A sailor drops a wrench from the top of a sailboat's vertical mast while the boat is moving rapidly and steadily straight forward. Where will the wrench hit the deck?

(A) ahead of the base of the mast
(B) at the base of the mast
(C)behind the base of the mast
(D)on the windward side of the base of the mast
(E)None of the above choices

Answers

Answer 1

Answer:

B

Explanation:

The sailor, the boat and the wrench are all moving at he same constant rate, so the wrench will appear to fall straight down. This due to that fact there is no relative motion among them and all are at rest w.r.t to one another. Hence the correct answer would be B.

Answer 2

The correct option is (B). The wrench will fall straight down relative to the moving boat and will land directly at the base of the mast.

To determine where the wrench will hit the deck, let's analyze the motion of the wrench.

1. Horizontal Motion:

When the wrench is dropped from the top of the mast, it has the same horizontal velocity as the sailboat. This is because, in the absence of air resistance and assuming no external horizontal forces act on the wrench, it retains the horizontal component of its velocity that it had while it was still in the sailor's hand. Therefore, as the wrench falls, it will continue to move forward with the same horizontal velocity as the boat.

2. Vertical Motion*: The wrench will accelerate downwards due to gravity.

Since the wrench maintains its horizontal velocity and is only influenced vertically by gravity, it will fall straight down from the perspective of someone moving with the boat. From the perspective of an observer on the boat, the wrench will fall directly downwards.


Related Questions

An object is thrown upwards with a speed of 14 m/s. How long does it take to reach a height of 5.0 m above the projection point while descending?

Answers

Answer:

2.43 s

Explanation:

Using newton's equation of motion.

T = (v-u)/g

Where T = time taken for the object to return to the point of projection , u = initial velocity, v = final velocity, g = acceleration due to gravity.

Given: v =-14 m/s, u = 14 m/s, g = -9.8 m/s²

T = (-14-14)/-9.81

T = 2.85 s

Note: We look for the object's speed at 5.0 m.

using

v² = u²+2gs.................................... Equation 1

Where v = final velocity, u = initial velocity, g = acceleration due to gravity, s = distance.

Given:  u = 14 m/s, g = -9.81 m/s², s = 5.0 m

Substitute into equation 1

v² = 14²+(-9.81×5×2)

v² = 196-98.1

v = √97.9

v = 9.89

We look for the time taken for the velocity to decrease from 14 m/s to 9.89 m/s.

using

v = u+gt

t =(v-u)/g........................... Equation 2

Where t = time taken for the object to decrease it velocity from 14 m/s to 9.89 m/s

Given: v = 9.89 m/s, u =14 m/s g = -9.81 m/s²

t = (14-9.89)/-9.81

t = -4.11/-9.81

t = 0.42 s

Thus,

Time taken to reach 5.0 m above projection point = T-t

=2.85-0.42

2.43 s

It takes approximately 1.03 seconds for the object to reach a height of 5.0 m above the projection point while descending.

The time it takes for an object to reach a certain height when thrown upwards can be determined using equations of projectile motion.

In this case, with an initial speed of 14 m/s and a height of 5.0 m, we can use the equation :

[tex]$$y = y_0 + v_{oy}t - \frac{1}{2}gt^2$$[/tex]

Substituting the known values, we get:

[tex]$$5.0 = 0 + 14t - \frac{1}{2}(9.8)t^2$$[/tex]

By rearranging the equation and solving it,

we find that it takes approximately 1.03 seconds for the object to reach a height of 5.0 m above the projection point while descending.

Learn more about Projectile Motion here:

https://brainly.com/question/20627626

#SPJ3

Light illuminating a pair of slits contains two wavelengths, 600 nm and an unknown wavelength. The 10th bright fringe of the unknown wavelength overlaps the 9th bright fringe of the 600 nm light.
1. What is the unknown wavelength?

Answers

Answer:

unknown wavelength is 540 nm

Explanation:

given data

wavelengths =  600 nm

10th bright fringe overlap = 9th bright fringe of 600 nm

to find out

unknown wavelength

solution

we get  here first nth bright fringe from the central maximum at distance y

y = n ×[tex]\frac{\lambda D }{d}[/tex]   ...............1

and we have given 10th bright fringe overlap = 9th bright fringe of 600 nm

so here

10 × [tex]\frac{\lambda D }{d}[/tex] = 9 × 600 × [tex]\frac{D}{d}[/tex]    

solve it we get [tex]\lambda[/tex]

[tex]\lambda[/tex] = 9 × [tex]\frac{600}{10}[/tex]

[tex]\lambda[/tex] = 540 nm

so unknown wavelength is 540 nm

The unknown wavelength is equal to 540 nanometers.

Let the unknown wavelength be W.

Given the following data:

Wavelength = 600 nm

To determine the unknown wavelength:

At the maximum distance, the nth bright fringe is given by the formula:

[tex]Y = \frac{n\lambda D}{d}[/tex]

From the question, we were told that the 10th bright fringe of the unknown wavelength overlaps the 9th bright fringe of the 600 nm light.

Mathematically, this can be expressed as follows:

[tex]Y_{10} = Y_9\\\\\frac{10WD}{d} =\frac{9\times 600D}{d} \\\\10W=5400\\\\W=\frac{5400}{10}[/tex]

W = 540 nanometers.

Read more: https://brainly.com/question/8898885

If you double the radius, for a fixed angular velocity, the tangential velocity will:a. Decrease by halfb. Stay the samec. Increase by a factor of twod. Increase by a factor of four

Answers

Answer:

C. Increase by a factor of two.

Explanation:

Lets take angular speed = [tex]\omega \ rad/s[/tex]

Initially radius = r m

The tangential velocity = v m/s

We know that

[tex]v=\omega r[/tex]

If the radius becomes double ,lets say r'

r'= 2 r

Then

The tangential velocity = v' m/s

[tex]v'=\omega r'[/tex]

[tex]v'=\omega (2r)[/tex]

[tex]v'=2\omega r[/tex]

v' = 2 v

Then we can say that velocity will become double.

Therefore the answer will be C.

C. Increase by a factor of two.

Final answer:

Doubling the radius while maintaining a fixed angular velocity results in the tangential velocity increasing by a factor of two.

Explanation:

When the radius of an object is doubled while keeping the angular velocity constant, the tangential velocity will increase by a factor of two. This is because the tangential velocity (v) is calculated by multiplying the angular velocity (
ω) by the radius (r) of the circle, resulting in v = r x
ω. Therefore, if we double the radius (2r), the new tangential velocity becomes 2r x
ω, which is twice the original tangential velocity.

For a constant angular velocity, the relationship between tangential velocity and radius is direct; as one increases, so does the other. So, if you double the radius, the tangential velocity also doubles, not decreases. This explains why the correct answer to the student's question is c. Increase by a factor of two.

Dan is gliding on his skateboard at 4.00m/s . He suddenly jumps backward off the skateboard, kicking the skateboard forward at 6.00m/s . Dan's mass is 60.0kg and the skateboard's mass is 7.00kg .

How fast is Dan going as his feet hit the ground?

Answers

To solve this problem we will apply the concepts related to the conservation of the Momentum. For this purpose we will define the momentum as the product between mass and velocity, and by conservation the initial momentum will be equal to the final momentum. Mathematically this is,

[tex]m_1u_1+m_2u_2 = m_1v_1+m_2v_2[/tex]

Here,

[tex]m_{1,2}[/tex] = Mass of Dan and Skateboard respectively

[tex]u_{1,2}[/tex] = Initial velocity of Dan and Skateboard respectively

[tex]v_{1,2}[/tex] = Final velocity of Dan and Skateboard respectively

Our values are:

Dan's mass

[tex]m_1 = 60kg[/tex]

Mass of the skateboard

[tex]m_2 = 7.0kg[/tex]

Both have the same initial velocity, then

[tex]u_1= u_2 = 4m/s[/tex]

Final velocity of Skateboard is

[tex]v_2 = 6m/s[/tex]

Rearranging to find the final velocity of Dan we have then,

[tex]m_1u_1+m_2u_2 = m_1v_1+m_2v_2[/tex]

[tex]m_1v_1+m_2v_2 = (m_1+m_2)u_1[/tex]

[tex]v_1 = \frac{ (m_1+m_2)u_1 -m_2v_2}{m_1}[/tex]

Replacing,

[tex]v_1 = \frac{(60+7)(4)-(7)(6)}{60}[/tex]

[tex]v_1 = 3.76m/s[/tex]

Therefore Dan will touch the ground at a speed of 3.76m/s

A golf ball is hit with an angle of elevation 30∘ and speed 20????????/????. Find the horizontal and vertical components of the velocity vector.

Answers

Final answer:

The horizontal and vertical components of the velocity vector for the golf ball hit with an angle of elevation of 30° and speed of 20 m/s are determined to be 17.32 m/s and 10 m/s, respectively.

Explanation:

Velocity Vector Components

The components of the velocity vector, which are horizontal and vertical, are calculated by multiplying the speed of the object by cos(θ) for the horizontal component and sin(θ) for the vertical component, where θ is the angle of elevation.

Given that the angle of elevation is 30 degrees and the speed is 20 m/s, we can use these equations to find:

Horizontal Component: Vx = speed * cos(θ) = 20 * cos(30) = 17.32 m/sVertical Component: Vy = speed * sin(θ) = 20 * sin(30) = 10 m/s

Learn more about Velocity Vector Components here:

https://brainly.com/question/37190332

#SPJ3

The electric force is exerted by a 40-nC charged particle located at the origin of a Cartesian coordinate system on a 15-nC charged particle located at (2.0 m, 2.0 m ).
Determine the direction of the force.
a. ?y direction
b. +x direction
c. ?x direction
d. 45? clockwise from the +x axis.
e. 45? counterclockwise from the +x axis.
f. +y direction

Answers

Answer:

Explanation:

Check the attachment for solution

The direction of the electric force is exerted by a 40-nC charged particle located at the origin of a cartesian coordinate system on a 15-nC charged particle located at (2.0 m, 2.0 m ) is  45° counterclockwise from the +x axis.

What is electric force?

Electric force is the attracting or repulsive interaction between any two charged things. Similar to any force, Newton's laws of motion describe how it affects the target body and how it does so. One of the many forces that affect objects is the electric force.

The given two charges are: 40 nC and 15 nC. As both of them are positive, the electric force is repulsive in nature.

15-nC charged particle located at (2.0 m, 2.0 m ).

So, the direction of repulsive force = tan⁻¹(2.0/2.0) = 45⁰.

Hence, The direction of the electric force is   45° counterclockwise from the +x axis. Option (e) is correct.

Learn more about electric force here:

https://brainly.com/question/2526815

#SPJ2

A basketball has a mass of 567 g. Heading straight downward, in the direction, it hits the floor with a speed of 2 m/s and rebounds straight up with nearly the same speed. What was the momentum change ?

Answers

Final answer:

The change in momentum of the basketball after impacting the floor and rebounding at the same speed is 2.268 kg·m/s upward.

Explanation:

You asked what the momentum change was when a basketball with a mass of 567 g hits the floor at a speed of 2 m/s and rebounds at nearly the same speed. To find the change in momentum, we need to consider the initial and final momentums of the basketball. The momentum of an object is given by the product of its mass and velocity. Given the initial velocity (vi) is 2 m/s downward and the final velocity (vf) is 2 m/s upward, and the direction is important in momentum calculations.

Momentum before impact = mass × velocity = 0.567 kg × (-2 m/s) = -1.134 kg·m/s (negative sign indicates downward direction)
Momentum after impact = mass × velocity = 0.567 kg × (2 m/s) = 1.134 kg·m/s (positive sign indicates upward direction)

To find the momentum change, Δp, we subtract the initial momentum from the final momentum:

Δp = pf - pi = 1.134 kg·m/s - (-1.134 kg·m/s) = 1.134 kg·m/s + 1.134 kg·m/s = 2.268 kg·m/s.

Therefore, the momentum change is 2.268 kg·m/s in the upward direction.

If you punched thousands of holes in the aluminum foil of the scope (so there were more "holes" than "foil"), how many imageswould you see in the viewer?

Answers

The correct answer is  (a.) thousands of small images. Each hole in the aluminum foil acts as a tiny pinhole camera, allowing light to pass through and create an image on the other side. Since there are numerous holes, each one forms a separate image, resulting in a multitude of small, overlapping pictures. This phenomenon is known as a pinhole array or pinhole sieve.

If you punched thousands of holes in the aluminum foil of the scope (so there were more “holes” than “foil”), the resulting images in the viewer would be thousands of small images. Each hole acts as a pinhole camera, allowing light to pass through and create an image on the other side. Since there are numerous holes, each one would form a separate image, resulting in a multitude of small, overlapping pictures. This phenomenon is known as a pinhole array or pinhole sieve.

complete question;

If you punched thousands of holes in the aluminum foil of the scope (so there were more "holes" than "foil"), how many images would you see in the viewer?

Choices are:

a. thousands of small images

b. a few bright images

c. one large blurry image

d. no images at all, the light waves would cancel

A bottle with a volume of 193 U. S. fluid gallons is filled at the rate of 1.9 g/min. (Water has a density of 1000 kg/m3, and 1 U.S. fluid gallon = 231 in.3.) How long does the filling take?

Answers

Answer:

0.732 years

Explanation:

We are given that

Volume of fluid filled in bottle=193 U.S

1 U.S fluid  gallon=231 cubic inch

193 U.S gallon=[tex]231\times 193=44583in^3[/tex]

[tex]1 in^3=1.63871\times 10^{-5}m^3[/tex]

[tex]44583in^3=44583\times 1.63871\times 10^{-5}=0.731m^3[/tex]

Density of water=[tex]1000kg/m^3[/tex]

Mass=[tex]Volume\times density[/tex]

Using the formula

Mass=[tex]0.731\times 1000=731kg[/tex]

1kg =1000g

[tex]731kg=731\times 1000=731\times 10^3g[/tex]

By using [tex]1000=10^3[/tex]

1.9 g of fluid takes time to fill in the bottle=1 min

1 g of fluid takes time to fill in the bottle=[tex]\frac{1}{1.9}min[/tex]

[tex]731\times 10^3[/tex]g of fluid takes time to fill in the bottle=[tex]\frac{1}{1.9}\times 731\times 10^3[/tex]min

Time=[tex]384.7\times 10^3[/tex]min

[tex]1min=\frac{1}{60\times 24\times 365}[/tex]years

Time=[tex]384.7\times 10^3\times \frac{1}{60\times 24\times 365}years[/tex]

Time =0.732 years

Hence, it takes to filling the 193 U.S fluid gallons in bottle=0.732 years

You were driving a car with velocity <19, 0, 23> m/s. You quickly turned and braked, and your velocity became <14, 0, 26> m/s. The mass of the car was 1300 kg. (a) What was the (vector) change in momentum during this maneuver? Pay attention to signs. < -6500 , 0 , 3900 > kg·m/s (b) What was the (vector) impulse applied to the car?

Answers

Answer:

a.<-6500,0,3900>kgm/s

b.<-6500,0,3900>kgm/s

Explanation:

We are given that

Initial velocity of car,u=[tex]<19,0,23>[/tex]m/s

Final velocity of car=[tex]v=<14,0,26>m/s[/tex]

Mass of the car=m=1300 kg

a.We have to find the change in momentum during this manuver.

Change in momentum=[tex]\Delta P=m(v-u)[/tex]

Using the formula

[tex]\Delta P=1300(<14,0,26>-<19,0,23>)=1300(<-5,0,3>)=<-6500,0,3900>kgm/s[/tex]

Hence, the change in momentum during this maneuver=<-6500,0,3900>kgm/s

b.Impulse =Change in momentum of car

Impulse applied to the car=<-6500,0,3900>kgm/s

A boat is able to move throught still water at 20m/s. It makes a round trip to a town 3.0km upstrea. If the river flows at 5m/s, the time required for this round trip is

Answers

Answer:

t=320s

Explanation:

Given Data

Boat speed=20 m/s

River flows=5 m/s

Total trip of distance d=3.0km = 3000m

To find

Total time taken

Solution

As

[tex]Velocity=distance/time\\time=distance/velocity\\[/tex]

Here we have two conditions

First when boat moves upward and the river pushing back.then velocity is given as

velocity=20m/s-5m/s

velocity=15 m/s

Time for that velocity

[tex]t_{1} =distance/velocity\\t_{1}=\frac{3000m}{15m/s}\\ t_{1}=200s[/tex]

Now for second condition when river flows and boat speed on same direction

velocity=20m/s+5m/s

velocity=25 m/s

Time taken for that velocity

[tex]t_{2}=distance/velocity\\t_{2}=\frac{3000m}{25m/s}\\ t_{2}=120m/s[/tex]

Now the total time

[tex]t=t_{1}+t_{2}\\t=(200+120)s\\t=320s[/tex]

A 5.60 g bullet moving at 501.8 m/s penetrates a tree trunk to a depth of 4.59 cm. a) Use work and energy considerations to find the magnitude of the force that stops the bullet. Answer in units of N

Answers

Answer:

Explanation:

Given

mass of bullet [tex]m=5.6\ gm[/tex]

velocity of bullet [tex]v=501.8\ m/s[/tex]

Depth of penetration [tex]d=4.59\ cm[/tex]

According to the work energy theorem work done by all the force will be equal to change in kinetic energy of Particle

Suppose F is the force which is opposing the bullet motion

change in kinetic Energy [tex]\Delta K=\frac{1}{2}mv^2-0[/tex]

[tex]\Delta K=\frac{1}{2}mv^2=\frac{1}{2}\times 5.6\times 10^{-3}\times (501.8)^2[/tex]

[tex]\Delta K=705.049\ J[/tex]

[tex]\Delta K=F\cdot d[/tex]

[tex]F=\frac{\Delta K}{d}[/tex]

[tex]F=\frac{705.049}{4.59\times 10^{-2}}[/tex]

[tex]F=15,360.54\ N[/tex]

[tex]F=1.536\times 10^4\ N[/tex]                      

A cylindrical shell of length 220 m and radius 4 cm carries a uniform surface charge density of σ = 14 nC/m^2.
1. What is the total charge on the shell?

Answers

Answer:

Explanation:

Given

Length of shell [tex]L=220\ m[/tex]

radius of cylindrical shell [tex]r=4\ cm[/tex]

surface charge density [tex]\sigma =14\ nC/m^2[/tex]

Total charge on the shell [tex]Q=surface\ area\times surface\ charge\ density[/tex]

surface area [tex]A=2\pi r\cdot L=2\pi \cdot 0.04\cdot 220=55.299\ m^2[/tex]

[tex]Q=\sigma \cdor A[/tex]

[tex]Q=14\times 10^{-9}\times 55.299[/tex]

[tex]Q=7.741\times 10^{-7}\ C[/tex]

Two plastic spheres each with radius 1.30 cm and mass 9.75 g, have uniform charge densities of 0.100 C/m^3 and -0.100 C/m^3, respectively. The spheres are released from rest when their centers are 80.0 cm apart. What is the speed of each sphere at the moment they collide? Ignore polarization of the spheres.

Answers

To develop this problem we will proceed to use the principle of energy conservation. For this purpose we will have that the change in the electric potential energy and kinetic energy at the beginning must be equal at the end. Our values are given as shown below:

[tex]m = 9.75g = 0.00975kg[/tex]

[tex]r = 1.3cm = 0.013m[/tex]

[tex]q_1 = 0.1 C/m^3 * \frac{4}{3} \pi r^3[/tex]

[tex]q_1 = 9.2*10^{-7}C[/tex]

[tex]q_2 = -9.2*10^{-7}C[/tex]

Applying energy conservation equations

[tex]U_1+K_1 = U_2+K_2[/tex]

[tex]\frac{k q_1q_2}{d} +0 = \frac{kq_1q_2}{2r}+ \frac{1}{2} (2m)v^2[/tex]

Replacing,

[tex]9*10^{9} (9.2*10^{-7})^2(\frac{1}{0.026}-\frac{1}{0.8}) = v^2[/tex]

Solving for v,

[tex]v = 9.2*10^{-7} (\frac{9*10^9}{0.00975}(\frac{1}{0.026}-\frac{1}{0.8}))^{1/2}[/tex]

[tex]v = 5.4 m/s[/tex]

Therefore the speed of each sphere at the moment they collide is 5.4m/s

An object has a mass of 20 kg. Determine its weight, in N, at a location where the acceleration of gravity is 9.78 m/s2.

Answers

Answer:

Weight of the object will be 195.6 N

Explanation:

We have given mass of the object m = 20 kg

And acceleration due to gravity at any location is given [tex]g=9.78m/sec^2[/tex]

We have to find the weight of the object in N at the location where value of acceleration due to gravity is [tex]g=9.78m/sec^2[/tex]

Weight of the object is given by W = mg , here W is weight , m is mass and g is acceleration due to gravity

So weight W = 20×9.78 = 195.6 N

So weight of the object will be 195.6 N

Final answer:

The weight of an object is calculated by multiplying its mass with the acceleration due to gravity. Given a mass of 20 kg and gravitational acceleration of 9.78 m/s2, the weight of the object is 195.6 N.

Explanation:

The subject of this question is Physics, specifically dealing with the concept of weight, which is a force. The weight of an object can be calculated by multiplying its mass by the acceleration due to gravity. Given in this problem, the object's mass is 20 kg and the place's gravitational acceleration is 9.78 m/s2.

To find the object's weight, we use the formula: Weight = mass x gravity. Applying the values, we get: Weight = 20 kg x 9.78 m/s2 = 195.6 N.

Therefore, the weight of the object at the given location is 195.6 Newtons.

Learn more about Weight Calculation here:

https://brainly.com/question/31409659

#SPJ3

A charged sphere with 1 × 10 8 units of negative charge is brought near a neutral metal rod. The half of the rod closer to the sphere has a surplus charge of 4 × 10 4 units. What is the charge on the half of the rod farther from the sphere? 0 − 1 × 10 8 1 × 10 8 − 4 × 10 4 4 × 10 4

Answers

Final answer:

The charge on the half of the rod farther from the sphere brought near to it, which had initially a neutral charge, is -4×104 units. This is due to a process known as charging by induction.

Explanation:

The charge on the half of the rod farther from the sphere is -4×104 units. This occurs due to a process called charging by induction. Basically, when a charged object is brought near to an initially neutral conductor, it polarizes the conductor. Negative charges are attracted towards the charged sphere, leaving the far side of the rod positively charged.

However, the problem statement tells us that there is a surplus of charge on the closer half of the rod, hence the further half must have a deficiency of charge by the same amount, resulting in -4×104 units of charge. Remember, in a neutral object, the total charge is zero. Thus, if we develop a surplus (+4×104) on one side, we must have an equal amount of deficit (-4×104) on the other side to maintain the total charge at zero.

Learn more about Charging by induction here:

https://brainly.com/question/10254645

#SPJ12

How much time elapses from when the first bit starts to be created until the conversion back to analog begins

Answers

The question is not complete. Kindly find the complete question below:

Host A converts analog to digital at a = 58 Kbps  Link transmission rate R = 1.9 Mbps  Host A groups data into packets of length L = 112 bytes  Distance to travel d = 931.9 km  Propagation speed s = 2.5 x 108 m/s  Host A sends each packet to Host B as soon as it gathers a whole packet.  Host B converts back from digital to analog as soon as it receives a whole packet.  How much time elapses from when the first bit starts to be created until the conversion back to analog begins? Give answer in milliseconds (ms) to two decimal places, normal rounding, without units (e.g. 1.5623 ms would be entered as "1.56" without the quotes)

Answer / Explanation

The answer is 19.65

A 19.2 kg person climbs up a uniform ladder
with negligible mass. The upper end of the
ladder rests on a frictionless wall. The bottom
of the ladder rests on a floor with a rough
surface where the coefficient of static friction
is 0.1 . The angle between the horizontal and
the ladder is θ . The person wants to climb
up the ladder a distance of 0.49 m along the
ladder from the ladder’s foot.
What is the minimum angle θmin (between
the horizontal and the ladder) so that the
person can reach a distance of 0.49 m without
having the ladder slip? The acceleration of
gravity is 9.8 m/s^2
Answer in units of ◦

Answers

Answer:

63°

Explanation:

Draw a free body diagram of the ladder.  There are 4 forces:

Normal force N pushing up at the base of the ladder.

Friction force Nμ pushing right at the base of the ladder.

Weight force mg pushing down a distance x up the ladder.

Reaction force R pushing left at the top of the ladder.

Sum of forces in the x direction:

∑Fₓ = ma

Nμ − R = 0

R = Nμ

Sum of forces in the y direction:

∑Fᵧ = ma

N − mg = 0

N = mg

Sum of moments about the base of the ladder:

∑τ = Iα

R (L sin θ) − mg (x cos θ) = 0

R (L sin θ) = mg (x cos θ)

Substituting:

Nμ (L sin θ) = mg (x cos θ)

mgμ (L sin θ) = mg (x cos θ)

μ (L sin θ) = x cos θ

tan θ = x / (μL)

θ = atan(x / (μL))

Given x = 0.49 m, μ = 0.1, and L = 2.5 m:

θ = atan(0.49 m / (0.1 × 2.5 m))

θ ≈ 63°

To solve the problem we will first calculate the reaction and the normal force.

The angle of the ladder should be 63°.

Given to us

Distance the person wants to travel, x = 0.49 m,the coefficient of static friction, μ = 0.1, Length of the ladder, L = 2.5 m:

Free Body DiagramThere are 4 forcesReaction force R pushing left at the top of the ladder,Normal force N pushes up the ladder at the base of the ladder,Friction force Nμ pushing right at the base of the ladder,Weight force of the person pushing down = mg,

Sum of Vertical vector forces,

[tex]\sum F_y = 0\\N - mg = 0\\N = mg[/tex]

Sum of Horizontal vectors forces,

[tex]\sum F_x = 0\\N\mu - R = 0\\R = N\mu[/tex]

Sum of moments at the base of the ladder

[tex]R (L\ sin\theta) - mg (x\ cos\theta) = 0\\R (L\ sin\theta) = mg (x\ cos\theta)[/tex]

Substituting the values of R and N,

[tex]N\mu (L\ sin \theta) = mg (x\ cos \theta)\\mg\mu (L\ sin \theta) = mg (x\ cos\theta)\\\mu (L\ sin \theta) = x\ cos \theta\\tan \theta = \dfrac{x}{\mu L}\\\theta = tan^{-1}( \dfrac{x}{\mu L})[/tex]

Substituting the values,

[tex]\theta = tan^{-1}(\dfrac{0.49\ m}{0.1\times 2.5 m})\\\\\theta = tan^{-1} (0.96)\\\\\theta = 62.969^o \approx 63^o[/tex]

Hence, the angle of the ladder should be 63°.

Learn more about Friction:

https://brainly.com/question/13357196

You are hiking in the mountains and find a shiny gold nugget. It might be the element gold, or it might be "fool's gold ," which is a nickname for iron pyrite,
FeS2
Which of the following physical properties do you think would help determine if the shiny nugget is really gold?

a. appearance,
b. melting point,
c.. density, or
d. physical state

Answers

Final answer:

Option C.) To determine if the nugget is gold, you can consider its density, melting point, and appearance.

Explanation:

To determine if the shiny nugget is really gold, one physical property that would be helpful is its density. Gold has a high density of approximately 19 g/cm³, which means it is much denser than most other minerals. Another physical property that could be useful is its melting point. Gold has a relatively low melting point of 1,064 degrees Celsius, while iron pyrite has a much higher melting point. Lastly, the appearance of the nugget can also provide some clues. Gold has a distinctive yellow color, while fool's gold (iron pyrite) has a brassy or pale yellow color.

A mass m at the end of a spring oscillates with a frequency of 0.83 Hz.When an additional 730 gmass is added to m, the frequency is 0.65 Hz.What is the value of m?

Answers

Answer:

m will be equal to 1158.73 gram

Explanation:

We have given mass m when frequency is 0.83 Hz

So mass [tex]m_1=m[/tex] and frequency [tex]f_!=f[/tex] let spring constant of the spring is KK

Frequency of oscillation of spring is given by [tex]f=\frac{1}{2 \pi }\sqrt{\frac{k}{m}}[/tex]

From above relation we can say that [tex]{\frac{f_1}{f_2}}=\sqrt{\frac{m_2}{m_1}}[/tex]

It is given that when an additional 730 gram is added to m then frequency become 0.65 Hz , [tex]f_2=0.65Hz[/tex]

So [tex]m_2=m+730[/tex]

So  [tex]\frac{0.93}{0.65}=\sqrt{\frac{m+730}{m}}[/tex]

[tex]\frac{m+730}{m}=1.63[/tex]

[tex]0.63m=730[/tex]

m= 1158.73 gram

Final answer:

To find the value of m, we can set up a proportion using the formula for frequency and solve for m. The value of m is 0.93 kg.

Explanation:

To solve this problem, we can use the formula for the frequency of an object in simple harmonic motion:

f = 1 / T

Where f is the frequency and T is the period. Let's denote the mass of the object as m, and the original frequency as f1. When the additional mass is added, the frequency becomes f2. We can set up a proportion to solve for the value of m:

f1 / f2 = m / (m + 0.73)

Solving for m, we have:

m = (f1 / f2) * 0.73

Substituting the values f1 = 0.83 Hz and f2 = 0.65 Hz, we can find the value of m:

m = (0.83 / 0.65) * 0.73 = 0.93 kg

Therefore, the value of m is 0.93 kg.

The pressure reading from a barometer is 742 mm Hg. Express this reading in kilopascals, kPa. (Use 760 mm Hg = 1.013 x 105 Pa)

Answers

Answer:

98.9 kPa

Explanation:

given,

Pressure reading of barometer = 742 mm Hg

we know,

760 mm Hg = 1.013 x 10⁵ Pa

[tex]1\ mm\ Hg = \dfrac{1.013\times 10^5}{760}[/tex]

[tex]742\ mm\ Hg = \dfrac{1.013\times 10^5}{760}\times 742[/tex]

                           = 0.989 x 10⁵ Pa

                          = 98.9 x 10³ Pa

                          = 98.9 kPa

the reading of the barometer is equal to  98.9 kPa

The pressure reading from the barometer expressed in kilopascal is 98.9kPa.

Given that;

Pressure reading from the barometer; [tex]P = 742mmHg[/tex]

Pressure reading from the barometer in kilopascals; [tex]x = \ ?[/tex]

First we convert the units from Millimeter of Mercury (mmHg) to Pascal (Pa)

We are to use;

[tex]760 mm Hg = 1.013 * 10^5 Pa\\\\\frac{760mmHg}{760} = \frac{1.013 * 10^5 Pa}{760} \\\\1mmHg = 1.33289 * 10^2 Pa[/tex]

So,

Pressure reading is pascal

[tex]P = 742 * [1.33289*10^2Pa]\\\\P = 98900.438Pa[/tex]

Next we convert to kilopascal

We know that; [tex]1\ Pascal = 0.001\ kilopascal[/tex]

so

[tex]P = 98900.438 * 0.001 kPa\\\\P = 98.9kPa[/tex]

Therefore, the pressure reading from the barometer expressed in kilopascal is 98.9kPa.

Learn more: https://brainly.com/question/9844551

Two tiny, spherical water drops, with identical charges of −8.00 ✕ 10^(−17) C, have a center-to-center separation of 2.00 cm.
What is the magnitude of the electrostatic force acting between them?

Answers

Answer:

F=1.4384×10⁻¹⁹N

Explanation:

Given Data

Charge q= -8.00×10⁻¹⁷C

Distance r=2.00 cm=0.02 m

To find

Electrostatic force

Solution

The electrostatic force between between them can be calculated from Coulombs law as

[tex]F=\frac{kq^{2} }{r^{2} }[/tex]

Substitute the given values we get

[tex]F=\frac{(8.99*10^{9} )*(-8.00*10^{-17} )^{2} }{(0.02)^{2} }\\ F=1.4384*10^{-19} N[/tex]

A 50 kg child runs off a dock at 2.0 ms (horizontally) and lands in a waiting rowboat of mass 150 kg. At what speed does the rowboat move away from the dock?

Answers

Answer:

The boat moves away from the dock at 0.5 m/s.

Explanation:

Hi there!

Since no external forces are acting on the system boy-boat at the moment at which the boy lands on the boat, the momentum of the system is conserved (i.e. it remains constant).

The momentum of the system is calculated as the sum of the momentum of the boy plus the momentum of the boat. Before the boy lands on the boat, the momentum of the system is given by the momentum of the boy.

momentum of the system before the boy lands on the boat:

momentum of the boy + momentum of the boat

m1 · v1 + m2 · v2 = momentum of the system

Where:

m1 and v1: mass and velocity of the boy.

m2 and v2: mass and velocity of the boat.

Then:

50 kg · 2.0 m/s + 150 kg · 0 m/s = momentum of the system

momentum of the system = 100 kg m/s

After the boy lands on the boat, the momentum of the system will be equal to the momentum of the boat moving with the boy on it:

momentum of the system = (m1 + m2) · v (where v is the velocity of the boat).

100 kg m/s = (50 kg + 150 kg) · v

100 kg m/s / 200 kg = v

v = 0.5 m/s

The boat moves away from the dock at 0.5 m/s.

Final answer:

The child running off a dock and landing in a rowboat scenario involves applying the conservation of momentum principle to find the boat's final velocity. The speed of the rowboat is 0.67 m/s.

Explanation:

Given:

Child mass (m1) = 50 kg

Child velocity (v1) = 2.0 m/s

Boat mass (m2) = 150 kg

Let the final velocity of the boat be v2

Using the conservation of momentum:

m1v1 = (m1 + m2)v2

Substitute the values to find v2: 50 kg * 2.0 m/s = (50 kg + 150 kg) * v2

Solving for v2, we get v2 = 0.67 m/s

Learn more about Conservation of Momentum here:

https://brainly.com/question/35273367

#SPJ11

An object's velocity in m/s is given by the equation vx(t) = 10t-2. If it starts at x=0 at t=0, what is its position after 5 seconds?

Answers

Answer: d(5) = 115m

Position after 5 seconds is 115m

Explanation:

Given;

Initial position d(0) = 0

Time = 5 sec

Velocity function vx(t) = 10t - 2

To determine its position after 5 sec we need to calculate the position function.

d(t) = integral of vx(t)

d(t) = ∫10t - 2

d(t) = (10/2)t^2 - 2t + c

d(t) = 5t^2 - 2t + d(0)

c = d(0) = 0

d(t) = 5t^2 - 2t

So, at time t = 5

d(5) = 5(5^2) -2(5) = 125 - 10

d(5) = 115m

An 80-cm-long, 1.0-mm-diameter steel guitar string must betightened to a tension of 2000 {\rm N} by turning the tuningscrews.By how much is the string stretched? (In 2 sig figs and cm)

Answers

Answer:

string stretched is 1.02 cm

Explanation:

given data

length = 80-cm

diameter = 1.0-mm

tension = 2000 N

solution

we get here string stretched that will be as and here  

we know that young modulus for steel = 200 × [tex]10^{9}[/tex]

so here stress will be

stress = y × strain  .............1

that is express as

[tex]\frac{force}{area} = \frac{Y \Delta L}{L}[/tex]

ΔL = [tex]\frac{0.80*2000}{\pi * 0.0005^2*200*10^9}[/tex]

ΔL = 0.0102 m

ΔL = 1.02 cm

so string stretched is 1.02 cm

A heat engine uses two containers held at different temperatures. One container is at 294 K 294 K , while the other is kept at 552 K 552 K . What is the maximum possible efficiency for this engine?

Answers

Answer:

Explanation:

Given

Lower Temperature [tex]T_L=294 \K[/tex]

Higher Temperature [tex]T_H=522 \K[/tex]

Maximum Possible efficiency is achieved when the engine works as carnot Engine

i.e. [tex]\eta _{max}=1-\frac{T_L}{T_H}[/tex]

[tex]\eta_{max}=1-\frac{294}{522}[/tex]

[tex]\eta _{max}=\frac{228}{522}=0.436[/tex]

[tex]\eta _{max}=43.64\ %[/tex]

Final answer:

The maximum possible efficiency of a heat engine can be determined using the temperatures of the hot and cold reservoirs in the formula Effc = 1 - Tc / Th. Applying this formula to the given temperatures of 294 K and 552 K results in a maximum efficiency of 46.8%.

Explanation:

The maximum possible efficiency of a heat engine (also known as the Carnot efficiency) can be calculated using the temperatures of the heat source (hot reservoir) and the heat sink (cold reservoir). This efficiency can be determined by using the formula Effc = 1 - Tc / Th, where Tc is the temperature of the cold reservoir and Th is the temperature of the hot reservoir. Both these temperatures should be in Kelvin.

In the given problem, Tc is 294 K and Th is 552 K. Substituting these values into the formula gives the maximum possible efficiency:

Effc = 1 - 294 / 552 = 0.468. Thus, the maximum possible efficiency of this engine is approximately 46.8%.

Learn more about Carnot Efficiency here:

https://brainly.com/question/37665551

#SPJ3

Pluto's atmosphere. As recently observed by the New Horizons mission, the surface pressure of Pluto is about 11 microbar. The surface temperature is about 37 K.

(a) What is the number density (in units of number per cubic centimeter) of molecules at Pluto's surface (Hint: use ideal gas law)? The radius of Pluto is about 1187 km and the surface gravity is about 0.62 m s. What is the total mass of the atmosphere in terms of Kg?

(b) Calculate the saturation vapor pressure (in units of Pa) of ethane at Pluto's surface. The saturated vapor pressure of ethane can be assumed as: log1o(P)-10.01-1085.0/(T-0.561). T is temperature in K and the vapor pressure (P) in units of millimeters of Hg (~133.32 Pa).

(c) If the volume mixing ratio of ethane on Pluto is about 1%, what is mass mixing ratio of ethane (assume the mean molecular weight is 28 g mol')? What is the partial pressure of ethane at the surface? (Hint: should you use volume mixing ratio or mass mixing ratio to calculate the partial pressure? Think about the physical meaning of gas pressure.) Finally, is ethane condensable at Pluto's surface)

Answers

Answer:

a) The number density is 3.623 × 10⁻³ [tex]\frac{mol}{m^{3} }[/tex]

The mass of the atmosphere is 1.3 × 10²²Kg

b) The pressure is 10⁻²⁰ Millimeter of mercury

c) The mass mixing ratio is 0.0107

The partial pressure of ethane is 0.01114 Pa

Yes it is condensable because it boiling point is -88.5 C  which is equivalent to 184.5 K i.e is adding 273 to -88.5C and the temperature of the atmosphere  is 37 K.

Explanation:

The explanation is on the first and second uploaded image

A particle is moving along a straight line such that its' acceleration is defined as
a(v) = (-2v) m/s^2 where v is in meters per second.
If v = 20 m/s when s= 0 and t=0 find:

1. The particles position as a function of time
2. The particles velocity as a function of time
3. The particles acceleration as a function of time

Answers

Final answer:

To find the particle's dynamics, we need to integrate the given acceleration function in terms of velocity and apply the initial conditions. The velocity function v(t) is √(400 - 2t), the position function s(t) would result from further integration, and the acceleration a(t) is -2√(400 - 2t).

Explanation:

A particle is moving in a straight line with its acceleration a(v) given as a(v) = (-2v) m/s², where v is the velocity in meters per second. To find the particle's position, velocity, and acceleration as functions of time, we'll need to integrate the acceleration function.

Finding the velocity as a function of time:

We have the acceleration in terms of velocity; thus, we can write:

'(v) = a(v) = -2v

(v) = -∫ 2v dv = -v² + C

When t=0, v = 20 m/s:

C = 20² = 400

v(t) = √(400 - 2t)

Finding the particle's position as a function of time:

s(t) = ∫ v(t) dt

s(t) = ∫ √(400 - 2t) dt

The integration will give us the position, s(t), in terms of t, which needs to be integrated carefully using appropriate techniques such as substitution.

Finding the acceleration as a function of time:

a(t) can be found by substituting the expression for v(t) into a(v), which gives us a(t) = -2√(400 - 2t).

A thread is being pulled off a spool at the rate of 57.3 cm per sec. Find the radius of the spool if it makes 141 revolutions per min. Round to two decimal places as needed.

Answers

Answer: r= 0.04meter

Explanation:

The velocity V and angular speed w is related to the radio by

V=w*r

r=V/w

But the standard unit for velocity is m/s so we convert 57.3cm/sec to m/s

57.3/100= 0.57m/s

Also Angular speed w is rad/secs

So we convert rev/min to rad/sec

0.1rad/sec equals 1 rev/mins

141rev/mins * 0.1rad/secs

=14.1rad/sec

r = V/w

= 0.573/14.1

= 0.04m to 2d.p

Final answer:

The radius of the spool is 12.3 cm.

Explanation:

To find the radius of the spool, we need to use the formula for the linear speed of a point on the edge of a rotating object: v = ωr. Here, v is the linear speed, ω is the angular velocity, and r is the radius. By converting the given information, we can calculate the linear speed:

Linear speed (v) = (57.3 cm/sec) / (100 cm/m) = 0.573 m/sec

The angular velocity can be found by converting the rate of revolution to radians per second:

Angular velocity (ω) = (141 rev/min) * (2 π rad/rev) / (60 sec/min) = 4.676 rad/sec

Now we can rearrange the formula to solve for the radius:

Radius (r) = v / ω = 0.573 m/sec / 4.676 rad/sec = 0.123 m = 12.3 cm

A small metal sphere has a mass of 0.19 g and a charge of -21.0 nC. It is 10.0 cm directly above an identical sphere that has the same charge. This lower sphere is fixed and cannot move. If the upper sphere is released, it will begin to fall.
What is the magnitude of its initial acceleration?

Answers

The magnitude of the initial acceleration is 11.52 m/s^2.

Acceleration is a fundamental concept that describes how an object's velocity changes over time. Velocity includes both speed and direction, so acceleration can involve changes in speed, direction, or both. When an object speeds up, slows down, or changes direction, it experiences acceleration.

To find the magnitude of the initial acceleration, we need to use Newton's Law of Gravitation and Coulomb's Law. The weight and electric force acting on the sphere will determine its acceleration. The weight of the sphere is given by the formula W = mg, where m is the mass and g is the acceleration due to gravity. The electric force is given by the formula[tex]F = k(q1q2/r^2)[/tex], where k is the Coulomb's constant, q1 and q2 are the charges, and r is the distance between the spheres.

First, let's calculate the weight of the sphere:

[tex]W = (0.19 g)(9.8 m/s^2) = 1.862 N[/tex]

Next, let's calculate the electric force:

[tex]F = (8.99 x 10^9 Nm^2/C^2)(21.0 x 10^-9 C)^2 / (0.10 m)^2 = 0.4083 N[/tex]

Now, we can calculate the acceleration using Newton's second law:

F = ma, so a = F/m

a = (1.862 N + 0.4083 N) / 0.19 g

a = 11.52 m/s^2

Therefore, the magnitude of the initial acceleration is [tex]11.52 m/s^2.[/tex]

Learn more about magnitude of initial acceleration here:

https://brainly.com/question/25876659

#SPJ3

Other Questions
Select all the functions whose graphs include the point (16,4). Pick 2 answers. A. y=2x B. y=x2 C. y=x+12 D. y=x12 E. y=1/4x A triangle has vertices at A(-7, 6), B(4,9), C(-2, -3). What are the coordinates of each vertex if the triangle is translated 4 units right and 6 units down? A nursing student is preparing a teaching plan about peptic ulcer disease. The student knows to include teaching about the percentage of clients with peptic ulcers who experience bleeding. The percentage is? Sarai volunteers at an elementary school tutoring students in math. She spends each Monday afternoon helping out, and she usually feels great about it because she contributes to her community. Is this an exchange? If y(t)y(t) describes the position with time, what is the proper formula for velocity with time? (Recall velocity is related to the derivative of position with time.) The distance between a carbon atom (m = 12 u) and an oxygen atom (m = 16 u) in the CO molecule is 1.13 1010 m. How far from the carbon atom is the center of mass of the molecule? The period of sleep during which the brain is very active, voluntary muscle activity becomes suppressed, there is considerable physiological arousal, and one's eyes move back and forth under closed eyelids is called:___________ WPA director Harry Hopkins said, "Give a man a dole [handout), and you save his body and destroy his spirit. Give him a job and you save both body and spirit."How does this quotation connect to the way Hopkins ran the WPA?A Hopkins ran the WPA as a charity, giving moneydirectly to needy individuals.B. Hopkins ran the WPA as a financial institution,approving loans for new companiesC. Hopkins ran the WPA as an employer, allowing peopleto earn their paychecksD. Hopkins ran the WPA as an insurance companyproviding healthcare to the ill. True or false: During meiosis, two rounds of DNA synthesis are required to form four gametes from one parent cell. A long string is stretched and its left end is oscillated upward and downward. Two points on the string are labeled A and B.At the instant shown, orient v(A) and v(B) to correctly represent the direction of the wave velocity at points A and B.At each of the points A and B, rotate the given vector to indicate the direction of the wave velocity.Figure:A string is attached and moving up and down a supermarket sells 2 kg and 4 kg of sugar a shipment of 1100 bags of sugar has a total mass of 2900 kg. How many 2 kg bags and 4 kg bags are in the shipment Is 1.4949949994.. a rational number Which of the following are the goals of science and psychological research? subjectivity prediction myth common sense The table shows the changes in velocity for several different cars. Each change takes place over a 10-second interval. Which cars are eitherspeeding up or slowing down?Starting VelocityEnding Velocity30 km/hmo20 km/h30 km/h0 km/hO km/h30 km/h (-8,-4)&(2,-9) fint the distance between each pair of points The coordinates of the midpoints of GH are M (4,3) and the coordinates of one endpoints are G (5,-6) the coordinates of the other endpoints are An annuity pays $10 per year for 98 years. What is the present value (PV) of this annuity given that the discount rate is 7%? Determine whether the following statement is true or false. Explain. Inferences based on voluntary response samples are generally not reliable. Philae is miserable. (Add one figurative language device, one prepositional phrase, and one adjective) Researchers endeavoring to conduct an on-line study should consider that there are some potential risks of harm to subjects unique to internet-based research. One of these risks is:1. Recruiting, consenting and debriefing subjects takes place on-line, and may require little to no interaction with the subjects.2. People assume pseudonymous on-line identities, such as an avatar in an MMORPG.3. Online studies do not require the documentation of informed consent.4. Individuals may post private identifiable information about themselves on-line without intending it to be public and available to researchers.5. Individuals may post private identifiable information about themselves on-line without intending it to be public and available to researchers. Steam Workshop Downloader