A titration of 0.1 M NaOH into 0.8 L of HCl was stopped once the pH reached 7 (at 25C). If 0.2 L of NaOH needed to be added to achieve this pH, what was the original concentration of the sample of HCl

Answers

Answer 1

Answer:

0.03 M

Explanation:

Let's consider the neutralization reaction between HCl and NaOH.

HCl + NaOH → NaCl + H₂O

0.2 L of 0.1 M NaOH were used. The moles of NaOH that reacted are:

0.2 L × 0.1 mol/L = 0.02 mol

The molar ratio of HCl to NaOH is 1:1. The moles of HCl that reacted are 0.02 mol.

0.02 moles of HCl are in 0.8 L of solution. The molarity of HCl is:

0.02 mol / 0.8 L = 0.03 M


Related Questions

Consider the following reaction: Pb(NO3)2(aq) + 2 NaCl(aq) → PbCl2(s) + 2 NaNO3(aq)If you react an excess of Pb(NO3)2with 26.3 g of NaCl, and you isolate 52.1 g of PbCl2, what is your percent yield?

Answers

Answer:

[tex]\large \boxed{84.7 \, \%}[/tex]

Explanation:

Mᵣ:                          58.44      278.11

           Pb(NO₃)₂ + 2NaCl ⟶ PbCl₂ + 2NaNO₃

m/g:                         26.3

1. Moles of NaCl

[tex]\text{Moles of NaCl} = \text{26.3 g NaCl} \times \dfrac{\text{1 mol NaCl}}{\text{58.44 g NaCl}} = \text{0.4505 mol NaCl}[/tex]

(b) Moles of PbCl₂

[tex]\text{Moles of PbCl${_2}$} = \text{0.4505 mol NaCl} \times \dfrac{\text{1 mol PbCl${_2}$}}{\text{2 mol NaCl}} = \text{0.2253 mol PbCl${_2}$}[/tex]

(c) Theoretical yield of PbCl₂

[tex]\text{Mass of PbCl${_2}$} = \text{0.2253 mol PbCl${_2}$} \times \dfrac{\text{278.11 g PbCl${_2}$}}{\text{1 mol PbCl${_2}$}} = \text{61.52 g PbCl${_2}$}[/tex]

(d) Percent yield

[tex]\text{Percent yield} = \dfrac{\text{ actual yield}}{\text{ theoretical yield}} \times 100 \,\% = \dfrac{\text{52.1 g}}{\text{61.52 g}} \times 100 \, \% = \mathbf{84.7 \,\%}\\\\\text{The percent yield is $\large \boxed{\mathbf{84.7 \, \% }}$}[/tex]

Final answer:

In a reaction where lead (II) nitrate reacts with sodium chloride to form lead (II) chloride, given 26.3 g of NaCl and 52.1 g of PbCl2 produced, the percent yield is calculated to be 83.27%.

Explanation:

The student is performing a reaction where lead (II) nitrate reacts with sodium chloride to produce lead (II) chloride and sodium nitrate. To calculate the percent yield, we use the actual mass of PbCl2 obtained from the experiment (52.1 g), and compare it with the theoretical mass that should have been produced if the reaction were 100% efficient.

First, you need to calculate the moles of NaCl:

Molecular weight of NaCl = 22.99 (Na) + 35.45 (Cl) = 58.44 g/molMoles of NaCl = mass (g) / molar mass (g/mol) = 26.3 g / 58.44 g/mol = 0.45 moles

Based on the stoichiometry of the balanced equation, 2 moles of NaCl will produce 1 mole of PbCl2 (2:1 ratio). Therefore, 0.45 moles of NaCl should theoretically produce 0.225 moles of PbCl2.

Now, calculate the theoretical yield:

Molecular weight of PbCl2 = 207.2 (Pb) + 2*35.45 (Cl) = 278.1 g/molTheoretical yield (g) = moles * molar mass = 0.225 moles * 278.1 g/mol = 62.57 g of PbCl2

To find the percent yield:

Percent yield = (actual yield / theoretical yield) * 100% = (52.1 g / 62.57 g) * 100% ≈ 83.27%

The percent yield of the reaction is therefore 83.27%.

The decay constant for 14C is .00012 In 1947, the famous cave paintings in Lascaux, France were discovered and testing revealed that charcoal in the cave contained 20% of the 14C found in living trees. Write a formula for the age of the charcoal (hence of the associated paintings). Show your work to find this formula.

Answers

The question is incomplete, here is the complete question:

The decay constant for 14-C is [tex]0.00012yr^{-1}[/tex] In 1947, the famous cave paintings in Lascaux, France were discovered and testing revealed that charcoal in the cave contained 20% of the 14-C found in living trees. Write a formula for the age of the charcoal (hence of the associated paintings). Show your work to find this formula.

Answer: The formula for the age of the charcoal is [tex]t=\frac{2.303}{1.2\times 10^{-4}yr^{-1}}\log \frac{100}{20}[/tex]

Explanation:

Carbon-14 isotope is a radioisotope and its decay process follows first order kinetics.

Rate law expression for first order kinetics is given by the equation:

[tex]k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}[/tex]

where,

k = rate constant  = [tex]0.00012yr^{-1}=1.2\times 10^{-4}yr^{-1}[/tex]

t = time taken for decay process = ? yr

[tex][A_o][/tex] = initial amount of the sample = 100 grams

[A] = amount left after decay process = (100 - 20) = 80 grams

Putting values in above equation, we get:

[tex]1.2\times 10^{-4}=\frac{2.303}{t}\log\frac{100}{20}\\\\t=\frac{2.303}{1.2\times 10^{-4}yr^{-1}}\log \frac{100}{20}[/tex]

Hence, the formula for the age of the charcoal is [tex]t=\frac{2.303}{1.2\times 10^{-4}yr^{-1}}\log \frac{100}{20}[/tex]

This is the chemical formula for acetic acid (the chemical that gives the sharp taste to vinegar): CH_3CO_2H An analytical chemist has determined by measurements that there are 0.054 moles of oxygen In a sample of acetic acid. How many moles of hydrogen are in the sample? Be sure your answer has the correct number of significant digits.

Answers

Answer:

0.108mol of Hydrogen

Explanation:

The formula for the compound is: CH3COOH

From the formula of the compound,

There are 2moles of oxygen and 4moles of Hydrogen.

If for every 2moles of oxygen, 4moles of Hydrogen is present.

Then, for 0.054 moles of oxygen = (0.054 x 4)/2 = 0.108mol of Hydrogen is present

Answer:

For 0.027 moles CH3COOH we have 0.108 moles H ≈ 1.1 *10^-1 moles H

Explanation:

Step 1: Data given

Acetic acid = CH3COOH

Number of moles oxygen in the sample = 0.054 moles

Step 2: calculate moles CH3COOH

In 1 mol CH3COOH we have 2 moles O

For 0.054 moles Oxygen we have 0.054/2 = 0.027 moles CH3COOH

Step 3: Calculate moles H

In 1 mol CH3COOH we have 4 moles H

For 0.027 moles CH3COOH we have 4*0.027 = 0.108 moles H ≈ 1.1 *10^-1 moles

When making a solution of sodium hydroxide and water, a student weighed out an certain amount of sodium hydroxide pellets and dissolved them in an certain amount of water. However, the sodium hydroxide concentration of the resulting solution was lower than the concentration that the student thought they made. What was the problem?

Answers

Hygroscopic nature of NaOH is the main reason for the lower concentration of the sodium hydroxide in the solution.

Explanation:

It is a well known fact that Sodium hydroxide pellets are hygroscopic in nature, which clearly means that the sodium hydroxide pellets absorbs moisture from the air, so that it becomes deliquescent. When the NaOH crystals are weighed, the crystals absorb moisture from the surroundings, and so the weight of the crystals may change, so the concentration of the solution was lower than the required one.So it is not possible to prepare NaOH solution under normal room temperature. So, while preparing the solution of NaOH we have to be more careful.  

The main reason for the lower concentration of the sodium hydroxide in the solution is Hygroscopic nature of NaOH.

Nature of Sodium hydroxide:

It's obviously true that Sodium hydroxide pellets are hygroscopic in nature, which plainly implies that the sodium hydroxide pellets retains dampness from the air, so it becomes deliquescent. Whenever the NaOH precious stones are gauged, the gems assimilate dampness from the environmental factors, thus the heaviness of the gems might change, so the centralization of the arrangement was lower than the expected one. So it is absurd to expect to get ready NaOH arrangement under ordinary room temperature. In this way, while setting up the arrangement of NaOH we must be more cautious.

Find more information about Sodium hydroxide here:

brainly.com/question/25597694

Consider the following metals: Ag, Au, Mg, Ni, and Zn.
Which of these metals could be used as a sacrificial anode in the cathodic protection of an underground steel storage tank?
Steel is mostly iron, so use −0.447 V as the standard reduction potential for steel.

Answers

Answer:

Mg and Zn

Explanation:

In cathodic protection, the sacrificial anode corrodes instead of the cathode which it protects. The anode is usually higher than the cathode in the electrochemical series. This also means that the reduction potential of the sacrificial anode is more negative than that of the cathode. Consider the reduction potentials of the metals listed in the question:

Mg=-1.185V

Zn= -0.7618V

Ag= +0.7996V

Au= +1.629V

Ni= -0.251V

The reduction potential of the cathode stated in the question is -0.447V hence only magnesium and zinc can function as sacrificial anode.

Final answer:

The metals that can be used as sacrificial anodes in the cathodic protection of an underground steel storage tank are silver (Ag), magnesium (Mg), nickel (Ni), and zinc (Zn).

Explanation:

The metals that can be used as sacrificial anodes in the cathodic protection of an underground steel storage tank are the ones with a lower standard reduction potential (E°) than steel. In this case, we need to compare the reduction potentials of steel to the standard reduction potentials of the given metals.

Silver (Ag) has a standard reduction potential of -0.799 V, which is lower than the E° for steel (-0.447 V), so it can be used as a sacrificial anode.Gold (Au) has a standard reduction potential of +1.40 V, which is higher than the E° for steel, so it cannot be used as a sacrificial anode.Magnesium (Mg) has a standard reduction potential of -2.37 V, which is significantly lower than the E° for steel, so it can be used as a sacrificial anode.Nickel (Ni) has a standard reduction potential of -0.257 V, which is lower than the E° for steel, so it can be used as a sacrificial anode.Zinc (Zn) has a standard reduction potential of -0.763 V, which is lower than the E° for steel, so it can be used as a sacrificial anode.

Therefore, the metals that could be used as sacrificial anodes in the cathodic protection of an underground steel storage tank are silver (Ag), magnesium (Mg), nickel (Ni), and zinc (Zn).

Learn more about Cathodic Protection here:

https://brainly.com/question/32659293

#SPJ11

Which of the following is TRUE? Group of answer choices None of the above is true. The equivalence point is where the amount of acid equals the amount of base during any acid-base titration. An indicator is not pH sensitive. A titration curve is a plot of pH vs. the [base]/[acid] ratio. At the equivalence point, the pH is always 7.

Answers

Answer:

TRUE: The equivalence point is where the amount of acid equals the amount of base during any acid-base titration.

Explanation:

The point on the titration curve where the number of base equivalents added equals the number of acid equivalents is the equivalence point or neutralization point.

Chemical indicators are substances that change color thanks to a chemical change, depending on the pH of the medium, and thus indicate the end point or point of equivalence of an acid-base volumetry.

A titration curve occurs by representing the measured pH as a function of the added volume of titrant, where the rapid change in pH for a given volume is observed. The inflection point of this curve is called the equivalence point and its volume indicates the volume of titrant consumed to fully react with the analyte.

In some cases, there are multiple equivalence points that are multiples of the first equivalence point, as in the valuation of a diprotic acid, which indicates that its pH value will not always be 7.

Consider the mechanism. Step 1: A + B − ⇀ ↽ − C equilibrium Step 2: C + A ⟶ D slow Overall: 2 A + B ⟶ D Determine the rate law for the overall reaction, where the overall rate constant is represented as

Answers

Final answer:

The rate law for the overall reaction derived from a two-step reaction mechanism is determined by the slowest (rate-determining) step. In this case, the rate law would be rate = k * K_eq * [A]^2[B], where k is the rate constant for the slow step, K_eq is the equilibrium constant for the fast step, and [A] and [B] represent the concentrations of A and B, respectively.

Explanation:

In the context of chemistry, one step in a multistep reaction mechanism is often significantly slower than the others. This slow step is known as the rate-determining step or the rate-limiting step. The reaction cannot proceed faster than this slowest step.

In your specific example, the given mechanism consists of two steps. The rate law for each step is generally expressed in terms of the concentration of the reactants involved in that step.

For Step 1 (A + B ⇄ C), assuming that the reaction reaches an equilibrium, the concentrations of A, B, and C would remain constant over time, and won't affect the overall rate. Therefore, we would ignore this step when deriving the rate law for the overall reaction.

On the other hand, Step 2 (C + A ⟶ D) is the slow step, and thus determines the rate of the overall reaction. The rate law for this step would be rate = k * [C][A]. But since C is also a product of Step 1, we need to express C in terms of A and B. From equilibrium of Step 1, we know [C] = K_eq*[A][B] (where K_eq is equilibrium constant).

Substituting this in rate law of step 2, we get rate = k * K_eq * [A]^2[B] for the overall reaction.

Learn more about Rate Law here:

https://brainly.com/question/35884538

#SPJ12

Final answer:

The rate law for the overall reaction 2A + B ⟶ D, considering Step 2 is the rate-determining step, is calculated by using the equilibrium from Step 1 to express the concentration of intermediate C in terms of A and B. After substitution and simplification, the rate law for the overall reaction is rate = k [A]²[B], indicating second-order dependence on A and first-order dependence on B.

Explanation:

To determine the rate law for the overall reaction, we must look at the mechanism provided. Since Step 2, which involves the conversion of C and A to D, is the rate-determining step, the rate law for the overall reaction will reflect this slowest step. However, since C is an intermediate that we cannot measure directly, we must use the equilibrium established in Step 1 to express the concentration of C in terms of the concentrations of A and B.

Assuming Step 1 is at equilibrium, the rate of the forward reaction is equal to the rate of the reverse reaction, and thus:

Rate of forward reaction (k₁ [A][B]) = Rate of reverse reaction (k₁₁ [C])

We can rearrange this to solve for [C]:

[C] = k₁/k₁₁ [A][B]

Now, since the rate-determining step is Step 2, we write the rate law based on this step:

rate = k₂ [C][A]

Substituting in the expression for [C] gives us:

rate = k₂ (k₁/k₁₁ [A][B])[A]

rate = (k₂ * k₁/k₁₁) [A]²[B]

Thus, after simplifying and combining the rate constants into a single overall rate constant (k), we have:

rate = k [A]²[B]

This shows that the reaction is second order with respect to A and first order with respect to B.

Learn more about Rate Law here:

https://brainly.com/question/35884538

#SPJ3

Suppose 0.981 g of iron (II) iodide is dissolved in 150. mL of a 35.0 m M aqueous solution of silver nitrate. Calculate the final molarity of iodide anion in the solution, You can assume the volume of the solution doesn't change shen th s sove m Be sure your answer has the correct number of significant digits

Answers

Final answer:c

Calculating the final molarity of iodide anion in the solution, convert the grams of iron (II) iodide to moles, convert the volume of the silver nitrate solution to liters, use the stoichiometry of the reaction, calculate the moles of iodide anion, and divide the moles by the final volume of the solution.

Explanation:

To calculate the final molarity of iodide anion in the solution, we need to use the stoichiometry of the reaction between iron (II) iodide and silver nitrate. Given that there is 0.981 g of iron (II) iodide and 150 mL of a 35.0 mM aqueous solution of silver nitrate, we can determine the moles of iron (II) iodide and the moles of iodide anion produced. Finally, we can calculate the final molarity of iodide anion by dividing the moles by the final volume of the solution.

Convert the grams of iron (II) iodide to moles by dividing by its molar mass: 0.981 g / (55.85 g/mol + 2 (126.9 g/mol)) = 0.007 mol. Convert the volume of silver nitrate solution to liters: 150 mL = 0.150 L. Use the stoichiometry of the reaction 2 AgNO3 + FeI2 → 2 AgI + Fe(NO3)2. Since the volume of the solution does not change, the moles of iodide anion produced will be the same as the moles of iron (II) iodide used. Calculate the moles of iodide anion: 0.007 mol I-. Calculate the final molarity of iodide anion by dividing the moles by the final volume: 0.007 mol / 0.150 L = 0.0467 M (rounded to the correct number of significant digits, which is 3).

Learn more about Calculating the final molarity of iodide anion in a solution here:

https://brainly.com/question/32902118

#SPJ3

A weak monoprotic acid is titrated with 0.100 MNaOH. It requires 50.0 mL of the NaOH solution to reach the equivalence point. After 25.0 mL of base is added, the pH of the solution is 3.42.Estimate the pKa of the weak acid.

Answers

Final answer:

The estimated pKa of the weak monoprotic acid is 3.42, as this value is equal to the pH at the halfway point to the equivalence point during a titration with a strong base where the amounts of the weak acid and its conjugate base are equal.

Explanation:

The question addresses the titration of a weak monoprotic acid with a strong base and involves finding the pKa of the acid using pH measurements.

To estimate the pKa of the weak acid, we use the information that at the halfway point of the titration (when half the equivalent amount of base has been added), the pH of the solution equals the pKa of the acid. This is because, at the halfway point, the concentrations of the acid (HA) and its conjugate base (A-) are equal.

Given that 25.0 mL of 0.100 M NaOH is the halfway point since it takes 50.0 mL of NaOH to reach the equivalence point, and the pH at this stage is 3.42, we can directly say that the pKa of the weak acid is approximately 3.42.

This is because at the halfway point of the titration, the amount of acid that has been neutralized by the base is equal to the amount of acid that remains un-neutralized. In such a scenario, according to the Henderson-Hasselbalch equation:

pH = pKa + log([A-]/[HA]) and since [A-] = [HA] at the halfway point, we get:

Thus, the estimated pKa value of the weak acid is 3.42.

How many joules of heat are required to heat 110 g of aluminum from 52.0 oC to 91.5 oC?

Answers

Answer:

We need 3910.5 joules of energy

Explanation:

Step 1: Data given

Mass of aluminium = 110 grams

Initial temperature = 52.0 °C

Final temperature = 91.5 °C

Specific heat of aluminium = 0.900 J/g°C

Step 2: Calculate energy required

Q = m*c*ΔT

⇒with Q = the energy required = TO BE DETERMINED

⇒with m = the mass of aluminium = 110 grams

⇒with c = the specific heat of aluminium = 0.900 J/g°C

⇒with ΔT = the change in temperature = T2 - T1 = 91.5 °C - 52.0 °C = 39.5 °C

Q = 110 grams * 0.900 J/g°C * 39.5

Q = 3910.5 J

We need 3910.5 joules of energy

Consider the reaction below in a closed flask. At 200 o C, the equilibrium constant (Kp) is 2.40 × 103 . 2 NO (g)  N2 (g) + O2 (g) If 36.1 atm of NO (g) is added to the closed flask at 200 o C, what is the approximate partial pressure of O2 at equilibrium?

Answers

Explanation:

Since, the given reaction is as follows.

       [tex]2NO(g) \rightleftharpoons N_{2}(g) + O_{2}(g)[/tex]

Initial:    36.1 atm                 0          0

Change:    2x                      x           x

Equilibrium: (36.1 - 2x)       x            x

Now, expression for [tex]K_{p}[/tex] of this reaction is as follows.

            [tex]K_{p} = \frac{[N_{2}][O_{2}]}{[NO]^{2}}[/tex]

As the initial pressure of NO is 36.1 atm. Hence, partial pressure of [tex]O_{2}[/tex] at equilibrium will be calculated as follows.

              [tex]K_{p} = \frac{[N_{2}][O_{2}]}{[NO]^{2}}[/tex]

        [tex]2.40 \times 10^{3} = \frac{x \times x}{(36.1 - 2x)^{2}}[/tex]

                 x = 18.1 atm

Thus, we can conclude that partial pressure of [tex]O_{2}[/tex] at equilibrium is 18.1 atm.

Answer:

partial pressure O2 = 17.867 atm

Explanation:

Step 1: Data given

Temperature = 200 °C

Kp = 2.40 *10^3

Pressure NO = 36.1 atm

Step 2: The balanced equation

2 NO ⇔ N2 + O2

Step 3: The initial pressure

pNO = 36.1 atm

pN2 = 0 atm

pO2 = 0 atm

Step 4: the pressure at the equilibrium

For 2 moles NO we'll have 1 mol N2 and 1 mol O2

pNO = 36.1 - 2X atm

pN2 = X atm

pO2 = X atm

Step 5: Calculate partial pressures

Kp = pN2 * pO2 / (pNO)²

2.40*10³ = x²/(36.1 - 2x)²

48.99 = x/(36.1-2x)

x = 1768.5 -97.98x

x = 17.867

x = partial pressure O2 = 17.867 atm

Compositional analysis of a certain lipid shows that it has exactly one mole of fatty acid per mole of inorganic phosphate. Which of the lipids listed below is the lipid with this composition?


a. galactolipid
b. glycerophospholipid
c. sphingolipid
d. triacylglycerol

Answers

The sphingolipid is the lipid with this composition.

Option: C

Explanation:

A biomolecule which is soluble in non-polar solvents like hydrocarbons but remain insoluble in water is understood as a lipid. Its function is: energy storage, signaling and working as structural components of cell membranes. A class of lipids, which is structured from sphingoid base backbone, a group of aliphatic amino alcohols including sphingosine, is known as Sphingolipids. It was discovered in brain extracts during 1870s and named after the mythological sphinx for their mysterious existence.Complicated sphingolipids in animal cells' plasma membrane, particularly nerve cells, have a structural role and are thought to shield the cell surface from unfavorable external factors.

The complex lipid with  one mole of fatty acid per mole of inorganic phosphate has been Sphingolipid. Thus, option C is correct.

The lipids are biomolecules with the ability to bind with the nonpolar surfaces. The lipids have been bound with other biomolecules to form complex lipids.

The galactolipid has been the complex of fatty acid with galactose.

Glycerophospholipid has been the composed of glycerophosphate along with the long chain constituted fatty acid and small alcohols.

Sphingolipid has been the sphingosine backbone lipid with fatty acid. The sphingosine has been constituted of long amino acid chain. It has been present in cell membrane with one mole of fatty acid per mole phosphate.

Triacylglycerol has been acidified fatty acid with three fatty acid to one glycerol.

Thus, the complex lipid with  one mole of fatty acid per mole of inorganic phosphate has been Sphingolipid. Thus, option C is correct.

For more information about lipids, refer to the link:

https://brainly.com/question/233734

The Br⊘⊘nsted-Lowry model focuses on the transfer of _______ in an acid-base reaction. The Brnsted-Lowry model focuses on the transfer of _______ in an acid-base reaction. electrons neutrons OH−OH− orbitals H+H+

Answers

Answer:

The Brönsted-Lowry model focuses on the transfer of H⁺ in an acid-base reaction.

Explanation:

According to the theory of Brönsted-Lowry , an acid is a chemical substance capable of releasing hydrogen ions, while a base is that chemical substance capable of accepting hydrogen ions. That is, acids are substances capable of yielding protons (hydrogen H + ions) and substance bases capable of accepting them.

On the other hand, the conjugate base of a Brønsted-Lowry acid is the species that forms after an acid donated a proton. The conjugate acid of a Brønsted-Lowry base is the species that forms when a base accepts a proton.

Thus, the acid-base reaction is one in which the acid transfers a proton to a base (proton transfer H⁺).

This theory, unlike another theory like Arrhenius, does not require the presence of water as a means of reaction for the transfer of H⁺.

The Brönsted-Lowry model focuses on the transfer of H⁺ in an acid-base reaction.

Calculate the pH for each case in the titration of 50.0 mL of 0.220 M HClO ( aq ) with 0.220 M KOH ( aq ) . Use the ionization constant for HClO . What is the pH before addition of any KOH ?

Answers

Answer:

Before adding any KOH, the pH is 4.03

Explanation:

Step 1: Data given

Volume of a 0.220 M HClO = 50.0 mL = 0.050 L

Molarity of KOH = 0.220 M

The ionization constant for HClO is 4.0*10^–8

Step 2: The balanced equation

HClO + KOH → KClO + H2O

Step 3:  pH before any addition of KOH

When no KOH is added, we only have HClO, a weak acid.

To calculate the pH of a weak acid, we need the Ka

Ka = [H+] / [acid]  

4.0*10^-8 = [H+]² / 0.220  

[H+]² = (4.0*10^-8 ) * 0.220  

[H+]² = 8.8*10^-9  

[H+] = √( 8.8*10^-9)  

[H+] = 9.38*10^-5 M  

pH = -log [H+]  

pH = -log(9.38*10^-5)  

pH = 4.03

Before adding any KOH, the pH is 4.03

Final answer:

To calculate the pH before the addition of KOH in the titration of HClO with KOH, we can use the ionization constant for HClO (Ka). The initial concentration of HClO can be used to calculate the concentration of H+, which in turn can be used to calculate the pH using the pH formula.

Explanation:

The pH before the addition of any KOH can be calculated using the ionization constant for HClO. HClO is a weak acid, so we can use the expression for the acid dissociation constant, Ka, to calculate the pH. The expression for Ka for HClO is:

Ka = [H+][ClO-] / [HClO]

Since we know the initial concentration of HClO, we can assume that the concentration of H+ is equal to the initial concentration of HClO. Therefore, we can rewrite the expression for Ka as:

Ka = [H+]² / [HClO]

Now we can calculate the concentration of H+ using the given initial concentration of HClO:

[H+] = sqrt(Ka * [HClO])

Finally, we can use the concentration of H+ to calculate the pH using the pH formula:

pH = -log[H+]

1) β-galactosidase is a unique enzyme, in that it can have multiple substrates. What are some other substrates for β-galactosidase? What are some other inhibitors for β-galactosidase?

Answers

The natural substrate of beta glycosidase enzyme is Ganglioside GMI, Lactosylceramide, lactose and glycoprotein.

Inhibitors of beta galactosidase enzyme is 1,4-dithiothreitol, beta marcaptoethanol, 4-chloromercurobenzoic acid and Acid-beta galactosidase.

Explanation:

Beta galactosidase enzyme performs the hydrolysis of beta galactosides into monosaccharides. It acts on aryl, amino, alkyl beta glycosidic linkages also.

The enzyme attacks on the bond formed between organic entity and galactose sugar.

It can act on multiple substrates. Some substrates are :

Ganglioside GMI

Lactosylceramide

Lactose : Enzyme beta galactosidase enzyme is a boon for lactose intolerant people because it breaks lactose in yoghurt, sour cream and cheese and makes it easy for consumption to such people.

glycoprotein : These have glycosidic bonds on which enzyme works to break the bonds.

The inhibitors for the β-galactosidase are :

  4-dithiothreitol

beta marcaptoethanol

4-chloromercurobenzoic acid

Acid-beta galactosidase.

When inhibitors are bind to enzyme it breaks down the inhibitor and reaction does not takes place.

Final answer:

β-galactosidase can act on different substrates like lactose, ONPG and IPTG, demonstrating its flexibility. Its activity can be regulated by inhibitors such as glucose and PETG, affecting enzyme function either competitively or non-competitively.

Explanation:

The enzyme β-galactosidase is unique as it can act on various substrates and is influenced by several inhibitors. This enzyme mainly acts on lactose but can also interact with several structurally related substrates such as o-nitrophenyl-β-D-galactoside (ONPG) and isopropyl β-D-1-thiogalactopyranoside (IPTG), exemplifying the flexibility of β-galactosidase.

The activity of β-galactosidase is subject to regulation by various inhibitors. These inhibitors could exert their effect by binding to the enzyme's active site (competitive inhibition), or noncompetitively by interacting with the enzyme's allosteric site--an alternate part where non-substrate molecules can attach. Examples of inhibitors include glucose and phenylethyl β-D-thiogalactoside (PETG).

Learn more about β-galactosidase here:

https://brainly.com/question/32810530

#SPJ11

onsider the following reaction at equilibrium: CO(g) + Cl2(g)=======COCl2(g) Predict whether the reaction will shift left,shift right, or remain the unchanged upon each of the following disturbances.a) COCl2 is added to thereaction mixtureb) Cl2 is added to thereaction mixturec) COCl2 is removed fromthe reaction mixture

Answers

Explanation:

CO(g) + Cl2(g) ⇄ COCl2(g)

This question is based on Le Chatelier's principle.

Le Chatelier's principle is an observation about chemical equilibria of reactions. It states that changes in the temperature, pressure, volume, or concentration of a system will result in predictable and opposing changes in the system in order to achieve a new equilibrium state.

a) COCl2 is added to the reaction mixture

COCL2 is a product in the reaction. If we add additional product to a system, the equilibrium will shift to the left, in order to produce more reactants. The reaction would shift to the left.

b) Cl2 is added to the reaction mixture

if we add reactants to the system, equilibrium will be shifted to the right to in order to maintain equilibrium by producing more products.

c) COCl2 is removed from the reaction mixture

if we remove products from the system, equilibrium will be shifted to the right to in order to maintain equilibrium by producing more products.

Final answer:

Chemical reactions at equilibrium, such as CO(g) + Cl2(g) ⇌ COCl2(g), shift in response to changes to re-establish equilibrium. If a product or reactant is added, the reaction will respectively shift towards reactants or products. Similarly, if a product or reactant is removed, the reaction will respectively shift towards products or reactants.

Explanation:

In chemistry, chemical reactions at equilibrium respond to disturbances according to Le Châtelier's principle: the system shifts in a way that counters the disturbance and re-establishes equilibrium. Now, let's consider the reaction: CO(g) + Cl2(g) ⇌ COCl2(g).

(a) When COCl2 is added, it will increase the product's concentration, thus, the reaction will shift to the left (towards the reactants) to re-establish equilibrium. (b) When Cl2 is added, it will increase the reactant's concentration. The reaction will shift to the right (towards the products) to counter this and re-establish equilibrium. (c) When COCl2 is removed, it decreases the product's concentration. To counteract this, the reaction shifts to the right (towards the products) to re-establish equilibrium.

Learn more about Chemical equilibrium here:

https://brainly.com/question/3920294

#SPJ3

A(g) + 2B(g) → C(g) + D(g)

If you initially start with 1.00 atm of both A and B and find that at equilibrium 0.211 atm of C is present, what is the value of Kp for the reaction at the temperature the reaction was run?

Answers

Answer:

0.169

Explanation:

Let's consider the following reaction.

A(g) + 2B(g) ⇄ C(g) + D(g)

We can find the pressures at equilibrium using an ICE chart.

       A(g) + 2 B(g) ⇄ C(g) + D(g)

I       1.00     1.00        0        0

C       -x        -2x        +x       +x

E    1.00-x  1.00-2x     x         x

The pressure at equilibrium of C is 0.211 atm, so x = 0.211.

The pressures at equilibrium are:

pA = 1.00-x = 1.00-0.211 = 0.789 atm

pB = 1.00-2x = 1.00-2(0.211) = 0.578 atm

pC = x = 0.211 atm

pD = x = 0.211 atm

The pressure equilibrium constant (Kp) is:

Kp = pC × pD / pA × pB²

Kp = 0.211 × 0.211 / 0.789 × 0.578²

Kp = 0.169

Explain why a fossil record is not 100% accurate.

Answers

Fossils form only when organism dies and suddenly buried in low oxygen environment. ... When sedimentary rocks are deep buried in the earth due to pressure above and temperature it turns into metamorphic rock and fossils destroy . Due to this rock cycle , fossil record has been lost.
The fossil record, however, is quite incomplete. Here's one major reason why: Sediment has to cover an organism's remains in order for the long fossilization process to begin. Most organisms decompose before this can happen. Fossilization odds increase if the organism happened to exist in large numbers or lived in or around sediment. For example, trilobites, ancient marine arthropods, met both criteria, so they're rather common fossils. The Tyrannosaurus rex, however, is far rarer. It was large and land-dwelling, and as a top predator made up a far smaller percentage of the population.

The pKa of an acid (one dissociable hydrogen) is -5.7. To the nearest ones, what is the Ka of this acid? Please note that we should use scientific notation and fewer significant figures, but Canvas is not configured to use scientific notation.

Answers

Answer:

The value of dissociation constant of an acid [tex]5.0\times 10^{5}[/tex].

Explanation:

The [tex]pK_a[/tex] of an acid = -5.7

The dissociation constant of the reaction = [tex]K_a[/tex]

The relation between [tex]pK_a[/tex] and [tex] K_a[/tex] is given by ;

[tex]pK_a=-\log[K_a][/tex]

[tex]-5.7=-\log[K_a][/tex]

[tex]K_a=10^{-(-5.7)}=5.012\times 10^{5}\approx 5.0\times 10^{5}[/tex]

The value of dissociation constant of an acid [tex]5.0\times 10^{5}[/tex].

Propose a mechanism to account for the formation of a cyclic acetal from 4-hydroxypentanal and one equivalent of methanol. If the carbonyl oxygen of 4-hydroxypentanal is enriched with oxygen-18, do you predict that the oxygen label appears in the cyclic acetal or in the water

Answers

Answer:

If carbonyl oxygen of 4-hydroxypentanal is enriched with [tex]O^{18}[/tex], then the oxygen label appears in the water .

Explanation:

In the first step, -OH group at C-4 gives intramolecular nucleophilic addition reaction at carbonyl center to produce a cyclic hemiacetal.Then, one equivalent of methanol gives nucleophilic substitiution reaction by substituting -OH group in cyclic hemiacetal to produce cyclic acetal.If carbonyl oxygen of 4-hydroxypentanal is enriched with [tex]O^{18}[/tex], then the oxygen label appears in the water produced at the end of reaction.Full reaction mechanism has been shown below.

Predict the sign of ΔS° for 2NO2(g) LaTeX: \longrightarrow⟶ N2O4(g) CaCO3(s) + 2HCl(aq) LaTeX: \longrightarrow⟶ CaCl2(aq) + H2O(l) +CO2(g) Ag+(aq) + Cl-(aq) LaTeX: \longrightarrow⟶ AgCl(s)

Answers

Answer: a. [tex]2NO_2(g)\rightarrow N_2O_4(g)[/tex]: [tex]\Delta S[/tex] is negative

b. [tex]CaCO_3(s)+2HCl(aq)\rightarrow CaCl_2(aq)+H_2O(l)[/tex] : [tex]\Delta S[/tex] is negative

c. [tex]Ag^+(aq)+Cl^-(aq)\rightarrow AgCl(s)[/tex]: [tex]\Delta S[/tex] is negative

Explanation:

Entropy is the measure of randomness or disorder of a system. If a system moves from  an ordered arrangement to a disordered arrangement, the entropy is said to decrease and vice versa

a)  [tex]2NO_2(g)\rightarrow N_2O_4(g)[/tex]

In this reaction 2 moles of gaseous reactants are converting to 1 mole of gaseous products. The randomness will decrease and hence entropy will also decrease. Thus [tex]\Delta S[/tex] is negative.

b) [tex]CaCO_3(s)+2HCl(aq)\rightarrow CaCl_2(aq)+H_2O(l)[/tex]

In this reaction solid reactants are converting to aqueous products. The randomness will increase and hence entropy will also increase. Thus [tex]\Delta S[/tex] is positive.

c) [tex]Ag^+(aq)+Cl^-(aq)\rightarrow AgCl(s)[/tex]

In this reaction aqueous reactants are converting to solid products. The randomness will decrease and hence entropy will also decrease. Thus [tex]\Delta S[/tex] is negative

Final answer:

The sign of ΔS° for the given reactions can be determined based on the change in the number of moles of gas. In general, an increase in the number of moles of gas results in a positive ΔS°, while a decrease in the number of moles of gas results in a negative ΔS°.

Explanation:

ΔS° represents the change in entropy. To predict the sign of ΔS° for a reaction, we can consider the number of moles of gas formed or consumed. In general, an increase in the number of moles of gas will result in a positive ΔS°, indicating an increase in entropy. On the other hand, a decrease in the number of moles of gas will result in a negative ΔS°, indicating a decrease in entropy.

In the reaction 2NO2(g) → N2O4(g), the number of moles of gas decreases from 2 to 1. Therefore, ΔS° for this reaction is expected to be negative.

In the reaction CaCO3(s) + 2HCl(aq) → CaCl2(aq) + H2O(l) + CO2(g), the number of moles of gas increases from 0 to 1. Therefore, ΔS° for this reaction is expected to be positive.

In the reaction Ag+(aq) + Cl-(aq) → AgCl(s), the number of moles of gas remains the same. Therefore, ΔS° for this reaction is expected to be close to zero.

A chemist determined by measurements that 0.050 moles of aluminum participated in a chemical reaction. Calculate the mass of aluminum that participated in the chemical reaction. Be sure your answer has the correct number of significant digits.

Answers

Answer:

13.5 g

Explanation:

This question is solved easily if we remember that the number of moles is obtained by dividing the mass into the atomic weight or molar mass depending if we are referring to elements or molecules.

Therefore, the mass of aluminum in the reaction will the 0.050 mol Al times the atomic weight of aluminum.

number of moles = n = mass of Al / Atomic Weight Al

⇒ mass Al = n x Atomic Weight Al = 0.050 mol x 27 g mol⁻¹

                                                         = 13.5 g

We have three significant figures in 0.050 and therefore we should have three significant figures in our answer.

           

Mass of aluminum that participated in the chemical reaction is 1.35 grams.

Number of Moles:

Number of moles is defined as the ratio of given mass to the molar mass.

Given:

Moles of Aluminum = 0.050 moles

To find:

Mass of Aluminum=?

As we know, Molar mass of Aluminum = 27g/mol

On substituting the values:

[tex]\text{Number of Moles}=\frac{\text{Given mass}}{\text{Molar mass}} \\\\ \text{Given mass}= \text{Number of Moles}*\text{Molar mass}\\\\ \text{Given mass}= 0.050*27\\\\ \text{Given mass}=1.35\text{ grams}[/tex]

Thus, the mass of aluminum that participated in the chemical reaction is 1.35 grams.

Learn more:

brainly.com/question/21911991

A car starts at mile marker 145 on a highway and drives at 55 mi/hrmi/hr in the direction of decreasing marker numbers. What mile marker will the car reach after 2 hours

Answers

Answer:

135 mile marker will the car reach after 2 hours.

Explanation:

Speed of the car = 55 mile/hour

Distance covered in 2 hours = d

[tex]Speed=\frac{Distance}{Time}[/tex]

[tex]55 mile/hour=\frac{d}{2 hour}[/tex]

[tex]d=55 mile/hour\times 2 hour=110 mile[/tex]

The direction of the car is in decreasing marker numbers which mienas that car had started from end where 145 mile marker was present.

So, the marker appearing after travelling 2 hours will be:

145 - 110 = 135

135 mile marker will the car reach after 2 hours.

A student fills her burette with NaOH to the 2.5 mL mark. She titrated her sample of the NaOH until she reaches the endpoint (i.e. all the acid has been neutralized by the NaOH). The volume marking on her burette - at the endpoint - is 52.5 mL. How many mL of NaOH did she use to reach the endpoint

Answers

Answer:

She used 50 mL of NaOH to reach the endpoint.

Explanation:

Assuming the burette is filled to the point marked 3.30 ml, You would record the initial point as 3.30 ml:

If at the end of the titration the level of the NaOH is at 20.30 mL; Subtract the initial reading from the final burette reading to get how many mL was used to reach an end point.

That is  20.3 - 3.3 = 17.00 mL

Therefore, the titration would have required 17.00 mL.

Remember that you should read the number that is at the bottom of the meniscus and at an eye level in order to avoid error.

Initial mark = 2.5 mL

Final mark = 52.5 mL.

volume used = 52.5 - 2.5

                            = 50 mL

5. Phosphoric acid (H3PO4) is a triprotic acid with three ionizable protons. Write a balance equation for the neutralization of phosphoric acid with NaOH. How many milliliters of 0.120 M NaOH would be required to completely neutralize 35.0 ml of 0.0440 M H3PO4

Answers

Answer:

1. H3PO4 + 3NaOH —> Na3PO4 + 3H2O

2. 38.5mL

Explanation:

1. We'll begin by writing a balanced equation for the reaction. This is illustrated below:

H3PO4 + 3NaOH —> Na3PO4 + 3H2O

2. H3PO4 + 3NaOH —> Na3PO4 + 3H2O

From the equation above, the following data were obtained:

nA (mole of the acid) = 1

nB (mole of the base) = 3

Data obtained from the question include:

Vb (volume of base) =?

Mb (Molarity of base) = 0.120 M

Va (volume of acid) = 35.0 mL

Ma (Molarity of acid) = 0.0440 M

Using the formula MaVa/MbVb = nA/nB, the volume of the base (i.e NaOH) can be obtained as follow:

MaVa/MbVb = nA/nB

0.0440 x 35/ 0.120 x Vb = 1/3

Cross multiply to express in linear form as shown below:

0.120 x Vb = 0.0440 x 35 x 3

Divide both side by 0.120

Vb = (0.0440 x 35 x 3) /0.120

Vb = 38.5mL

Therefore, 38.5mL of 0.120 M NaOH is needed for the complete neutralization.

Answer:

We need 38.5 mL of NaOH to neutralize the H3PO4 solution

Explanation:

Step 1: Data given

Molarity of NaOH = 0.120 M

Volume of H3PO4 = 35.0 mL = 0.035 L

Molarity of H3PO4 = 0.0440 M

Step 2: The balanced equation

H3PO4 + 3NaOH —> Na3PO4 + 3H2O

Step 3: Calculate the volume of NaOH

b*Ca*Va = a *Cb*Vb

⇒with b = the coefficient of NaOH = 3

⇒with Ca = the concentration of H3PO4 = 0.0440 M

⇒with Va = the volume of H3PO4 = 35.0 mL = 0.0350 L

⇒with a = the coefficient of H3PO4 = 1

⇒with Cb = the concentration of NaOH = 0.120 M

⇒with Vb = the volume of NaOH = TO BE DETERMINED

3*0.0440 * 0.0350 = 0.120 * Vb

Vb = 0.0385 L = 38.5 mL

We need 38.5 mL of NaOH to neutralize the H3PO4 solution

When you decrease the diameter of the stationary phase particles and make them more uniform, in HPLC, which term or terms of the van Deemter Equation is or are minimized?

Answers

Answer:

C-term

Explanation:

A correlation between plate height and mobile phase velocity is known as the van Deemter equation.

[tex]H = A + \frac{B}{u}+ C*u[/tex]

Where;

H is the plate height

A  is the eddy diffusion term

B is the longitudinal diffusion term

C is the resistance to mass transfer coefficient

u is the linear velocity

Here C-term describes the mass transfer of sample components between the stationary phase and the mobile phase during separation. One of the major factor affecting C-term is the particle size, changing the diameter equally changes the particle size.

The answer is C-term

E. Both A and Cux are terms of the van Deemter Equation.

The van Deemter equation describes the relationship between the height equivalent to a theoretical plate (HETP) and the linear velocity (u) of the mobile phase in chromatography. The equation is:

[tex]\[H = A + \frac{B}{u} + C \cdot u\][/tex]

When the diameter of the stationary phase particles is decreased and made more uniform in High-Performance Liquid Chromatography (HPLC), the effects on the terms of the van Deemter equation are as follows:

1. Eddy Diffusion (A term):

  - Eddy diffusion occurs due to the multiple pathways available for the analyte molecules through the packed column. Smaller and more uniform particles reduce the multiple pathways and hence minimize the A term.

2. Longitudinal Diffusion (B/u term):

  - Longitudinal diffusion is the spreading of the analyte band due to diffusion along the length of the column. It is generally more significant at low flow rates and is not directly affected by the particle size.

3. Mass Transfer (C * u term):

  - The mass transfer term relates to the time it takes for the analyte molecules to equilibrate between the stationary and mobile phases. Smaller particles decrease the distance the analytes must travel in and out of the stationary phase, thereby reducing the C.u term.

Therefore, decreasing the diameter of the stationary phase particles and making them more uniform primarily minimizes the A and [tex]\(C \cdot u\)[/tex] terms.

The correct answer is: E. Both A and Cux

Complete Question:

When you decrease the diameter of the stationary phase particles and make them more uniform, in HPLC, which term or terms of the van Deemter Equation is or are minimized?

A. A

B. B/ux

C. Cux

D. Both A and B/ux

E. Both A and Cux

F. Both B/ux and Cux

G. None of the terms

H. All of the terms

The properties of elements are different than the compound that the elements form. Is this statement True or False

Answers

Answer:

true

Explanation:

Give the characteristics of a strong acid:

A. ionizes completely in aqueous solution.
B. has equilibrium far to the right.
C. has a polar bond.
D. has a waker bond to hydrogen.
E. all of the above

Answers

Answer:

Not D

Explanation:

The charges and sizes of the ions in an ionic compound affect the strength of the electrostatic interaction between the ions and thus the strength of the lattice energy of the ionic compound. Arrange the compounds according to the magnitudes of their lattice energies based on the relative ion charges and sizes.a. SrO b. CsIc. RbFd. SrF2

Answers

Answer:

the correct answer:

C, B, D, A.

Explanation:

The chemical compounds named are compounds that have strong chemical bonds, forming cubic structures and crystals with very high boiling and melting points to less solid structures.

some are oxides, others salts, others are even used to emit radiation.

Which compartment has the higher osmotic pressure? Which compartment has the higher osmotic pressure? 1%% (m/vm/v) starch solution 10%% (m/vm/v) starch solution

Answers

Answer : The compartment that has the higher osmotic pressure is, 10 % (m/v) starch solution.

Explanation :

Formula used for osmotic pressure :

[tex]\pi=\frac{nRT}{V}\\\\\pi=\frac{wRT}{MV}[/tex]

where,

= osmotic pressure

V = volume of solution

R = solution constant  = 0.0821 L.atm/mole.K

T= temperature of solution = [tex]25^oC=273+25=298K  [/tex]

M = molar mass of solute

w = mass of solute

Now we have to determine the osmotic pressure for the following solution.

For 1 % (m/v) starch solution :

1 % (m/v) starch solution means that 1 grams of starch present in 100 mL or 0.1 L of solution.

Molar mass of starch = 692.7 g/mol

[tex]\pi=\frac{(1g)\times (0.0821Latm/moleK)\times (298K)}{(692.7g/mol)\times (0.1L)}[/tex]

[tex]\pi=0.353atm[/tex]

For 10 % (m/v) starch solution :

10 % (m/v) starch solution means that 10 grams of starch present in 100 mL or 0.1 L of solution.

Molar mass of starch = 692.7 g/mol

[tex]\pi=\frac{(10g)\times (0.0821Latm/moleK)\times (298K)}{(692.7g/mol)\times (0.1L)}[/tex]

[tex]\pi=3.53atm[/tex]

From this we conclude that, 10 % (m/v) starch solution has the higher osmotic pressure as compared to 1 % (m/v) starch solution.

Hence, the compartment that has the higher osmotic pressure is, 10 % (m/v) starch solution.

Final answer:

The 10% (m/v) starch solution will have a higher osmotic pressure compared to the 1% (m/v) starch solution because osmotic pressure increases with solute concentration.

Explanation:

The osmotic pressure is a property that depends on the solute concentration in a solution. In comparing a 1% (m/v) starch solution to a 10% (m/v) starch solution, the solution with the higher solute concentration is the one with higher osmotic pressure. Therefore, the 10% (m/v) starch solution will have a higher osmotic pressure because it has a greater concentration of starch molecules.

The osmotic pressure of a solution can be calculated using the formula Π = MRT, where Π is the osmotic pressure, M is the molarity of the solution, R is the gas constant, and T is the temperature in Kelvin. As solute concentration increases, so does the osmotic pressure, provided that temperature and the gas constant remain the same. Consequently, hypertonic solutions will have higher osmotic pressure than hypotonic solutions.

Other Questions
A 45 foot ladder is used to clean thegutters at your house. How far away fromthe house should you put the ladder inorder for it to reach the 40 foot highgutter? Round your answer to the nearesttenth.5 feet. help porfavor, please At a music store in New York City 54 people entering the store were selected at random and were What is the meaning of the underlined word?Un corredor largo con un montn de estatuas. In September 2015, the United Nations established various goals toward sustainable development including Goal 5: Achieve Gender Equality and Empower all Women and Girls. Identify whether or not these are objectives included within this goal. Which feature of cryptocurrencies is attractive to many around the globe? A. They offer a lower opportunity cost B. They are organic C. They include an insurance premium D. They offer a higher exchange rate E. There are no records of transactions WILL GIVE BRAINLIEST ANSWER! Given the parent function f(x)=|x|, which equation would occur if the function is vertically compressed by 13, shifted down 6 units, and shifted right 5?f(x)=3|x+5|6f(x)=13|x5|6f(x)=13|x+5|6f(x)=13|x6|+5 Tegan biked 5 1/3 miles today, and Jack biked 3 3/4 miles. How many times the length of Jacks bike ride was Tegans bike ride? Stacy uses a spinner with six equal sections numbered 2, 2, 3, 4, 5, and 6 to play a game. Which of the following statements is true? Select all that apply. A. The probability of the pointer landing on an even-numbered section is 66.67%. B. It is impossible that the pointer will land on 1. C. It is less likely that the pointer will land on an odd-numbered section. D. It is certain that the pointer will land on a number less than 6. E. The spinner is fair. Why is global warning a problem Kumquat is the most ___________________ type of citrus for arizona. The students in the picture below are using a globe and a lamp to model the Sun and the Earth. If the model Earth acts the same as the real Earth, what will happen as the students spin the model? A. Different parts of the model Earth will have different seasons. B. All of the model Earth will have daytime at the same time. C. A new year will start each time the model Earth makes a complete turn. D. Some parts of the model Earth will have daytime and some will have night. Which of the following claims would the deist accept? A. God exists but does not give us commands. B. God exists and is the creator of morality. C. God does not exist. D. God exists and gives commands but did not create morality. The beginning inventory at Midnight Supplies and data on purchases and sales for a three-month period ending March 31, are as follows: Date Transaction Number of Units Per Unit Total Jan. 1 Inventory 7,500 $75.00 $562,500 10 Purchase 22,500 85.00 1,912,500 28 Sale 11,250 150.00 1,687,500 30 Sale 3,750 150.00 562,500 Feb. 5 Sale 1,500 150.00 225,000 10 Purchase 54,000 87.50 4,725,000 16 Sale 27,000 160.00 4,320,000 28 Sale 25,500 160.00 4,080,000 Mar. 5 Purchase 45,000 89.50 4,027,500 14 Sale 30,000 160.00 4,800,000 25 Purchase 7,500 90.00 675,000 30 Sale 26,250 160.00 4,200,000 Instructions 1. Record the inventory, purchases, and cost of merchandise sold data in a perpetual inventory record similar to the one illustrated in Exhibit 3 , using the first-in, first-out method. 2. Determine the total sales and the total cost of merchandise sold for the period. Journalize the entries in the sales and cost of merchandise sold accounts. Assume that all sales were on account and date your journal entry March 31. Refer to the Chart of Accounts for exact wording of account titles. 3. Determine the gross profit from sales for the period. 4. Determine the ending inventory cost as of March 31. 5. Based upon the preceding data, would you expect the inventory using the last-in, first-out method to be higher or lower 1. Hay algn buzn que est en la plaza Bolvar? S, hay un buzn que est en la plaza Bolvar. . 2. Conoces a alguien que sea abogado de inmigracin? No, no conoco ningn que sea abogado de inmigracin. . 3. Ves a alguien aqu que estudie espaol contigo? S, no voy nin . 4. Hay alguna panadera que venda pan caliente (hot) cerca de aqu? No, . 5. Tienes alguna compaera que vaya a ese gimnasio? S, . 6. Conoces a alguien que sea cartero? No, . Call an integer $n$ oddly powerful if there exist positive integers $a$ and $b$, where $b>1$, $b$ is odd, and $a^b = n$. How many oddly powerful integers are less than $2010$? Which statement supports the credibility of the document? Rowena had been terrified about testifying in court. One morning shortly before she was scheduled to appear, she awoke blind. In this example, Rowena is achieving A) conditioning. B) primary gain. C) reinforcement. D) secondary gain. Predict the type of bond that would be formed between each of the following pairs of atoms(ionic, polar covalent or nonpolar covalent)a. H and Clb. Mg and Fc. Li and Nd. N and S How did the wise rule make the Roman Empire very powerful? Please use your answer from the text