetic flux links its turns?

Answers

Answer:

The magnetic flux links to its turns = [tex]7.6 \times10^{-3}[/tex] Wb.

Explanation:

Given :

Radius of circular coil = [tex]18 \times 10^{-2}[/tex] m

Number of turns = 25

Magnetic field = [tex]3 \times10^{-3}[/tex] T

Magnetic flux (Φ) is a measure of the magnetic field lines passes through a given area. The unit of magnetic flux is weber (Wb).

We know that,

⇒    Φ = [tex]BA[/tex]

Where [tex]B =[/tex] ext. magnetic field, [tex]A =[/tex] area of loop or coil.

But here given in question, we have turns of wire so our above eq. modified as follows.

⇒   Φ = [tex]NBA[/tex]

Where [tex]N =[/tex] no. of turns.

∴    Φ = [tex]25 \times 3 \times 10^{-3} \pi (18 \times10^{-2} )^{2}[/tex]

     Φ = [tex]7.6 \times 10^{-3} Wb[/tex]

Thus, the magnetic flux links to its turns = [tex]7.6 \times 10^{-3} Wb[/tex]

A real battery with internal resistance 0.460 Ω and emf 9.00 V is used to charge a 56.0-µF capacitor. A 21.0-Ω resistor is put in series with the battery and the capacitor when charging. (a) What is the time constant for this circuit?

Answers

Answer: 1.176×10^-3 s

Explanation: The time constant formulae for an RC circuit is given below as

t =RC

Where t = time constant , R = magnitude of resistance = 21 ohms , C = capacitance of capacitor = 56 uf = 56×10^-6 F

t = 56×10^-6 × 21

t = 1176×10^-6

t = 1.176×10^-3 s

Given Information:

Internal resistance of battery = 0.460

Resistance = 21.0 Ω

Capacitance = 56.0 µF

Required Information:

time constant = τ = ?

Answer:

τ = 0.0012

Explanation:

The time constant τ provides the information about how long it will take to charge the capacitor up to certain level.

τ = Req*C

Where Req is the equivalent resistance and C is the capacitance.

Req = R + r

Where R is the resistance of the resistor and r is the internal resistance of the battery.

Req = 21.0 + 0.460 = 21.460 Ω

τ = Req*C

τ = 21.46*56x10⁻⁶

τ = 0.0012

A capacitor approximately charges to 63% in one τ and about 99% in 5τ

A simply supported wood beam with a span of L = 15 ft supports a uniformly distributed load of w0 = 270 lb/ft. The allowable bending stress of the wood is 1.95 ksi. If the aspect ratio of the solid rectangular wood beam is specified as h/b = 1.75, calculate the minimum width b that can be used for the beam.

Answers

The minimum width b that can be used for the beam is 4.32 in

To determine the minimum width (b) of the solid rectangular wood beam, we employ principles of structural engineering.

The maximum bending moment (M) for a simply supported beam with a uniformly distributed load (\(w_0\)) occurs at the center and is given by [tex]\(M = \frac{w_0 L^2}{8}\).[/tex]

The section modulus (S) for a rectangular cross-section is [tex]\(S = \frac{b \times h^2}{6}\).[/tex]

The bending stress (\(σ_b\)) is given by[tex]\(σ_b = \frac{M}{S}\)[/tex].

Setting \(σ_b\) equal to the allowable bending stress [tex](\(1.95 \, \text{ksi}\))[/tex]and using the specified aspect ratio (h/b = 1.75), we can solve for b.

This ensures that the wood beam meets structural safety criteria.

The calculation yields a minimum width b of 4.32 in, ensuring that the beam is structurally sound, withstanding the specified uniformly distributed load and adhering to the aspect ratio constraint in compliance with the allowable bending stress.

An electron moving at4.00 × 103m/sin a 1.25-Tmagnetic field experiences a magnetic force of1.40 × 10−16N.What angle does the velocity of theelectron make with the magnetic field? There are twoanswers

Answers

Answer:

Explanation:

velocity of electron V = 4 x 10³ m/s

magnetic field B = 1.25 T .

magnetic force = 1.4 x 10⁻¹⁶ N.

If direction of velocity makes angle θ with magnetic field

magnetic force = magnetic field x charge on electron x velocity x sinθ

1.4 x 10⁻¹⁶ = 1.25 x 1.6 x 10⁻¹⁹ x 4 x 10³ x sinθ

1.4 x 10⁻¹⁶ = 8  x 10⁻¹⁶ x sinθ

sinθ  = 1.4 / 8

= .175

θ = 10 degree

or 180 - 10

= 170 degree

because

sinθ = sin (180 - θ)

After your school's team wins the regional championship, students go to the dorm roof and start setting off fireworks rockets. The rockets explode high in the air and the sound travels out uniformly in all directions. If the sound intensity is 1.97 10-6 W/m2 at a distance of 113 m from the explosion, at what distance from the explosion is the sound intensity half this value?

Answers

Answer:

160 m

Explanation:

The intensity, I, of the sound is inversely proportional to the square of the distance, r, from the source.

[tex]I\propto \dfrac{1}{r^2}[/tex]

Hence,

[tex]I_1r_1^2 = I_2r_2^2[/tex]

[tex]r_2 = r_1\sqrt{\dfrac{I_1}{I_2}}[/tex]

From the question, [tex]I_2[/tex] is half of [tex]I_1[/tex]

[tex]r_2 = r_1\sqrt{\dfrac{I_1}{0.5I_1}}[/tex]

[tex]r_2 = r_1\sqrt{2}[/tex]

[tex]r_2 = 113\text{ m}\sqrt{2} = 160 \text{ m}[/tex]

Answer:

Distance ,d= 159.81m

Explanation:

The intensity, I, of the sound is inversely proportional to the square of the distance, d,from the source.

Using the equation d/do=sqrt2

d= dosqrt2

Where d=113m

d= 113sqrt2

d= 159.81m

A bar magnet is held above the center of a conducting ring in the horizontal plane. The magnet is dropped so it falls lengthwise toward the center of the ring. Will the falling magnet be attracted toward the ring or be repelled by the ring due to the magnetic interaction of the magnet and the ring?

Answers

Explanation:

Since, it is given that the magnet drops and falls lengthwise towards the canter of the ring. As a result, change in magnetic flux will occur which tends to induce an electric current in the ring.

Therefore, a magnetic field is also produced by the ring itself which will actually oppose or repel the magnet.  

Thus, we can conclude that the falling magnet be repelled by the ring due to the magnetic interaction of the magnet and the ring.

A sports car moves around a banked curve at just the right constant speed v so that no friction is needed to make the turn. During the turn, the driver (mass m) feels as though she weighs x times her actual weight. Find the magnitude of the net force on the driver during the turn in terms of m, g, and x.

Answers

Final answer:

The magnitude of the net force on the driver during a turn on a banked curve, when no friction is required, is equal to the driver's mass multiplied by gravity and the factor x, which represents the perceived increase in weight. Therefore, the magnitude of the net force is m × g × x.

Explanation:

If a sports car moves around a banked curve at a constant speed such that no friction is needed, this means that the net force is providing the necessary centripetal force for the turn. According to the problem, the driver feels as though she weighs x times her actual weight. This perception of increased weight is due to the normal force provided by the banked road, which has both vertical and horizontal components.

Using Newton's second law, the net force on the driver can be expressed as net force = mass × acceleration. In this case, the centripetal acceleration is due to the net horizontal force, which is the horizontal component of the normal force.

The vertical component of the normal force is balancing the driver's actual weight, and the horizontal component of the normal force equals the centripetal force necessary for circular motion. Therefore, the normal force experienced by the driver (which is responsible for the feeling of increased weight) is FN = m × g × x. Since this is the net force and it is providing the centripetal force, the magnitude of the net force on the driver is also FN = m × g × x.

Learn more about Centripetal Force here:

https://brainly.com/question/11324711

#SPJ12

Two point charges Q1 = +4.10 nC and Q2 = −2.40 nC are separated by 55.0 cm.(a) What is the electric potential at a point midway between the charges? 212.7 Incorrect: Your answer is incorrect. Use the expression for the electric potential from each point charge to find the electric potential at the midpoint between the two charges. V(b) What is the potential energy of the pair of charges? 3.22E-7 Incorrect?

Answers

Answer:

a. 55.6v

b. [tex]1.61*10^{-7}J[/tex]

Explanation:

Data given

charge 1=+4.10nC

charge 2 =-2.40nC

distance, r= 55cm =0.55m

a. the electric potential at the mid point is the sum of the potential due to individual charge.

The electric potential is expressed as  

[tex]V=\frac{kq}{r}\\[/tex]

since we are interested in the electric potential at the mid point, we have

[tex]V=\frac{kq_1}{r/2}-\frac{kq_2}{r/2}\\ V=\frac{2k}{r}(q_1-q_2)\\ V=\frac{2*9*10^9}{0.55}(4.1-2.4)*10^{-9}\\ V=55.6v[/tex]

Hence the electric potential at the mid-point is 55.6v

b. to calculate the potential energy, we use the formula below

[tex]U=\frac{kq_1q_2}{r} \\U=\frac{9*10^9 *4.10*10^{-9}*2.4*10^{-9}}{0.55}\\ U=1.61*10^{-7}J[/tex]  

A bicycle is rolling down a circular portion of a path; this portion of the path has a radius of 9.30 m. As the drawing illustrates, the angular displacement of the bicycle is 1.130 rad. What is the angle (in radians) through which each bicycle wheel (radius = 0.300 m) rotates?

Answers

Answer:

The angle through which each bicycle wheel rotates is 35.03 rad.

Explanation:

Given;

the radius of the circular path, R = 9.30 m

the angular displacement of the bicycle, θ = 1.130 rad

the radius of the bicycle wheel, r = 0.3

S = θR

where;

s is the distance of the circular path

S = 1.13 x 9.3 = 10.509 m

The angle (in radians) through which each bicycle wheel of radius 0.300 m rotates is given as;

θr = 10.509 m

θ = 10.509 / 0.3

θ = 35.03 rad.

Therefore, the angle through which each bicycle wheel of radius 0.300 m rotates is 35.03 rad.

The inner and outer surfaces of a cell membrane carry a negative and positive charge respectively. Because of these charges, a potential difference of about 70 mV exists across the membrane. The thickness of the membrane is 8 nm. If the membrane were empty (filled with air), what would the magnitude of the electric field inside the membrane

Answers

Answer:

The magnitude of the electric field inside the membrane is 8.8×10⁶V/m

Explanation:

The electric field due to electric potential at a distance Δs is given by

E=ΔV/Δs

We have to find the magnitude electric field in the membrane

Ecell= -ΔV/Δs

[tex]E_{cell}=-\frac{V_{in}-V_{out}}{s} \\E_{cell}=\frac{V_{out}-V_{in}}{s}\\E_{cell}=\frac{0.070V}{8*10^{-9}m } \\E_{cell}=8.8*10^{6}V/m[/tex]

The magnitude of the electric field inside the membrane is 8.8×10⁶V/m

The magnitude of the electric field inside the membrane, if it were empty, would be approximately [tex]\( 8.75 \times 10^6 \) V/m.[/tex]

To find the magnitude of the electric field inside the membrane, we can use the formula for electric field strength ( E ) due to a uniform field between two parallel plates, which is given by:

[tex]\[ E = \frac{V}{d} \][/tex]

where ( V ) is the potential difference across the plates (in volts) and ( d ) is the separation between the plates (in meters). In this case, the potential difference ( V ) is given as 70 mV, which we need to convert to volts:

[tex]\[ V = 70 \text{ mV} = 70 \times 10^{-3} \text{ V} \][/tex]

The thickness of the membrane ( d ) is given as 8 nm, which we need to convert to meters:

[tex]\[ d = 8 \text{ nm} = 8 \times 10^{-9} \text{ m} \][/tex]

Now we can plug these values into the formula for the electric field:

[tex]\[ E = \frac{70 \times 10^{-3} \text{ V}}{8 \times 10^{-9} \text{ m}} \][/tex]

[tex]\[ E = \frac{70}{8} \times 10^{(3 - (-9))} \text{ V/m} \][/tex]

[tex]\[ E = 8.75 \times 10^{6} \text{ V/m} \][/tex]

You are operating an 80kg reciprocating machine. The manufacturer notified you thatthere is an imbalance mass of 3kg on the rotating shaft, which has a 10cm diameter.The system was designed to have negligible damping.P.1.1What is the steady state amplitude of the machine’s displacement if you are operatingat very high frequencies?

Answers

Answer:

Explanation:

The system can be modeled as,

Using magnitude relationship for imbalance system.

Check attachment for solution

A segment of wire carries a current of 25 A along the x axis from x = −2.0 m to x = 0 and then along the y axis from y = 0 to y = 3.0 m. In this region of space, the magnetic field is equal to 40 mT in the positive z direction. What is the magnitude of the force on this segment of wire?

Answers

Final answer:

The magnitude of force on the wire segment along the y-axis is 3.0N and directed along the negative x-axis, while there's no force on the segment along the x-axis.

Explanation:

To find the magnitude of the force on the wire, we can use the formula F = I * (L x B), where F is the magnetic force, I is the current, L is the length vector of the wire segment, and B is the magnetic field. The force will be perpendicular to both the current direction and the magnetic field direction, according to the right-hand rule.

The wire is in two segments, one along the x-axis and one along the y-axis. First, we calculate the force on the section of the wire along the x-axis: Fx = I * Lx * B, which is 0 since the magnetic field is in the z-direction and Lx is in the x-direction, making the angle between them 90 degrees. So, there's no force for this segment.

Second, we calculate the force on the section of the wire along the y-axis: Fy = I * Ly * B. The force experienced by this segment can be calculated using the formula with the values provided (I=25A, Ly=3.0m, B=40mT). Therefore, Fy = 25A * 3.0m * 40mT = 3000mN or 3.0N, which will be directed along the negative x-axis, under the right-hand rule.

In each case the momentum before the collision is: (2.00 kg) (2.00 m/s) = 4.00 kg * m/s

1. In each of the three cases above show that momentum is conserved by finding the total momentum after the collision.
2. In each of the three cases, find the kinetic energy lost and characterize the collision as elastic, partially inelastic, or totally inelastic. The kinetic energy before the collision is (1/2)(2.00 kg)(2.00 m/s)^2 = 4.00 kg * m^2/s^2 = 4.00 J.

3. An impossible outcome of such a collision is that A stocks to B and they both move off together at 1.414 m/s. First show that this collision would satisfy conservation of kinetic energy and then explain briefly why it is an impossible result.

Answers

Answer:

Check Explanation.

Explanation:

Momentum before collision = (2)(2) + (2)(0) = 4 kgm/s

a) Scenario A

After collision, Mass A sticks to Mass B and they move off with a velocity of 1 m/s

Momentum after collision = (sum of the masses) × (common velocity) = (2+2) × (1) = 4 kgm/s

Which is equal to the momentum before collision, hence, momentum is conserved.

Scenario B

They bounce off of each other and move off in the same direction, mass A moves with a speed of 0.5 m/s and mass B moves with a speed of 1.5 m/s

Momentum after collision = (2)(0.5) + (2)(1.5) = 1 + 3 = 4.0 kgm/s

This is equal to the momentum before collision too, hence, momentum is conserved.

Scenario C

Mass A comes to rest after collision and mass B moves off with a speed of 2 m/s

Momentum after collision = (2)(0) + (2)(2) = 0 + 4 = 4.0 kgm/s

This is equal to the momentum before collision, hence, momentum is conserved.

b) Kinetic energy is normally conserved in a perfectly elastic collision, if the two bodies do not stick together after collision and kinetic energy isn't still conserved, then the collision is termed partially inelastic.

Kinetic energy before collision = (1/2)(2.00)(2.00²) + (1/2)(2)(0²) = 4.00 J.

Scenario A

After collision, Mass A sticks to Mass B and they move off with a velocity of 1 m/s

Kinetic energy after collision = (1/2)(2+2)(1²) = 2.0 J

Kinetic energy lost = (kinetic energy before collision) - (kinetic energy after collision) = 4 - 2 = 2.00 J

Kinetic energy after collision isn't equal to kinetic energy before collision. This collision is evidently totally inelastic.

Scenario B

They bounce off of each other and move off in the same direction, mass A moves with a speed of 0.5 m/s and mass B moves with a speed of 1.5 m/s

Kinetic energy after collision = (1/2)(2)(0.5²) + (1/2)(2)(1.5²) = 0.25 + 3.75 = 4.0 J

Kinetic energy lost = 4 - 4 = 0 J

Kinetic energy after collision is equal to kinetic energy before collision. Hence, this collision is evidently elastic.

Scenario C

Mass A comes to rest after collision and mass B moves off with a speed of 2 m/s

Kinetic energy after collision = (1/2)(2)(0²) + (1/2)(2)(2²) = 4.0 J

Kinetic energy lost = 4 - 4 = 0 J

Kinetic energy after collision is equal to kinetic energy before collision. Hence, this collision is evidently elastic.

c) An impossible outcome of such a collision is that A stocks to B and they both move off together at 1.414 m/s.

In this scenario,

Kinetic energy after collision = (1/2)(2+2)(1.414²) = 4.0 J

This kinetic energy after collision is equal to the kinetic energy before collision and this satisfies the conservation of kinetic energy.

But the collision isn't possible because, the momentum after collision isn't equal to the momentum before collision.

Momentum after collision = (2+2)(1.414) = 5.656 kgm/s

which is not equal to the 4.0 kgm/s obtained before collision.

This is an impossible result because in all types of collision or explosion, the second law explains that first of all, the momentum is always conserved. And this evidently violates the rule. Hence, it is not possible.

For a two-level system, the weight of a given energy distribution can be expressed in terms of the number of systems, N, and the number of systems occupying the excited state, n1. What is the expression for weight in terms of these quantities

Answers

Answer:

W = N!/(n0! * n1!)

Explanation:

Let n0 = number of particles in the lowest energy state

n1 = number of particles in the excited energy state.

Using this, we can say that N = n0 + n1

From this we can then express the weight, W of the close system by finding the factorials of each particles

W = N!/(n0! * n1!)

Hence, the weight W is expressed as W = N!/(n0! * n1!)

Sound with frequency 1240 Hz leaves a room through a doorway with a width of 1.13 m . At what minimum angle relative to the centerline perpendicular to the doorway will someone outside the room hear no sound? Use 344 m/s for the speed of sound in air and assume that the source and listener are both far enough from the doorway for Fraunhofer diffraction to apply. You can ignore effects of reflections. Express your answer in radians.

Answers

Given Information:

frequency = 1240 Hz

width = a = 1.13 m

speed of sound = c = 344 m/s

Required Information:

angle = θ = ?

Answer:

θ = 14.18 rad

Explanation:

We can find out the angle relative to the centerline perpendicular to the doorway by using the following relation

sin(θ) = λ/a

Where λ is the wavelength of the sound wave and a is width

λ = c/f

Where c is the speed of the sound and f is the frequency

λ = 344/1240

λ = 0.277

sin(θ) = λ/a

θ =sin⁻¹(λ/a)

θ =sin⁻¹(0.277/1.13)

θ =sin⁻¹(0.277/1.13)

θ = 14.18 rad

Light of wavelength 550 nm comes into a thin slit and produces a diffraction pattern on a board 8.0 m away. The first minimum dark fringe appears 3 mm from the central maximum. What is the width of the slit?

Answers

Answer:

Width of the slit will be equal to 1.47 mm

Explanation:

We have given wavelength of the light [tex]\lambda =550nm=550\times 10^{-9}m[/tex]

Distance D = 8 m

Distance between first minimum dark fringe and the central maximum is 2 mm

So [tex]x=3\times 10^{-3}m[/tex]

We have to find the width of the slit

For the first order wavelength is equal to [tex]\lambda =\frac{x}{D}\times a[/tex], here a width of slit

So [tex]a=\frac{\lambda D}{x}=\frac{550\times 10^{-9}\times 8}{3\times 10^{-3}}=1466.666\times 10^{-6}=1.47mm[/tex]

So width of the slit will be equal to 1.47 mm

Star #1 is approaching the Earth with speed v. Star #2 is receding from the Earth with the same speed v. Measurements of the same spectral line from each of the stars show Doppler shifts in frequency. The light from which star will have the larger magnitude shift in frequency? a. star #1 b. Both stars will have the same shift. c. The value of the speed must be known before an answer can be found. d. star #2

Answers

Answer:

b. Both stars will have the same shift.

Explanation:

It's a very simple problem to solve. Star 1 is approaching toward Earth with a speed v, so let's assume that the change in Doppler Shift is +F and Star 2 is moving away so the change in Doppler shift is -F. But it's time to notice the speed of both stars and that is same but only directions are different. speed is the main factor here. The magnitude of both shifts is F as we can see and + and - are showing there direction of motion. So, because of same amount of speed, both stars will have same shift magnitude. (Just the directions are different)

A fixed-geometry supersonic inlet starts at a Mach number of 3. After starting, the cruise Mach number is 2, and the operating shock is positioned at a location where the area is 10% larger than the throat. a) Assuming the flow is ideal except for shock losses, find the inlet stagnation b) During cruise, the Mach number at the exit of the diffuser M2 is required to be 0.3. Determine the ratio of the areas at the diffuser exit to that at the inlet (find AJA, and the static pressure ratio p./p. A,JA), and the static pressure ratio p./p

Answers

Answer:

Explanation: see attachment below

A couple is defined as two parallel forces, separated by a distance, that have equal magnitudes but opposite directions. A couple only produces a rotation in a specified direction. The moment produced by a couple is called a couple moment.
A submarine hatch door is to be opened by applying two oppositely oriented forces of equal magnitude F=265N at points A and B on the hatch door wheel. The radii of the wheel's inner and outer rings are r1 = 0.470 m and r2 = 0.200 m, respectively.
Calculate the moments MA and MB about point D for the forces applied at points A and B. Then, determine the resulting couple moment MR. Assume that a positive moment produces a counterclockwise rotation whereas a negative moment produces a clockwise rotation.

Answers

Answer:

MA = 178 Nm

MB = 72 Nm

MR = 249 Nm

For the moments MA the lever arm was taken as r1 + r2 which is the distance of the point of application of the force at point A to point D.

For the moment MB, the distance of the point of application of force is r1 - r2 which is the distance from the outer ring to the inner ring.

The couple moment is given by F × r1. Which is basically a sum of the moments of both forces applied on the wheel.

Explanation:

See the attachment for detail of the calculation.

Final answer:

The moment MA for the force at point A is 124.55 N*m, the moment MB for the force at point B is 53 N*m, and the resulting couple moment MR is 71.55 N*m.

Explanation:

To calculate the moments MA and MB about point D for the forces applied at points A and B, we can use the formula:

M = F * r

Where M is the moment, F is the force, and r is the radius. For point A, the radius is r1 = 0.470 m and the force is F = 265 N. So, MA = 265 N * 0.470 m = 124.55 N*m (counterclockwise).

Similarly, for point B, the radius is r2 = 0.200 m and the force is F = 265 N. So, MB = 265 N * 0.200 m = 53 N*m (clockwise).

To determine the resulting couple moment MR, we can subtract the clockwise moment (MB) from the counterclockwise moment (MA). MR = MA - MB = 124.55 N*m - 53 N*m = 71.55 N*m (counterclockwise).

Learn more about moment here:

https://brainly.com/question/32684372

#SPJ3

If i = 1.70 A of current flows through the loop and the loop experiences a torque of magnitude 0.0760 N ⋅ m , what are the lengths of the sides s of the square loop, in centimeters?

Answers

Answer:

Length of the sides of the square loop is given by

s = √[(τ)/(NIB sin θ)]

Explanation:

The torque, τ, experienced by a square loop of area, A, with N number of turns around the loop and current of I flowing in the wire, with a magnetic field presence, B, and the plane of the loop tilted at angle θ to the x-axis, is given by

τ = (N)(I)(A)(B) sin θ

If everything else is given, the length of a side of the square loop, s, can be obtained from its Area, A.

A = s²

τ = (N)(I)(A)(B) sin θ

A = (τ)/(NIB sin θ)

s² = (τ)/(NIB sin θ)

s = √[(τ)/(NIB sin θ)]

In this question, τ = 0.076 N.m, I = 1.70 A

But we still need the following to obtain a numerical value for the length of a side of the square loop.

N = number of turnsof wire around the loop

B = magnetic field strength

θ = angle to which the plane of the loop is tilted, measured with respect to the x-axis.

The question is incomplete! The complete question along with answer and explanation is provided below

Question:

A wire loop with 40 turns is formed into a square with sides of length s. The loop is in the presence of a 2.0 T uniform magnetic field B that points in the negative y direction. The plane of the loop is tilted off the x-axis by 15°. If 1.70 A of current flows through the loop and the loop experiences a torque of magnitude 0.0760 N.m, what are the lengths of the sides s of the square loop, in centimeters?

Given Information:

Number of turns = N = 40 turns

Torque = τ = 0.0760 N.m

Current = I = 1.70 A

Magnetic field = B =  2 T

θ = 15°

Required Information:

Length of the sides of square loop = s = ?

Answer:

s = 4.64 cm

Explanation:

τ = NIABsin(θ)

Where N is the number of turns, I is the current flowing through the square loop, A is the area of square loop, B is the magnetic field, and θ is the angle between square loop and magnetic field strength with respect to the x-axis.

Re-arranging the equation to find out A

A = τ/ NIBsin(θ)

A = 0.0760/40*1.70*2*sin(15)

A = 0.00215 m²

We know that area of a square is

A = s²

Taking square root on both sides yields

s = √A

s = √0.00215 = 0.0464 m

in centimeters

s = 4.64 cm

The six metals have the work functions, W.

Part A Rank these metals on the basis of their cutoff frequency. Rank from largest to smallest. To rank items as equivalent, overlap them.

Part B Rank these metals on the basis of the maximum wavelength of light needed to free electrons from their surface. Rank from largest to smallest. To rank items as equivalent, overlap them.

Part C Each metal is illuminated with 400 nm (3.10 eV) light. Rank the metals on the basis of the maximum kinetic energy of the emitted electrons. (If no electrons are emitted from a metal, the maximum kinetic energy is zero, so rank that metal as smallest.) Rank from largest to smallest. To rank items as equivalent, overlap them.

Cesium= w= 2.1 eV Aliminium= w= 4.1 eV Beryllium= 5.0 eV Potassium= 2.3 eV Platinium= w= 6.4 eV Magnisium=w= 3.7 eV

Answers

Answer:

Explanation:

W (Ce) = 2.1 eV

W (Al) = 4.1 eV

W (Be) = 5 eV

W (K) = 2.3 eV

W (Pt) = 6.4 eV

W (Mg) = 3.7 eV

Part A:

Work function is directly proportional to the cut off frequency.

let f denotes the cut off frequency.

So, f (Be) > f (Be) > f (Al) > f (Mg) > f (K) > f (Ce)

Part B:

Maximum wavelength for the emission is inversely proportional to the cut off frequency

So, λ (Ce) > λ (K) > λ (Mg) > λ (Al) > λ (Be) > λ (Pt)

Part C:

E = 3.10 eV

Let K is the maximum kinetic energy

K = E - W

K (Ce) = 3.1 - 2.1 = 1 eV

K (Al) 3.1 - 4.1 = not possible

K (Be) = 3.1 - 5 = not possible

K (K)  = 3.1 - 2.3 = 0.8 eV

K (Pt) = .1 - 6.4 = not possible

K (Mg) = 3.1 - 3.7 = not possible

So, K (Ce) > K (K) > K (Al) = K (Be) = K (Pt) = K (Mg)

Final answer:

Metals can be ranked based on their work functions, which determine cutoff frequency, the maximum wavelength of light needed to free electrons, and maximum kinetic energy of emitted electrons under specific light. Lower work functions result in higher cutoff frequencies and longer required wavelengths, and more energetic emitted electrons when under 400 nm light.

Explanation:

The ranking of the metals, in terms of cutoff frequency, maximum wavelength of light, and maximum kinetic energy, is based on the work function of each metal, which is the minimum energy required to free an electron from the metal's surface. The cutoff frequency is inversely related to the work function, so the metal with the lowest work function (cesium, 2.1 eV) will have the highest cutoff frequency, and the metal with the highest work function (platinum, 6.4 eV) will have the lowest cutoff frequency.

Conversely, the maximum wavelength of light needed to free electrons is directly related to the work function, so cesium will require the longest wavelength and platinum will require the shortest wavelength. When illuminated with 400 nm (3.10 eV) light, the kinetic energy of the emitted electrons will be the difference between the energy of the light and the work function, so cesium (with the smallest work function) will have the most energetic electrons, and metals with a work function larger than 3.10 eV (like aluminum, beryllium, and platinum) will not emit electrons at all.

Learn more about Work Function here:

https://brainly.com/question/12658742

#SPJ3

A steel cable supports an actor as he swings onto the stage. The weight of the actor stretches the steel cable. To describe the relationship between stress and strain for the steel cable, you would use:

a. both shear modulus and bulk modulus.
b. Young's modulus
c. bulk modulus.
d. shear modulus
e. both Young's modulus and bulk modulus.

Answers

Answer:

Option (b)

Explanation:

As the actor swings on a steel cable, the cable stretches due to the weight of the actor. So, the stress produced by the weight of the actor is longitudinal stress and the strain is also longitudinal in nature.

The modulus of elasticity associated to the normal stress and the longitudinal strain is young's modulus.

A block is placed on an inclined plane with an angle of inclination θ (in degrees) with respect to horizontal. The coefficient of static friction between the block and the inclined plane is 0.4. For what maximum value of θ will the block remain stationary on the inclined surface?

Answers

Final answer:

The maximum angle of inclination θ for which a block will remain stationary on an inclined plane, given a coefficient of static friction of 0.4, can be found using the arctangent function resulting in approximately 21.8 degrees.

Explanation:

To find the maximum angle of inclination θ at which a block will remain stationary on an inclined surface, we can relate the coefficient of static friction (0.4 in this case) to the angle using the tangent function. When static friction has reached its maximum value, the block is on the verge of sliding, and the maximum force of static friction is equal to the component of the block's weight parallel to the incline. This force can be described by the equation μsN = mg sin(θ), where μs is the static friction coefficient, N is the normal force, m is the mass of the block, g is the acceleration due to gravity, and θ is the angle of inclination. Since the normal force is equal to mg cos(θ), substituting this into the equation and solving for θ gives us θ = tan-1(μs). Plugging in the given coefficient of static friction, the maximum angle θ can be found.

Using the given coefficient of 0.4, we can calculate the angle: θ = tan-1(0.4). Therefore, the maximum angle θ, for the block to remain stationary, is approximately 21.8 degrees.

Final answer:

The maximum angle of inclination θ at which a block will remain stationary on an inclined plane with a coefficient of static friction of 0.4 is approximately 21.8 degrees.

Explanation:

The maximum angle of inclination θ at which a block will remain stationary on an inclined plane with a coefficient of static friction of 0.4 is determined by using the relationship between the angle of inclination and the coefficient of static friction. This relationship is given by the equation tan(θ) = μ, where μ is the coefficient of static friction. To find the angle where the block starts to slide, we take the inverse tangent (arctan or tan-1) of the coefficient of static friction. Therefore, the maximum angle θ is tan-1(0.4).

Calculating this, we get θ = tan-1(0.4) ≈ 21.8°. Hence, for angles of inclination less than or equal to 21.8 degrees, the block will not slide down the incline due to static friction.

A 2.0-kg ball is moving with a constant speed of 5.0 m/s in a horizontal circle whose diameter is 1.0 m. What is the magnitude of the net force on the ball

Answers

Answer:

F = 100.0 N

Explanation:

in order to the ball keeps moving at a constant speed in a circle, instead of moving along a straight line, there must be an acceleration that accounts for the change in direction of the ball.This acceleration, called centripetal, is directed at any time, towards the center of the circle.As any acceleration, as dictated by Newton's 2nd law, it must be produced by a force, called centripetal force.The magnitude of this force is related with the mass, the speed and the radius of the circle, as follows:

       [tex]F_{c} = m *\frac{v^{2} }{r} = 2.0 kg *\frac{(5.0m/s)^{2} }{0.5m} =100.0 N[/tex]

The magnitude of the net force on the ball is  100.0 N
Answer:

100.0N

Explanation:

As the ball moves round the circle, a centripetal acceleration which is directed towards the center of the circle will keep the ball from falling off. This acceleration produces a force called centripetal force (F).

Since this is the only force acting on the ball, then the net force acting on the ball to keep it moving round the circle is the centripetal force.

F = m a         [according to Newton's second law of motion]    --------------(i)

Where;

m = mass of the ball.

a = centripetal acceleration. = [tex]\frac{v^2}{r}[/tex]

v = speed of the ball.

r = radius of the circle.

Substitute a = [tex]\frac{v^2}{r}[/tex] into equation (i) as follows;

F = m x [tex]\frac{v^2}{r}[/tex]      --------------------(ii)

From the question;

m = 2.0kg

v = 5.0m/s

r = diameter / 2     [diameter = 1.0m]

r = 1.0 / 2

r = 0.5m

Substitute these values into equation (ii) as follows;

F = 2.0 x [tex]\frac{5.0^{2} }{0.5}[/tex]

F = 2.0 x [tex]\frac{25.0}{0.5}[/tex]

F = 2.0 x 50.0

F = 100.0N

Therefore, the magnitude of the net force on the ball is 100.0N

"Comparing microwaves and visible light, which of the following is true? 1. Microwaves have higher frequency, same speed, and longer wavelength than visible light. 2. Microwaves have lower frequency, same speed, and longer wavelength than visible light. 3. Microwaves have lower frequency, slower speed, and longer wavelength than visible light. 4. Microwaves have lower frequency, faster speed, and shorter wavelength than visible light."

Answers

Answer:

2. Microwaves have lower frequency, same speed, and longer wavelength than visible light.

Explanation:

Microwaves are a form of electromagnetic radiation. Most people are familiar with this type of waves because they are used in microwave ovens. When compared to visible light, microwaves have lower frequency, same speed and longer wavelength than visible light. The prefix "micro" is used to indicate that microwaves are smaller (shorter wavelengths) than radio waves.

"The correct option is 2. Microwaves have lower frequency, same speed, and longer wavelength than visible light.

To understand why this option is correct, let's consider the relationship between frequency, wavelength, and speed for electromagnetic waves, which is given by the equation:

[tex]\[ c = f \times \lambda \][/tex]

 1. Speed of light (in a vacuum) is constant for all electromagnetic waves, including microwaves and visible light. Therefore, the speed of microwaves and visible light is the same.

2. Microwaves have a lower frequency than visible light. The frequency of microwaves typically ranges from 300 MHz to 300 GHz, while the frequency of visible light ranges from approximately 430 THz to 750 THz. Since microwaves have a lower frequency, they also have a longer wavelength according to the equation [tex]\( c = f \times \lambda \)[/tex].

3. Since the speed of all electromagnetic waves is the same in a vacuum, and microwaves have a lower frequency, they must have a longer wavelength to maintain the constant speed. This is consistent with the relationship , where a lower frequency  requires a longer wavelength  to keep the speed constant.

In summary, microwaves have a lower frequency and longer wavelength than visible light, but they travel at the same speed. This makes option 2 the correct choice."


As your skateboard coasts uphill, your speed changes from 3 m/s to 1 m/s in
3 seconds. What is your deceleration?

Answers

Answer:

[tex]a=-0.33\ m/s^2[/tex]

Explanation:

Accelerated Motion

The acceleration of a moving body is defined as the relation of change of speed (or velocity in vector form) with the time taken. The formula is given by

[tex]\displaystyle a=\frac{\Delta v}{t}[/tex]

Or, equivalently

[tex]\displaystyle a=\frac{v_f-v_o}{t}[/tex]

Where vf and vo are the final and initial speeds respectively. The problem gives us these values: v0 = 3 m/s, vf = 1 m/s, t = 3 seconds. Computing a

[tex]\displaystyle a=\frac{1-3}{3}=-0.33\ m/s^2[/tex]

The negative sing of a indicates there is deceleration or decreasing speed

Final answer:

The skateboard's deceleration as it coasts uphill, changing speed from 3 m/s to 1 m/s in 3 seconds, is calculated as -0.67 m/s². This indicates a decrease in speed and is consistent with deceleration.

Explanation:

If a skateboard coasts uphill and experiences a change in speed from 3 m/s to 1 m/s in 3 seconds, to find the deceleration, we use the formula for acceleration, which is the change in velocity divided by the time taken for the change. Deceleration is simply acceleration in the opposite direction to the motion (negative acceleration).

The change in velocity ({\Delta v}) is 1 m/s - 3 m/s, which equals -2 m/s (the negative sign indicates a decrease in speed). The time ({t}) is 3 seconds. Thus, the deceleration is  {\Delta v / t} which is (-2 m/s) / (3 s) = -0.67 m/s². This negative sign signifies that it is indeed a deceleration.

By clicking the two-slit barrier and dragging it, you can change its position. Always allow a few seconds for the simulation to catch up with the changes you are making before analyzing the results. When the two-slit barrier is brought closer to the screen (and farther away from the source), what happens to the distance between two adjacent bright (or dark) fringes?

A. It becomes larger.

B. It becomes smaller.

C. It stays the same.

Answers

Answer:

the answer the correct one is B

Explanation:

The interference phenomenon is described by

           d sin θ = m λ

The spectrum is recorded on a screen, so we can use trigonometry

          tan θ = y / L

   

In this experiment the angles are very small, so

           tan θ = sin θ /cos θ = sin θ

  We replace

         d y / L = m La m

        y = m Lam L / d

When the slits approach the screen the value of L decreases,

Therefore the value of the separation between the slits must also decrease

When reviewing the answer the correct one is B

A projectile is fired with an initial speed of 230 m/s and an angle of elevation 60°. The projectile is fired from a position 100 m above the ground. (Recall g = 9.8 m/s². Round your answers to the nearest whole number.)
(a) Find the range of the projectile.
(b) Find the maximum height reached.
(c) Find the speed at impact.

Answers

Answer:

Explanation:....

The range of the projectile is 4675 m. The maximum height reached by the projectile is 2124 m. The speed of the projectile at impact is 234 m/s.

(a) Range is defined as the maximum horizontal distance covered by a projectile during its motion. It is given by the formula:

[tex]R = \frac{u^2 sin2\theta}{g}[/tex],

where u = initial speed of the projectile = 230 m/s

θ = angle of projection = 60°

g = acceleration due to gravity = 9.8 m/s²

Using these in formulas, we get:

[tex]R = \frac{(230 \hspace{0.8mm} m/s)^2 \hspace{0.8mm} sin2(60)}{9.8 \hspace{0.8mm} m/s^2}[/tex]

or, R = 4674.77 m ≈ 4675 m

(b) The maximum height reached by the projectile is given by the formula:

[tex]H = \frac{u^2 \hspace{0.8mm} sin^2\theta}{2g}[/tex]

using the numeric values, we get:

[tex]H = \frac{(230 \hspace{0.8mm}m/s)^2 sin^2(60)}{2 \times (9.8 \hspace{0.8mm} m/s^2)}[/tex]

or, H = 2024.23 m

However, since the projectile was fired 100 m above the ground, hence, the maximum height would be:

h = 100 m + H = 100 m + 2024.23 m = 2124.23 m ≈ 2124 m

(c) The speed of the projectile comprises of two parts, a horizontal velocity and a vertical velocity.

The horizontal velocity is given as [tex]v_x[/tex]. It is constant throught the motion and its magnitude can be determined by the formula:

[tex]v_x = v cos\theta = 230 \hspace{0.8 mm} m/s \times cos(60)[/tex]

or, [tex]v_x = 115 \hspace{0.8mm} m/s[/tex]

The vertical velocity is given as [tex]v_y[/tex]. It is not constant throught the motion. At the highest point, the magnitude of vertical velocity is zero. Using the kinetic equation,

[tex]v_y^2[/tex] = u² + 2gs, where s = h = 2124 m, we get:

[tex]v_y^2[/tex] = 0 + (2 × 9.8 m/s² × 2124 m)

or, [tex]v_y^2[/tex] = 41630.4 m²/s²

or, [tex]v_y[/tex] = 204.03 m/s ≈ 204 m/s

Now, the magnitude of speed will be equal to the resultant of both the horzontal and vertical velocities.

[tex]v = \sqrt{v_x^2 + v_y^2}[/tex]

or, [tex]v = \sqrt{204^2 + 115^2} \hspace{0.8 mm} m/s[/tex]

or, v = 234.21 m/s ≈ 234 m/s

Two protons are released from rest when they are 0.750 {\rm nm} apart.

a) What is the maximum speed they will reach?

b) What is the max acceleration they will reach?

Answers

Explanation:

Given:

m = 1.673 × 10^-27 kg

Q = q = 1.602 × 10^-19 C

r = 0.75 nm

= 0.75 × 10^-9 m

A.

Energy, U = (kQq)/r

Ut = 1/2 mv^2 + 1/2 mv^2

1.673 × 10^-27 × v^2 = (8.99 × 10^9 × (1.602 × 10^-19)^2)/0.75 × 10^-9

v = 1.356 × 10^4 m/s

B.

F = (kQq)/r^2

F = m × a

1.673 × 10^-27 × a = ((8.99 × 10^9 × (1.602 × 10-19)^2)/(0.075 × 10^-9)^2

a = 2.45 × 10^17 m/s^2.

Other Questions
In general, in what type of solvent (non-polar, moderately polar, or highly polar) are polar solutes most soluble? Explain why. Giving brainliest for correct answer.Read the excerpt from "Tough Break."Fabio slumped in his chair when he heard the verdict. "You have a broken leg," the doctor said, looking at the boy who was known for fast dives on his trampoline.Which phrase best helps the reader determine a tone of despair?A. Fabio slumped in his chairB. he heard the verdictC. the doctor said, looking at the boyD. for fast dives on his trampoline Sebuah kolom udara memiliki panjang 40cm.Jika garpu kala mempunyai frekuensi 320Hz,maka besarnya cepat rambat gelombang bunyi diudara pada saat resonasi pertama adalah....m/s. Judges have ordered Massachusetts to change the way it hires firefighters, even though the state does not receive aid from the federal government for fire fighting. Such an order is referred to as a:a. condition of aid.b. quid pro quo order.c. mandate.d. pro bono requirement.e. per curiam order A vintner is deciding when to release a vintage of sauvignon blanc. If it is bottled and released now, the wine will be worth $ 2.6 million. If it is barrel aged for a further year, it will be worth 25% more, though there will be additional costs of $ 975 comma 000 incurred at the end of the year. If the interest rate is 7%, what is the present value of the difference in the benefit the vintner will realize if he releases the wine after barrel aging it for one year or if he releases the wine now? if one of two supplementary angles has a measure of 121 degrees what is the measure of the other angle? Last year, Jess saw x dramas and y comedies at the movie theater. If she went to the theater no more than 8 times, which inequality best represents the number of movies she saw?x + y < 8x + y > 8x + y 8x + y 8 Three-month-old Georgia shakes her rattle because she loves to hear it, but when the rattle slips under the covers, its "out of sight, out of mind." According to Piaget, Georgia is in the _____ stage of cognitive development. Procter & Gamble recently kept its retail price on its jumbo pack of Pampers and Luvs diapers, but reduced the number of diapers per pack from 140 to 132. The repositioning strategy P&G is using here is calleda. market modification.b. product extension.c. rebranding.d. trading up.e. downsizing The underground economy refers to used product sellers who sell in secondary markets. It is thought to make up ________ of the US gross national product. Cindy flies regularly between Atlanta and Los Angeles. She almost always uses Delta Airlines and has lots of Delta Sky Miles credit (Delta's frequent-flyer program). Still, she uses an online fare comparison website each time to see if a competitor has a better price or a more convenient schedule. Cindy uses ________ to decide which airline to fly. Aresearcher conducts a focus group to learn about attitudes towards hygiene and disease prevention. two weeks after the focus group, the researcher learns one of the subjects had a heart attack at home and was hospitalized, but made a full recovery. based on hhs regulations, should the researcher report this event to the irb?a. no, this does not need to be reported since the subject had the heart attack when they were home, not at the focus group. b. no, this does not need to be reported since it is unrelated to participation in the study. c. no, this does not need to be reported because two weeks have passed. d. no, this does not need to be reported since the subject recovered. HELP WILL GIVE BRAINLIEST! RATE AND SAY THANKS!!What is the density of a 50-gram pyramid with rectangular base 4 x 8 cm and height 10 cm? three charged particles lie on a straight line and are separated by distances d. Charges q1 and q2 are held fixed. Charge q3 is free to move but happens to be in equilibrium (no net electrostatic force acts on it) PLEASE HELP me I am struggling. West Company borrowed $38,000 on September 1, Year 1 from the Valley Bank. West agreed to pay interest annually at the rate of 9% per year. The note issued by West carried an 18-month term. Based on this information the amount of interest expense appearing on West's Year 1 income statement would be: What is the expected Hardy-Weinberg frequency of heterozygotes in a population of green anoles, where the locus under investigation has two alleles and the frequency of one allele is 0.005 (give your answer to five decimal places)? What fraction of a pound is 35 pence HiSpark Inc., a leading sports accessories brand, believes that it has to possess rare, hard-to-imitate technology, valuable brand name, and organizationally embedded culture to achieve consistent success as a multinational enterprise. In this case, HiSpark Inc. is focusing on: Painting from a Cult House made by the Sepik people of Papua, New Guinea, was part of the Tambaran, rituals that take place in cult houses. What is the function of this painting?