A super has a key ring with 12 keys. He has forgotten which one opens the apartment he needs to enter. What is the probability he is able to enter before reaching the 4th key?

Answers

Answer 1

Answer:

Therefore, the probability is P=1/4.

Step-by-step explanation:

We know that a super has a key ring with 12 keys. He has forgotten which one opens the apartment he needs to enter.

We conclude that each key has an equal probability of opening an apartment. Since there are 12 keys, it follows that the probability for each key is equal,

p = 1/12.

We calculate the probability he is able to enter before reaching the 4th key. So he will try three keys by then. We get:

[tex]P=p+p+p\\\\P=\frac{1}{12}+\frac{1}{12}+\frac{1}{12}\\\\P=\frac{3}{12}\\\\P=\frac{1}{4}[/tex]

Therefore, the probability is P=1/4.


Related Questions

Use seq() to generate a sequence 1, 3, ..., 27. (b) Use log() to generate a new sequence where each element is log-transformed from the sequence in (a). (c) Remove the second to fifth elements in the resulting sequence in (b). (d) Use length() to obtain the length of the resulting sequence in (c). (e) Sort the resulting sequence in (c) from high to low using sort().

Answers

Answer:

Step-by-step explanation:

sequence=seq(1,27, by=3)

new_seq=c()

for (i in sequence){

n_seq.append(log(i))

}

new_seq<- n_seq[-(2:5)]

seq_length=length(new_seq)

sorted_seq=sort(new_seq,decreasing=TRUE)

The research question below describes a relationship between two quantitative variables. Which variable should be plotted on the horizontal X-axis? Is the sales price of a townhouse in San Francisco related to the number of square feet in the townhouse?

Answers

Answer:

number of square feet in the townhouse.

Step-by-step explanation:

When the relationship of two quantitative variables is assessed through plot then the scatter plot is made. Scatter plot shows relationship between two qualitative variables by showing dependent variable on y axis and independent variable on x axis.

When the relation between sale price of house and number of square feet in house is assessed then the sale price is dependent variable and square feet in house. Sale price is dependent variable because the price of house depends on the number of square feet of house. Thus, number of square feet in the town house will be plotted on the horizontal X-axis.    

A market research firm conducts telephone surveys with a 44% historical response rate. What is the probability that in a new sample of 400 telephone numbers, at least 150 individuals will cooperate and respond to the questions?

Answers

Answer:

So, the probability is P=0.9953.

Step-by-step explanation:

We know  that a market research firm conducts telephone surveys with a 44% historical response rate.

We get that:

[tex]p=44\%=0.44=\mu_{\hat{x}}\\\\n=400\\\\\hat{p}=\frac{150}{400}=0.375\\\\[/tex]

We calculate the standar deviation:

[tex]\sigma_{\hat{p}}=\sqrt{\frac{0.44(1-0.44)}{400}}\\\\\sigma_{\hat{p}}=0.025[/tex]

So, we get

[tex]z=\frac{\hat{p}-\mu_{\hat{p}}}{\sigma{\hat{p}}}\\\\z=\frac{0.375-0.44}{0.025}}\\\\z=-2.6[/tex]

We use a probability table to calculate it

[tex]P(\hat{p}>0.375)=P(z>-2.6)=1-P(z<-2.6)=1-0.0047=0.9953[/tex]

So, the probability is P=0.9953.

Final answer:

To find the probability of at least 150 of 400 individuals responding given a 44% response rate, calculate the mean and standard deviation and then find the z-score for 150 responses. The probability of getting at least 150 responses is the area to the right of the z-score in the standard normal distribution.

Explanation:

The question asks for the probability that in a new sample of 400 telephone numbers, at least 150 individuals will respond, given a historical response rate of 44%. To determine this probability, we can approximate the binomial distribution to a normal distribution because the sample size is large (n=400).

First, we calculate the mean (μ) and the standard deviation (σ) for the number of responses. The mean is given by μ = np = 400 × 0.44 = 176. The standard deviation is σ = √(np(1-p)) = √(400 × 0.44 × 0.56) ≈ 9.92.

To calculate the probability of getting at least 150 responses, we would find the z-score for 150, which is z = (X - μ)/σ = (150 - 176)/9.92 ≈ -2.62. We then look up this z-score in a standard normal distribution table or use a calculator to determine the area to the right of this z-score, which represents the probability of getting more than 150 responses.

The question is related to market research and involves using statistical methods to calculate probabilities, which requires an understanding of binomial distributions and normal approximations.

Learn more about probability here:

https://brainly.com/question/32117953

#SPJ2

A food processor packages orange juice in small jars. The weights of the filled jars are approximately normally distributed with a mean of 10.5 ounces and a standard deviation of 0.3 ounce. Find the proportion of all jars packaged by this process that have weights that fall above 10.983 ounces.

Answers

Answer:

[tex]P(X>10.983)=P(\frac{X-\mu}{\sigma}>\frac{10.983-\mu}{\sigma})=P(Z>\frac{10.983-10.5}{0.3})=P(z>1.61)[/tex]

And we can find this probability using the complement rule and with excel or the normal standard table:

[tex]P(z>1.61)=1-P(z<1.61)=1-0.946=0.054[/tex]

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Let X the random variable that represent the weights of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(10.5,0.3)[/tex]  

Where [tex]\mu=10.5[/tex] and [tex]\sigma=0.3[/tex]

We are interested on this probability

[tex]P(X>10.983)[/tex]

And the best way to solve this problem is using the normal standard distribution and the z score given by:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

If we apply this formula to our probability we got this:

[tex]P(X>10.983)=P(\frac{X-\mu}{\sigma}>\frac{10.983-\mu}{\sigma})=P(Z>\frac{10.983-10.5}{0.3})=P(z>1.61)[/tex]

And we can find this probability using the complement rule and with excel or the normal standard table:

[tex]P(z>1.61)=1-P(z<1.61)=1-0.946=0.054[/tex]

A climber on Mount Everest is meters from the start of his trail and at elevation meters above sea level. At meters from the start, the elevation of the trail is meters above sea level. If for near , what is the approximate elevation another 8 meters along the trail

Answers

We are not given the value of

Mount Everest

Elevation

h'(x)

So we are going to based our parameters needed to solve this question o assumptions. The main thing is to understand the process in solving this question.

So here is it!.

A climber on Mount Everest is 8000 meters from the start of his trail and at elevation  10000 meters above sea level. At (x) meters from the start, the elevation of the trail is h(x) meters above sea level. If  h' (x) = 0.5 for near , what is the approximate elevation another 8 meters along the trail

Answer:

10004 meters

Step-by-step explanation:

The rate of change of elevation, h' (x) = 0.5 near 8000 meters.

Thus; we can say that the elevation increases by 0.5 for each meter traveled at a given distance(x)

So, we need to determine the new elevation after 8 meters traveled from ( 8000 to 8008).Then the elevation change can now be written as:

=  (0.5 × 8)

= 4 meters.

And also the new elevation will be:

10000 + 4 meters

= 10004 meters

Two balanced dice are rolled. Let X be the sum of the two dice. Obtain the probability distribution of X (i.e. what are the possible values for X and the probability for obtaining each value?). Check that the probabilities sum to one.


1) What is the probability for obtaining X \geq 8?

2) What is the average value of X?

Answers

Answer:

Step-by-step explanation:

Each die has faces numbered from 1 to 6. Hence, the sums range from 2 to 12.

There are 6 × 6 = 36 possible combinations of the dice.

The sums, their possible combinations and their probabiities are as below:

2 = 1+1 1/36

3 = 1+2 = 2+1 2/36= 1/18

4 = 1+3 = 2+2 = 3+1 3/36= 1/12

5 = 1+4 = 2+3 = 3+2 = 4+1 4/36= 1/9

6 = 1+5 = 2+4 = 3+3 = 4+2 = 5+1 5/36

7 = 1+6 = 2+5 = 3+4 = 4+3 = 5+2 = 6+1 6/36= 1/6

8 = 2+6 = 3+5 = 4+4 = 5+3 = 6+2 5/36

9 = 3+6 = 4+5 = 5+4 = 6+3 4/36= 1/9

10 = 4+6 = 5+5 = 6+4 3/96= 1/12

11 = 5+6 = 6+5 2/36= 1/18

12 = 6+6 1/36

Sum of probabilities = 1/36 + 1/18 + 1/12 + 1/9 + 5/36 + 1/6 + 5/36 + 1/9 + 1/12 + 1/18 + 1/36 = 1

1) [tex]P(X\ge 8) = 5/36+1/9+1/12+1/18+1/36=15/36[/tex]

2) The average value of X = 1/36*(2+12) + 1/18*(3+11) + 1/12*(4+10)+ 1/9(5+9)+ 5/36(6+8)+ 1/6(7) = 14*(5/6)+7/6 = 77/6

A recent study reported that 28​% of the residents of a particular community lived in poverty. Suppose a random sample of 300 residents of this community is taken. We wish to determine the probability that 33​% or more of our sample will be living in poverty. Complete parts​ (a) and​ (b) below.

Before doing any calculations, determine whether this probability is greater than 50% or less than 50%. Why? The answer should be less than 50%, because the resulting z-score will be negative and the sampling distribution is approximately Normal. The answer should be greater than 50%, because 0.24 is greater than the population proportion of 0.20 and because the sampling distribution is approximately Normal. The answer should be less than 50%, because 0.24 is greater than the population proportion of 0.20 and because the sampling distribution is approximately Normal. The answer should be greater than 50%, because the resulting z-score will be positive and the sampling distribution is approximately Normal. Calculate the probability that 24% or more of the sample will be living in poverty. Assume the sample is collected in such a way that the conditions for using the CLT are met. P (p ge 0.24) = (Round to three decimal places as needed.)

Answers

Answer:

a) The answer should be less than 50%, because 0.33 is greater than the population proportion of 0.28 and because the sampling distribution is approximately Normal.

b) P(x ≥ 0.33) = 2.68% = 0.027 to 3 d.p

Step-by-step explanation:

a) The required probability is P(x ≥ 0.33)

The population proportion of people living in poverty has already been given as 0.28, So, whatever the standard deviation of the distribution of sample means is, the sample proportion of 0.33 is more than the population proportion, So, it gives a z-score that is greater than 0. The probability from the z-score of the mean (0) to the end of distribution is exactly 50%; So, a Probability that only covers from a particular positive z-score to the end of the distribution will definitely be less than 50%.

So, because 33% is more than population proportion of 28%, and the sampling distribution is approximately normal, the probability of 33% or more of the sample living in poverty is less than 50%.

b) P(x ≥ 0.33)

The sample mean = population mean

μₓ = μ = 0.28

Standard deviation of the distribution of sample means = √[p(1-p)/n] (this is possible due to the central limit theorem for n greater than 30)

σₓ = √[(0.28×0.72)/300] = 0.0259

We then normalize 0.33

The standardized score for any value is the value minus the mean then divided by the standard deviation.

z = (x - μ)/σ = (0.33 - 0.28)/0.0259 = 1.93

To determine the probability of 33% or more of the sample size is living in poverty.

P(x ≥ 0.33) = P(z ≥ 1.93)

We'll use data from the normal probability table for these probabilities

P(x ≥ 0.33) = P(z ≥ 1.93) = 1 - P(z < 1.93)

= 1 - 0.9732 = 0.0268 = 2.68%

It is indeed way less than 50%.

Hope this Helps!!!

The answer to whether the probability is greater than 50% or less than 50% is; less than 50% because 0.33 is greater than the population proportion

What is the probability of the normal distribution?

A) We want to determine the probability that 33​% or more of our sample will be living in poverty and this is expressed as P(x ≥ 0.33)

Population proportion is; p = 0.28.

Formula for z-score is;

z = (x' - μ)/σ

Since our sample proportion is greater than our population proportion, it means the z-score will be greater than 0

Finally, due to the fact that 33% is more than population proportion of 28%, and the sampling distribution is approximately normal, the probability of 33% or more of the sample living in poverty will definitely be less than 50%.

b) We want to now calculate the above probability;

P(x ≥ 0.33)

The sample mean will be equal to population mean as;

μₓ = μ = 0.28

Standard deviation of the distribution of sample means is;

σₓ = √(p(1 - p)/n)

σₓ = √((0.28×0.72)/300)

σₓ = 0.0259

Thus, z-score is;

z = (x - μ)/σ

z = (0.33 - 0.28)/0.0259

z = 1.93

Thus, the of 33% or more of the sample size is living in poverty is;

P(x ≥ 0.33) = P(z ≥ 1.93) = 1 - P(z < 1.93)

P(x ≥ 0.33) = 1 - 0.9732

P(x ≥ 0.33) = 0.0268

P(x ≥ 0.33) = 0.027

It is indeed way less than 50%.

Read more about normal distribution at; https://brainly.com/question/4079902

18. Brown eyes (B) are dominant to blue eyes (b). The presence of freckles (F) is dominant to the absence of freckles (f). What is the probability that two people who are heterozygous for both traits will have a child that has blue eyes and no freckles?

Answers

Answer:

For bbff we have only 6.3% probability

Step-by-step explanation:

If the parents are heterozygous for both traits, them they are represented by:

BbFf × BbFf

Parent 1: BbFf

Parent 2: BbFf

We have to find the percentage of occurence of bb × ff, which is a child that has blue eyes and no freckles, with no dominant factor.

By distributing the possibilities in a Punnett square, vide picture. We have the following possibilities:

Genotype   Count     Percent  

bBfF  4     25

BBfF  2     12.5

bBFF  2     12.5

bBff          2     12.5

bbfF  2     12.5

BBFF  1     6.3

BBff      1            6.3

bbFF  1     6.3

bbff      1     6.3

For bbff we have only 6.3% probability

A new article reported that college students who have part-time jobs work an average of 15 hour per week. The staff of a college from for newspaper thought that the average might be different from 15 hours per week for their college. Data were collected on the number of hours worked per week for a random sample of students at the college who have part-time jobs. The data were used to test the hypotheses H_o: mu = 15 H_a: mu notequalto 15. where mu is the mean number of hours worked per week for all students at the college with part-time jobs. The results of the test are shown in the table below. Assuming all conditions for inference were met, which of the following represents a 95 percent confidence interval for mu?

(A) 13.755 plusminus 0.244
(B) 13.755 plusminus 0.286
(C) 13.755 plusminus 0.707
(D) 13.755 plusminus 1.245
E) 13, 755 plusminus 1.456

Answers

Answer:

E (13.755 ± 1.456)

Step-by-step explanation:

with 95% confidence interval and df=25

we can find t score on the t table : t*=2.06

(because the table has already provided us standard error , we DON'T have to calculate it by using  σsample=S/[tex]\sqrt{n}[/tex]) (standard error = standard deviation)

so the interval should be  13.755± 2.06(0.707)= 13.755± 1.456

The 95% confidence interval for [tex]\(\mu\)[/tex] is e. [tex]\(13.755 \pm 1.456\)[/tex], based on a sample mean of 13.755, standard error of 0.707, and 25 degrees of freedom.

To construct a 95% confidence interval for the mean [tex]\(\mu\)[/tex], we need to use the sample mean, the standard error, and the appropriate critical value for a t-distribution.

Given data:

- Sample mean [tex](\(\bar{x}\))[/tex]: 13.755

- Standard error (SE): 0.707

- Degrees of freedom (df): 25

For a 95% confidence interval with 25 degrees of freedom, we need the critical value [tex]\( t^* \).[/tex] We can find [tex]\( t^* \)[/tex] using a t-table or statistical software.

For 25 degrees of freedom, the critical value [tex]\( t^* \)[/tex] for a 95% confidence interval is approximately 2.064.

The formula for the confidence interval is:

[tex]\[\bar{x} \pm t^* \times \text{SE}\][/tex]

Substitute the values:

[tex]\[13.755 \pm 2.064 \times 0.707\][/tex]

Calculate the margin of error:

[tex]\[2.064 \times 0.707 \approx 1.459\][/tex]

Thus, the 95% confidence interval is:

[tex]\[13.755 \pm 1.459\][/tex]

So, the correct answer is:

e. [tex]\[\boxed{13.755 \pm 1.456}\][/tex]

Complete Question:

​If, based on a sample size of 950​, a political candidate finds that 563 people would vote for him in a​ two-person race, what is the 99​% confidence interval for his expected proportion of the​ vote? Would he be confident of winning based on this​ poll?

Answers

Answer:

The 99​% confidence interval for his expected proportion of the​ vote is (0.5516, 0.6336). Since the interval for the proportion is above 50%, he would be confident of winning based on the pool.

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which

z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].

For this problem, we have that:

[tex]n = 950, p = \frac{563}{950} = 0.5926[/tex]

99% confidence level

So [tex]\alpha = 0.01[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.01}{2} = 0.995[/tex], so [tex]Z = 2.575[/tex].

The lower limit of this interval is:

[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.5926 - 2.575\sqrt{\frac{0.5926*0.4074}{950}} = 0.5516[/tex]

The upper limit of this interval is:

[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.5926 + 2.575\sqrt{\frac{0.5926*0.4074}{950}} = 0.6336[/tex]

The 99​% confidence interval for his expected proportion of the​ vote is (0.5516, 0.6336). Since the interval for the proportion is above 50%, he would be confident of winning based on the pool.

Of the 50 states, 39 are currently under court order to alleviate overcrowding and poor conditions in one or more of their prisons. If a state is selected at random, find the probability that it is not currently under such a court order. Give your answer as a reduced fraction.

Answers

Answer:

11/50

Step-by-step explanation:

39 of 50 states are under court order, so 11 of 50 states are not under court order.

Final answer:

The probability that a randomly selected state is not under a court order to alleviate overcrowding and poor conditions in its prisons is 11/50.

Explanation:

To find the probability that a randomly selected state is not currently under court order to alleviate overcrowding and poor conditions in one or more of their prisons, we can use the complement rule in probability. This rule states that the probability of an event not happening is equal to one minus the probability of the event happening. Given that 39 states are under such a court order, the probability that a state is under court order is 39/50. Therefore, the probability that a state is not under court order is 1 - (39/50).

Calculating this, we get:

P(Not under court order) = 1 - (39/50) = (50/50) - (39/50) = 11/50

The probability that a randomly selected state is not currently under a court order to alleviate overcrowding and poor conditions in its prisons is 11/50, when expressed as a reduced fraction.

A Chinese restaurant offers 10 different lunch specials. Each weekday for one week, Fiona goes to the restaurant and selects a lunch special. How many different ways are there for her to select her lunches for the week

Answers

Answer:

10⁵

Step-by-step explanation:

10×10×10×10×10

= 10⁵ or 100,000

The number of square feet per house are normally distributed with a population standard deviation of 137 square feet and an unknown population mean. A random sample of 19 houses is taken and results in a sample mean of 1350 square feet. Find the margin of error for a 80% confidence interval for the population mean. z0.10z0.10z0.05z0.05z0.025z0.025z0.01z0.01z0.005z0.005 1.2821.6451.9602.3262.576 You may use a calculator or the common z values above. Round the final answer to two decimal places.

Answers

Answer:

The MOE for 80% confidence interval for μ is 5.59.

Step-by-step explanation:

The random variable X is defined as the number of square feet per house.

The random variable X is Normally distributed with mean μ and standard deviation σ = 137.

The margin of error for a (1 - α) % confidence interval for population mean is:

[tex]MOE=z_{\alpha /2}\times\frac{\sigma}{\sqrt{n}}[/tex]

Given:

n = 19

σ = 137

[tex]z_{\alpha /2}=z_{0.20/2}=z_{0.10}=1.282[/tex]

Compute MOE for 80% confidence interval for μ as follows:

[tex]MOE=1.282\times\frac{137}{\sqrt{19}}=1.282\times4.36=5.58952\approx5.59[/tex]

Thus, the MOE for 80% confidence interval for μ is 5.59.

Suppose a computer engineer is interested in determining the average weight of a motherboard manufactured by a certain company. A summary of a large sample provided to the engineer suggest a mean weight of 11.8 ounces and an estimated standard deviation, sigma = 0.75. How large a sample size is required if want a 99% confidence interval, with a tolerable interval width of 0.4? How large a sample would we need if were interested in a 95% confidence interval with a tolerable width of 0.5?

Answers

Answer:

We need a sample size of at least 23 for a 99% confidence interval, with a tolerable interval width of 0.4.

We need a sample size of at least 9 for a 95% confidence interval with a tolerable width of 0.5,

Step-by-step explanation:

How large a sample size is required if want a 99% confidence interval, with a tolerable interval width of 0.4?

We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:

[tex]\alpha = \frac{1-0.99}{2} = 0.005[/tex]

Now, we have to find z in the Ztable as such z has a pvalue of [tex]1-\alpha[/tex].

So it is z with a pvalue of [tex]1-0.005 = 0.995[/tex], so [tex]z = 2.575[/tex]

Now, find the margin of error(width) as such

[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]

In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.

For this item, we have:

[tex]M = 0.4, \sigma = 0.75[/tex]. So

[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]

[tex]0.4 = 2.575*\frac{0.75}{\sqrt{n}}[/tex]

[tex]0.4\sqrt{n} = 1.93125[/tex]

[tex]\sqrt{n} = \frac{1.93125}{0.4}[/tex]

[tex]\sqrt{n} = 4.828125[/tex]

[tex]\sqrt{n}^{2} = (4.828125)^{2}[/tex]

[tex]n = 23[/tex]

We need a sample size of at least 23 for a 99% confidence interval, with a tolerable interval width of 0.4.

How large a sample would we need if were interested in a 95% confidence interval with a tolerable width of 0.5?

We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:

[tex]\alpha = \frac{1-0.95}{2} = 0.025[/tex]

Now, we have to find z in the Ztable as such z has a pvalue of [tex]1-\alpha[/tex].

So it is z with a pvalue of [tex]1-0.025 = 0.975[/tex], so [tex]z = 1.96[/tex]

Now, find the margin of error(width) as such

[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]

In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.

For this item, we have:

[tex]M = 0.5, \sigma = 0.75[/tex]. So

[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]

[tex]0.5 = 1.96*\frac{0.75}{\sqrt{n}}[/tex]

[tex]0.5\sqrt{n} = 1.47[/tex]

[tex]\sqrt{n} = \frac{1.47}{0.5}[/tex]

[tex]\sqrt{n} = 2.94[/tex]

[tex]\sqrt{n}^{2} = (2.94)^{2}[/tex]

[tex]n \cong 9[/tex]

We need a sample size of at least 9 for a 95% confidence interval with a tolerable width of 0.5,

Suppose you work for Fender Guitar Company and you are responsible for testing the integrity of a new formulation of guitar strings. To perform your analysis, you randomly select 52 'high E' strings and put them into a machine that simulates string plucking thousands of times per minute. You record the number of plucks each string takes before failure and compile a dataset. You find that the average number of plucks is 5,314.4 with a standard deviation of 116.68. A 90% confidence interval for the average number of plucks to failure is (5,287.3, 5,341.5).
From the option listed below, what is the appropriate interpretation of this interval?

1) We are 90% confident that the average number of plucks to failure for all 'high E' strings tested is between 5,287.3 and 5,341.5
2) We cannot determine the proper interpretation of this interval.
3) We are 90% confident that the proportion of all 'high E' guitar strings fail with a rate between 5,287.3 and 5,341.5
4) We are certain that 90% of the average number of plucks to failure for all 'high E' strings will be between 5,287.3 and 5,341.5 5
5) We are 90% confident that the average number of plucks to failure for all 'high E' strings is between 5,287.3 and 5,341.5

Answers

Answer:

[tex]5314.4-1.675\frac{116.68}{\sqrt{52}}=5287.30[/tex]  

[tex]5314.4+1.675\frac{116.68}{\sqrt{52}}=5341.5[/tex]  

So on this case the 90% confidence interval would be given by (5287.3;5341.5)

And the best intrpretation is:

 5) We are 90% confident that the average number of plucks to failure for all 'high E' strings is between 5,287.3 and 5,341.5

Step-by-step explanation:

Previous concepts  

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".  

The margin of error is the range of values below and above the sample statistic in a confidence interval.  

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".  

[tex]\bar X=5314.4[/tex] represent the sample mean  

[tex]\mu[/tex] population mean (variable of interest)  

[tex]s=116.68[/tex] represent the sample standard deviation  

n=52 represent the sample size  

90% confidence interval  

The confidence interval for the mean is given by the following formula:  

[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex] (1)  

The degrees of freedom are given by:

[tex] df = n-1= 52-1=51[/tex]

Since the Confidence is 0.90 or 90%, the value of [tex]\alpha=0.1[/tex] and [tex]\alpha/2 =0.05[/tex], and we can use excel, a calculator or a table to find the critical value. The excel command would be: "=-T.INV(0.05,51)".And we see that [tex]t_{\alpha/2}=1.675[/tex]  

Now we have everything in order to replace into formula (1):  

[tex]5314.4-1.675\frac{116.68}{\sqrt{52}}=5287.30[/tex]  

[tex]5314.4+1.675\frac{116.68}{\sqrt{52}}=5341.5[/tex]  

So on this case the 90% confidence interval would be given by (5287.3;5341.5)

And the best intrpretation is:

 5) We are 90% confident that the average number of plucks to failure for all 'high E' strings is between 5,287.3 and 5,341.5

Department 1 of a two department production process shows: Units Beginning Work in Process 9900 Ending Work in Process 49000 Total units to be accounted for 180200 How many units were transferred out to Department 2?

Answers

Answer:

131200 Units

Step-by-step explanation:

Now, in the production process:

Units to be accounted for= Beginning Work in Process+Work Started

Units Accounted for=Ending Work in Process + Completed and Transferred out

Units to be accounted for = Units Accounted for

Beginning Work in Process =9900 Ending Work in Process = 49000 Total units to be accounted for= 180200

Since

Units to be accounted for = Units Accounted for

Then:

Units Accounted for=Ending Work in Process + Completed and Transferred out

180200=49000+Completed and Transferred out

Completed and Transferred out=180200-49000

=131200

131200 units were transferred to Department 2.

Final answer:

The number of units transferred out to Department 2 can be found by subtracting the Ending Work in Process from the Total units to be accounted for. In this case, that would be 180200 - 49000, which equals 131200 units.

Explanation:

In the scenario described, the number of units transferred out to Department 2 can be calculated by deducting the Ending Work in Process from the Total units to be accounted for. This is because the Total units to be accounted for includes all units at the start (Beginning Work in Process), all units processed during the period, and all units still in process at the end (Ending Work in Process). So, the units transferred to Department 2 were processed by Department 1 but are not part of Department 1's ending work in process.

Hence, using the provided numbers:

Total units to be accounted for = 180200Ending Work in Process = 49000

Units transferred out to Department 2 = Total units to be accounted for - Ending Work in Process = 180200 - 49000 = 131200

Learn more about Business Operations here:

https://brainly.com/question/33727098

#SPJ3

Private colleges and universities rely on money contributed by individuals and corporations for their operating expenses. Much of this money is put into a fund called an​ endowment, and the college spends only the interest earned by the fund. A recent survey of 8 private colleges in the United States revealed the following endowments​ (in millions of​ dollars): 60.2,​ 47.0, 235.1,​ 490.0, 122.6,​ 177.5, 95.4, and 220.0. Summary statistics yield Upper X overbarequals180.975 and Sequals143.042. Calculate a​ 95% confidence interval for the mean endowment of all the private colleges in the United States assuming a normal distribution for the endowments.

Answers

Answer:

[tex]180.975 - 2.365\frac{143.042}{\sqrt{8}}=61.370[/tex]  

[tex]180.975 + 2.365\frac{143.042}{\sqrt{8}}=300.580[/tex]  

So on this case the 95% confidence interval would be given by (61.370;300.580)  

Step-by-step explanation:

Previous concepts

The margin of error is the range of values below and above the sample statistic in a confidence interval.  

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".

Solution to the problem

[tex]\bar X=180.975[/tex] represent the sample mean  

[tex]\mu[/tex] population mean (variable of interest)  

[tex]s=143.042[/tex] represent the sample standard deviation  

n=8 represent the sample size  

The confidence interval on this case is given by:

[tex]\bar X \pm t_{\alpha/2} \frac{s}{\sqrt{n}} [/tex]   (1)

We can find the degrees of freedom and we got:

[tex] df = n-1= 8-1=7[/tex]

The next step would be find the value of [tex]\t_{\alpha/2}[/tex], [tex]\alpha=1-0.95=0.05[/tex] and [tex]\alpha/2=0.025[/tex]  

Using the t table with df =7, excel or a calculator we see that:  

[tex]t_{\alpha/2}=2.365[/tex]

Since we have all the values we can replace:

[tex]180.975 - 2.365\frac{143.042}{\sqrt{8}}=61.370[/tex]  

[tex]180.975 + 2.365\frac{143.042}{\sqrt{8}}=300.580[/tex]  

So on this case the 95% confidence interval would be given by (61.370;300.580)  

A penny is tossed. We observe whether it lands heads up or tails up. Suppose the penny is a fair coin; that is, the probability of heads is one-half and the probability of tails is one-half. What does this mean?A) if I flip the coin many, many times, the proportion of heads will be approximately 1/2, and this proportion will tend to
get closer and closer to 1/2 as the number of tosses increases.
B) regardless of the number of flips, half will be heads and half tails.
C) every occurrence of a head must be balanced by a tail in one of the next two or three tosses.
D) all of the above.

Answers

Answer:

So we conclude that the answer is under (B).

Step-by-step explanation:

We know that the penny is a fair coin; that is, the probability of heads is one-half and the probability of tails is one-half.

So when we throw a coin we have an equal chance of getting either a head or a tail.

So we conclude that the answer is under (B).

B) regardless of the number of flips, half will be heads and half tails.

Starting from rest, a DVD steadily accelerates to 500 rpm in 1.0 s, rotates at this angular speed for 3.0 s, then steadily decelerates to a halt in 2.0 s. How many revolutions does it make

Answers

Answer:

37.5 revolutions

Step-by-step explanation:

The average rotation speed for the first second and for the last two seconds is:

[tex]V_1 = \frac{0+500}{2}\\ V_1 = 250\ rpm[/tex]

For the next 3.0 seconds, the rotation speed is V = 500 rpm.

The total number of revolutions, converting rpm to rps, is given by:

[tex]n=\frac{1*V_1+3*V+2*V_1}{60}\\n=\frac{1*250+3*500*2*250}{60}\\n=37.5\ revolutions[/tex]

The DVD makes 37.5 revolutions.

Suppose that we have collected a sample of 8 observations with values 12.6, 12.9, 13.4, 12.3, 13.6, 13.5, 12.6, and 13.1. What are the observed sample mean, observed sample variance, and observed sample standard deviation

Answers

Answer:

The sample mean is 13.

The sample variance is 0.2286.

The sample standard deviation is 0.4781.

Step-by-step explanation:

The sample is:

S = {12.6, 12.9, 13.4, 12.3, 13.6, 13.5, 12.6, 13.1}

The sample is of size n = 8.

The formula to compute the sample mean, sample variance and sample standard deviation are:

[tex]\bar x=\frac{1}{n} \sum x[/tex]

[tex]s^{2}=\frac{1}{n}\sum (x-\bar x)^{2} \\s=\sqrt{\frac{1}{n}\sum (x-\bar x)^{2} }\\[/tex]

Compute the sample mean as follows:

[tex]\bar x=\frac{1}{n} \sum x\\=\frac{1}{8}(12.6+ 12.9+ 13.4+ 12.3+ 13.6+ 13.5+ 12.6+ 13.1)\\=\frac{104}{8}\\ =13[/tex]

The sample mean is 13.

Compute the sample variance as follows:

[tex]s^{2}=\frac{1}{n-1}\sum (x-\bar x)^{2} \\=\frac{1}{8-1}[(12.6-13)^{2}+(12.9-13)^{2}+(13.4-13)^{2}+...+(13.1-13)^{2}] \\=\frac{1}{7}\times1.6\\=0.2286[/tex]

The sample variance is 0.2286.

Compute the sample standard deviation as follows:

[tex]s=\sqrt{s^{2}}\\=\sqrt{0.2286}\\=0.4781[/tex]

The sample standard deviation is 0.4781.

Answer:

The sample mean is 13.

The sample variance is 0.2286.

The sample standard deviation is 0.4781.

Step-by-step explanation:

Good luck

A survey is conducted of students enrolled during both the Winter 2013 and Winter 2014 semesters. 12% of students got the flu during Winter 2013. 18% of students came got the flu during Winter 2014. 5% of students got the flu during both years. What is the probability that a randomly selected survey participant didnt?

Answers

Answer:

The probability that a randomly selected survey participant didn't got the flew = 0.75

Step-by-step explanation:

Students got the flu during Winter 2013 = 12 %

Students got the flu during Winter 2014 = 18 %

Students got the flu during both years = 5 %

Students got the flu at least in one year = 12 + 18 - 5 = 25 %

Students didn't got the flew = 100 - 25 = 75 %

⇒ The probability that a randomly selected survey participant didn't got the flew =  [tex]\frac{75}{100}[/tex]

⇒ 0.75

This is the probability that a randomly selected survey participant didn't got the flew.

 

A random sample of 16 students selected from the student body of a large university had an average age of 25 years. We want to determine if the average age of all the students at the university is significantly different from 24. Assume the distribution of the population of ages is normal with a standard deviation of 2 years.At a .05 level of significance, it can be concluded that the mean age is _____. a. significantly less than 25 b. not significantly different from 24 c. significantly less than 24 d. significantly different from 24

Answers

Answer:

Option D) significantly different from 24

Step-by-step explanation:

We are given the following in the question:

Population mean, μ = 24

Sample mean, [tex]\bar{x}[/tex] = 25

Sample size, n = 16

Alpha, α = 0.05

Population standard deviation, σ = 2

First, we design the null and the alternate hypothesis

[tex]H_{0}: \mu = 24\text{ years}\\H_A: \mu \neq 24\text{ years}[/tex]

We use Two-tailed z test to perform this hypothesis.

Formula:

[tex]z_{stat} = \displaystyle\frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}} }[/tex]

Putting all the values, we have

[tex]z_{stat} = \displaystyle\frac{25 - 24}{\frac{2}{\sqrt{16}} } = 2[/tex]

Now, [tex]z_{critical} \text{ at 0.05 level of significance } = \pm 1.96[/tex]

Since,  

The calculated z statistic does not lie in the acceptance region, we fail to accept the null hypothesis and reject it. We accept the alternate hypothesis.

Thus, it can be concluded that the mean age is

Option D) significantly different from 24

You collect 100 samples from a large butterfly population. Fifty specimens are dark brown, 20 are speckled, and 30 are white. Coloration in this species of butterfly is controlled by one gene locus: BB individuals are brown, Bb are speckled, and bb are white. What are the allele frequencies for the coloration gene in this population

Answers

Answer:

Total Allele: 100

BB = 100 ;  Bb = 40 ;  bb = 60

[tex]\rho = 0.6\\\delta = 0.4[/tex]

Step-by-step explanation:

There are two allele in each gene. Since we have 100 samples of butterfly genes, the total number of allele are 100 x 2 = 200.

For each species:

Dark Brown (BB) → 50 x 2 = 100 allele

Speckled (Bb) → 20 x 2 = 40 allele

White (bb) → 30 x 2 = 60 allele

So, if we let [tex]\rho[/tex] be the frequency of the B allele and [tex]\delta[/tex] be the frequency of the b alleles, then:

[tex]\rho = \frac{ ((50 \times 2) + 20)}{200} \\\ \\\rho = \frac{100+20}{200} = \frac{120}{200}\\\\\\rho = 0.6[/tex]

[tex]\delta = \frac{((30 x 2) + 20)}{200}\\\\\delta = \frac{60+20}{200} = \frac{80}{200}\\\\\delta = 0.4[/tex]

We want to get the allele frequencies for the coloration gene in the population of butterflies, we will get:

The frequency for BB (brown) is 50%The frequency for Bb (speckled) is 20%The frequency for bb (white) is 30%

How to get the frequencies?

Assuming that the sample is a good representation of the butterfly population, the frequencies are just given by the quotient between the number of each type of butterflies and the total number of butterflies in the sample, times 100%.

There are 100 butterflies, 50 are dark brown, 20 are speckled, and 30 are white.

The frequency for BB (brown) is:

[tex]F_{BB} = (50/100)*100\% = 50\% [/tex]

The frequency for Bb (speckled) is:

 [tex]F_{Bb} = (20/100)*100\% = 20\%[/tex]

The frequency for bb (white) is:

[tex]F_{bb} = (30/100)*100\% = 30\%[/tex]

If you want to learn more about frequencies, you can read:

https://brainly.com/question/1809498

A developmental psychologist is i nterested in assessing t he "" emotional i ntelligence"" o f co llege s tudents. The e xperimental des ign ca lls f or a dministering a questionnaire that measures emotional intelligence to a sample of 100 undergraduate student volunteers who are enrolled in an introductory psychology course currently b eing t aught at her u niversity. A ssume t his is the only sample being used for this study and discuss the adequacy of the sample

Answers

Answer:

In terms of size it is adequate . Sample isn't randomly selected

Step-by-step explanation:

In order for the sampling ot be adequate the sample size must be large enough which in this case it is. The samples must also be randomly selected. Here, the sample includes students from one course only. In order for the study to represent whole population that is college students, students from other courses must also be included. Junior as well as senior students must also be part of this study.

A plane delivers two types of cargo between two destinations. Each crate of cargo I is 9 cubic feet in volume and 187 pounds in weight, and earns $30 in revenue. Each crate of cargo II is 9 cubic feet in volume and 374 pounds in weight, and earns $45 in revenue. The plane has available at most 540 cubic feet and 14,212 pounds for the crates. Finally, at least twice the number of crates of I as II must be shipped. Find the number of crates of each cargo to ship in order to maximize revenue. Find the maximum revenue. crates of cargo I crates of cargo II maximum revenue $

Answers

Answer:

So maximum when 46 of I grade and 16 of II grade are produced.

Max revenue = 2100

Step-by-step explanation:

Given that a plane delivers two types of cargo between two destinations

                     Crate I                       Crate II

Volume            9                                  9

Weight           187                               374

Revenue         30                                45

Let X be the no of crate I and y that of crate II

Then

[tex]9x+9y\leq 540\\187x+374y\leq 14212\\x\geq 2y[/tex]

Simplify these equations to get

[tex]x+y\leq 60\\x+2y\leq 76\\x\geq 2y[/tex]

Solving we get

[tex]y\leq 16\\x\leq 46 and x\geq 32\\32\leq x\leq 46[/tex]

REvenue = 30x+45y

The feasible region would have corner points as (60,0) or (32,16) or (46,16)

Revenue for (60,0) = 1800

                     (32,16) = 1680

                     (46,16)=2100

So maximum when 46 of I grade and 16 of II grade are produced.

Max revenue = 2100

Final answer:

To maximize revenue, we need to determine the number of crates of each cargo that should be shipped. The problem can be solved using linear programming techniques to find the optimal solution.

Explanation:

To maximize revenue, we need to determine the number of crates of each cargo that should be shipped. Let's assume the number of crates of cargo I is x and the number of crates of cargo II is y.

Based on the given information, the constraints for the problem are:

Volume constraint: 9x + 9y ≤ 540Weight constraint: 187x + 374y ≤ 14,212Relationship constraint: x ≥ 2y

To find the maximum revenue, we need to maximize the objective function: Revenue = 30x + 45y.

The problem can be solved using linear programming techniques, such as graphical or simplex method, to find the optimal solution. However, since these methods require plotting and iterations, the detailed calculations are beyond the scope of this response. The optimal solution will provide the values of x and y, which can be used to determine the maximum revenue.

Learn more about Optimizing revenue for cargo shipment here:

https://brainly.com/question/34408399

#SPJ3

You bike
2
miles
miles the first day of your​ training,

2.5 miles the second​ day,

3.5 miles the third​ day, and

5.5 miles the fourth day. If you continue this​ pattern, how many miles do you bike the seventh​ day?

Answers

Answer:

7.9

Step-by-step explanation:

Which of the following meets the requirements of a stratified random sample? Multiple Choice A population contains 10 members under the age of 25 and 20 members over the age of 25. The sample will include six people who volunteer for the sample. A population contains 10 members under the age of 25 and 20 members over the age of 25. The sample will include six people chosen at random, without regard to age. A population contains 10 members under the age of 25 and 20 members over the age of 25. The sample will include six males chosen at random, without regard to age. A population contains 10 members under the age of 25 and 20 members over the age of 25. The sample will include two people chosen at random under the age of 25 and four people chosen at random over 25.

Answers

Answer:

Correct option is D.

Step-by-step explanation:

Random sampling implies the selection of of values or individuals in a random pattern.

A stratified random sampling is a sampling method where:

First divide the entire population into homogeneous subgroups, known as strata.Then take a random sample form each of the strata such that the sample size is proportional to the size of the strata.

In this case the it is provided that the population consists of 30 members, 10 under the age of 25 and 20 over the age of 25.

So the stratas are:

10 members under the age of 25.20 members over the age of 25.

Now to a random sample of size 2 is selected from strata 1 and a random sample of size 4 is selected from strata 2.

This forms a stratified random sample.

Correct option is:

A population contains 10 members under the age of 25 and 20 members over the age of 25. The sample will include two people chosen at random under the age of 25 and four people chosen at random over 25.

Final answer:

The correct choice for a stratified random sample is selecting two people randomly under the age of 25 and four people randomly over 25, as it ensures that the sample is proportional and representative of the two age groups within the population.

Explanation:

To determine which option meets the requirements of a stratified random sample, let's first define it. A stratified random sample divides the population into separate groups, known as strata, and a random sample is taken from each group. The key point here is that the sample from each stratum is proportional to the size of the stratum within the whole population, ensuring the sample is representative.

Given the multiple-choice options provided:

Sampling based on volunteers is a convenience sample, not stratified.Choosing people at random without regard to age is simple random sampling.Selecting only males is not stratified, as it does not account for another relevant characteristic, such as age.Selecting two people randomly under the age of 25 and four people randomly over 25 is the correct choice, as it ensures the sample is representative of the two age groups within the population.

This type of sampling accounts for the different proportions of the sub-groups (under and over 25) in the population, which is a key aspect of stratified sampling.

According to one theory of learning, the number of items, w(t), that a person can learn after t hours of instruction is given by: w(t) = 15 3 t2, 0 ≤ t ≤ 64 Find the rate of learning at the end of eight hours of instruction.

Answers

Answer:

The rate of study is 5 items per hour.

Step-by-step explanation:

Number of items a person can learn after t hours of instruction, w(t) is given by:

[tex]w(t)=15\sqrt[3]{t^{2}}[/tex]

We want to determine the rate of learning at any time t. The rate is the derivative of w(t) with respect to time.

[tex]\frac{dw(t)}{dt} =\frac{d}{dt} 15\sqrt[3]{t^{2}}[/tex]

[tex]\frac{dw(t)}{dt} =15\frac{d}{dt} {t^{2/3}}[/tex]

[tex]\frac{dw(t)}{dt} =15X\frac{2}{3} {t^{2/3-1}}[/tex]

[tex]\frac{dw(t)}{dt} =10 {t^{-\frac{1}{3} }}=\frac{10}{t^\frac{1}{3}}[/tex]

Therefore, the rate of learning at any time t

[tex]\frac{dw(t)}{dt} =\frac{10}{t^\frac{1}{3}}[/tex]

At the end of 8 hours, t=8

[tex]\frac{dw(t)}{dt} =\frac{10}{8^\frac{1}{3}}[/tex]

[tex]\frac{dw(t)}{dt} =\frac{10}{2}[/tex]=5

The rate of study is 5 items per hour.

For its first year of operations, Marcus Corporation reported pretax accounting income of $274,800. However, because of a temporary difference in the amount of $19,200 relating to depreciation, taxable income is only $255,600. The tax rate is 39%. What amount should Marcus report as its deferred income tax liability in its balance sheet at the end of that year

Answers

Answer:

Please find attached file for complete answer solution and explanation of same question

Step-by-step explanation:

Answer:

$374,484

Step-by-step explanation:

Amount payable as income tax = 0.39 X $255,600 = $99,684

The amount Marcus receives if he deferred income tax that year = $(274,800 + 99,684) = $374,484

A group of students bakes 100 cookies to sell at the school bake sale. The students want to ensure that the price of each cookie offsets the cost of the ingredients. If all the cookies are sold for $0.10 each, the net result will be a loss of $4. If all the cookies are sold for $0.50 each. The students will make a $36 profit. First, write the linear function p(x) that represents the net profit from selling all the cookies, where x is the price of each cookie. Then, determine how much profit the students will make if they sell the coolies for $0.60 each. Explain. Tell how your answer is reasonable.

Answers

Answer:

(a) [tex]p=100x-14[/tex]

(b) [tex]p=\$46[/tex]

Step-by-step explanation:

Linear Modeling

It consists of finding an equation of a line that fits the conditions of a certain situation in real life. We'll use a linear model for the cookies of the students.

(a) We know that we have a total of n=100 cookies. If sold for $0.10 each, they lose $4. We have an initial condition (x,p) = (0.10,-4), where x is the price of each cookie and p(x) is the net profit from selling all the cookies. The second conditions are that when then the price is $0.50 each, there is a positive profit of $36, which is a second point (0.5,36). That is enough to build the linear function, that can be found by

[tex]\displaystyle p-p_1=\frac{p_2-p_1}{x_2-x_1}(x-x_1)[/tex]

[tex]\displaystyle p+4=\frac{36+4}{0.5-0.1}(x-0.1)[/tex]

Reducing

[tex]p=100x-14[/tex]

(b) If the students sell the cookies for x=0.60 each, the profit will be

[tex]p=100(0.6)-14=46[/tex]

[tex]p=\$46[/tex]

It's a reasonable answer because we have found that increasing the price, the profit will increase also. The model doesn't have any restriction for the price

Other Questions
how do u find the value for y 6/8=y/16 Use the drop-down menus to complete each statement to describe the relationship between the number of yards and the number of feet. Suppose that you sell short 250 shares of Xtel, currently selling for $70 per share, and give your broker $10,000 to establish your margin account. a. If you earn no interest on the funds in your margin account, what will be your rate of return after one year if Xtel stock is selling at: (i) $78; (ii) $70; (iii) $64? Assume that Xtel pays no dividends. (Leave no cells blank - be certain to enter "0" wherever required. Negative values should be indicated by a minus sign. Round your answers to 2 decimal places.) TUVW is a rectangle. Find the value of x and the length of each diagonal ifTV = 2x -4 and UW = x + 10.-- *show your work please & giving brainliest to correct answer* What is the quotient of -10 and -5? The geopolitical setting of which countries can be explained by its membership in the warsaw pact during the cold war and its location along the european shatterbelt? Researchers from Ryerson University in Toronto categorized social media users into passive or active information seekers and passive or active participants. Which of the following is not one of the four segments that were identified?a. Minimalists.b. Observers.c. Information Seekers.d. Socializers.e. Mavens. Which of the following is an example of a difference between Northern andSouthern culture? What is the oscillation period of your eardrum when you are listening to the A4 note on a piano (frequency 440 Hz)? The reaction for the decomposition of ammonia can be written as shown below. If a student starts with 21.7 g of ammonia how many grams of hydrogen gas will be produced by the reactions?Why 2NH3 = N2 + 3H2A. 1.28g B. 2.55gC. 3.85gD. 32.5g russias suffering during the conflict cause a revolution in which _____ became the basis for the new government A manager has decided to improve the physical work environment in his office to ensure that incumbents have fewer physical ailments. Which job design approach would be most helpful to him? a. Mechanistic approach b. Biological approach C. Motivational approach d. Perceptual-motor approach Nita is the office manager at a service station. Two applicants, Max and Tim, arrive to interview for the open mechanic's position. Max's clothes are dirty, his hair is unwashed, and he doesn't make eye contact when he gives Nita his name. Tim dresses in clean jeans and a nice shirt, is shaved, and shakes Nita's hand when he introduces himself. After the interview, Keith the head mechanic, asks Nita what she thought. Both men have the skill set needed for the position. Nita recommends Tim. She is responding to her perception of:______.A) the perceiverB) the targetC) her cultureD) diversity Which of the following isNOT a type of particle thatis found in the nucleus ofan atom?A. electronB. protonC. neutron Gene is given a questionnaire that has statements like these printed on it: "I take a positive view of myself" and "I feel that I have a number of good qualities." He is asked to indicate how much he agrees with these kinds of statements. This questionnaire is meant to measure Gene's?A) self-consciousness.B) identity cues.C) self-esteem.D) self-discrepancies. What is one reason the world is becoming increasingly urban as people move to large cities?A. Farmland is becoming scarce and expensive.B. Natural disasters force people to leave rural areas.C. Governments provide free housing in cities.D.There are more jobs in large cities.Whats the answer? which changes can reach dynamic equilibriumA- nuclear onlyB- chemical onlyC- nuclear and physicalD - chemical and physical 2 PointsWhich of these is a cultural service - a nonmaterial benefit people get fromthe environment?OA. Providing national parksOB. Pollinating plantsOC. Providing building materialsOD. Recycling nutrientsSUBMIT The Palmer Acres Inn is trying to determine its break-even point during its off-peak season. The inn has 50 rooms that it rents at exist75 a night. Operating costs are as follows: Salaries exist5, 400 per month Utilities exist1, 100 per month Depreciation exist1, 100 per month Maintenance exist5, 150 per month Maid service exist15 per room Other costs exist30 per room Determine the inn's break-even point in number of rented rooms per month. Break-even point _________ rooms Determine the inn's break-even point in dollars. Break-even point exist __________ Luis knows that there are 16 cups in one gallon. How many cups will it take Luis to fill a 6 1/2 gallon bucket?