A runner runs around a circular track. He completes one lap at a time of t = 269 s at a constant speed of v = 4.6 m/s. What is the radius, r in meters, of the track?

Answers

Answer 1

Answer:

[tex]\boxed{\text{197 m}}[/tex]

Step-by-step explanation:

The formula relating distance (d), speed (s), and time (t) is

d = st

1. Calculate the distance

d = 269 s × 4.6 m·s⁻¹ = 1240 m

2.Calculate the track radius

The distance travelled is the circumference of a circle

[tex]\begin{array}{rcl}C & = & 2 \pi r\\1240 & = & 2 \pi r\\\\r & = & \dfrac{1240}{2 \pi }\\\\& = & 197\\\end{array}\\\text{The radius of the track is }\boxed{\textbf{197 m}}[/tex]

Answer 2

The radius in meters is 196.9 meters.

The runner ran around the track in 269 seconds at a speed of 4.6 m/s. This will enable us to find the distance around the track which is the circumference of the track.

Distance = Speed × time

= 4.6 × 269

= 1,237.4 meters

The distance here is the circumference which can also be found by the formula:

Circumference = π × diameter

1,237.4 = 22/7 × Diameter

Diameter = 1,237.4 ÷ 22/7

= 393.7 meters

Now that we have the diameter, the radius is:

= Diameter / 2

= 196.9 meters

In conclusion, the radius is 196.3 meters

Find out more at https://brainly.com/question/3092498.


Related Questions

Which complete bipartite graphs Km, are trees? (b) Let T be a full 8-ary tree with 201 vertices. (ii) How many internal vertices does T have? (iii) How many leaves does T have?

Answers

Answer:

the answer is a

Step-by-step explanation:

i just know

Assume that the red blood cell counts of women are normally distributed with a mean of 4.577 million cells per microliter and a standard deviation of 0.382 million cells per microliter. Find the value closest to the probability that a randomly selected woman has a red blood cell count above the normal range of 4.2 to 5.4 million cells per microliter. Round to four decimal places.

Answers

Final answer:

The likelihood of a randomly chosen woman having a red blood cell count higher than the typical range of 4.2 to 5.4 million cells per microliter, given that the counts are normally distributed with a mean of 4.577 and a standard deviation of 0.382 million cells, is approximately 0.0158 or 1.58% when expressed as a percentage.

Explanation:

The subject matter here is the use of statistics to understand biological phenomena, specifically the distribution of red blood cell counts in women. The question asks for the probability that a randomly selected woman has a red blood cell count above the normal range of 4.2 to 5.4 million cells per microliter, given that the counts are normally distributed with a mean of 4.577 million cells per microliter and a standard deviation of 0.382 million cells.

Firstly, to answer this question, we must establish the z-scores for the boundaries of our range. The z-score formula is Z = (X - μ) / σ, where X is the value we are evaluating, μ is the mean, and σ is the standard deviation. The upper boundary of our range is 5.4 million cells, so to find the z-score for this we substitute into the formula: Z = (5.4 - 4.577) / 0.382, which gives us a Z-score of approximately 2.15.

However, we are interested in the probability of a woman having a count above the normal range, so we need the area of the curve beyond this z-score. You can find this probability using standard normal distribution tables or a calculator, which suggests that the probability of having a count above 5.4 is approximately 0.0158, or 1.58% when expressed as a percentage and rounded to four decimal places.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

Use the Taylor series you just found for sinc(x) to find the Taylor series for f(x) = (integral from 0 to x) of sinc(t)dt based at 0. a.Give your answer using summation notation. b.Give the interval on which the series converges.

Answers

In this question (https://brainly.com/question/12792658) I derived the Taylor series for [tex]\mathrm{sinc}\,x[/tex] about [tex]x=0[/tex]:

[tex]\mathrm{sinc}\,x=\displaystyle\sum_{n=0}^\infty\frac{(-1)^nx^{2n}}{(2n+1)!}[/tex]

Then the Taylor series for

[tex]f(x)=\displaystyle\int_0^x\mathrm{sinc}\,t\,\mathrm dt[/tex]

is obtained by integrating the series above:

[tex]f(x)=\displaystyle\int\sum_{n=0}^\infty\frac{(-1)^nx^{2n}}{(2n+1)!}\,\mathrm dx=C+\sum_{n=0}^\infty\frac{(-1)^nx^{2n+1}}{(2n+1)^2(2n)!}[/tex]

We have [tex]f(0)=0[/tex], so [tex]C=0[/tex] and so

[tex]f(x)=\displaystyle\sum_{n=0}^\infty\frac{(-1)^nx^{2n+1}}{(2n+1)^2(2n)!}[/tex]

which converges by the ratio test if the following limit is less than 1:

[tex]\displaystyle\lim_{n\to\infty}\left|\frac{\frac{(-1)^{n+1}x^{2n+3}}{(2n+3)^2(2n+2)!}}{\frac{(-1)^nx^{2n+1}}{(2n+1)^2(2n)!}}\right|=|x^2|\lim_{n\to\infty}\frac{(2n+1)^2(2n)!}{(2n+3)^2(2n+2)!}[/tex]

Like in the linked problem, the limit is 0 so the series for [tex]f(x)[/tex] converges everywhere.

Final answer:

The Taylor series for the function f(x) = ∫ sinc(t)dt based at 0 is derived from the Taylor series of sinc(x) by integrating it term by term, given in summation notation as ∑ (-1)ⁿ * xⁿ⁺¹ / (n+1)! for n=0 to n=∞. The series converges for all real numbers (-∞, ∞).

Explanation:

In order to find the Taylor series for the function f(x) = ∫ sinc(t)dt based at 0, one can use the Taylor series for sinc(x) and integrate term by term. We know the Taylor series for sinc(x) is x - x³/3! + x⁵/5! - ..., so the Taylor series for f(x) can be written as x²/2 - x⁴/4*3! + x⁶/6*5! - ... . In summation notation, this is ∑ (-1)ⁿ * xⁿ⁺¹ / (n+1)! for n=0 to n=∞.

The Taylor series for any function converges to the function itself within a certain interval called the radius of convergence. For the Taylor series of sinc(x), due to the nature of sine being bounded between -1 and 1, the series will converge for all real numbers (-∞, ∞).

Learn more about Taylor series here:

https://brainly.com/question/32235538

#SPJ3

Two boys can paint a fence in 5 hours. How many hours would it take 3 boys to paint the same fence? 3 (A) 2 (B) 3 (C) 31 3 2:3=X (D) 4 IS 2/3 3

Answers

Final answer:

Two boys working together can paint a fence in 5 hours with a work rate of 0.2 fences per hour. Adding one more boy increases this work rate to 0.3 fences per hour. This would allow them to complete the painting of the fence in approximately 3.3 hours.

Explanation:

This problem can be solved using the concept of work rate. The work rate is defined as the amount of work done per unit time.

In this case, two boys can paint a fence in 5 hours. So, their combined work rate is 1 fence per 5 hours, or 0.2 fences per hour.

When we add another boy to the group, we increase the total work rate by 50% as now there are 3 boys. So, their combined work rate becomes 0.2 fences/hour + (0.2 fences/hour) * 50% = 0.3 fences/hour.

To find out how long it would take these three boys to paint the fence, we divide the total work (1 fence) by the total work rate (0.3). So, 1 fence divided by 0.3 fences/hour = approximately 3.3 hours. That's how long it would take three boys to paint the fence.

Learn more about Work Rate here:

https://brainly.com/question/14305692

#SPJ2

Please solve and show work.

Answers

Answer:

63.16 in approx.

Step-by-step explanation:

Let the shorter leg be S.  Then the longer leg is L = 3S + 3.

The formula for the area of a triangle is A = (1/2)(base)(height).  Here, that works out to A = 84 in^2 = (1/2)(S)(3S + 3).

Simplifying, we get 168 in^2 = S(3S + 3), or

3S^2 + 3S - 168 = 0, or

 S^2  +  S  - 56   = 0.  This factors as follows:  (S - 8)(S + 7) = 0, so the positive root is S = 8.  We discard the negative root.

Thus, the shorter leg length is 8 and the longer leg length is 3(8) + 3, or 27.

According to the Pythagorean Theorem, the hypotenuse length is given by

L^2 = 8^2 + 27^2, or

L^2 = 64 + 729 = 793.

L = hypotenuse length = √793, or approx. 28.2 in.

Then the perimeter of the triangle is 8 + 27 + 28.2 in, or approx. 63.16 in

1 -For what value of x is line a parallel to line b
2-For what value of x is line a parallel to line b

Answers

Answer:

1) x = 17,  line a parallel to line b

2) x = 18,  line a parallel to line b

Step-by-step explanation:

If line a parallel to line b then (10x - 40) + 50 = 180

Solve for x

10x - 40 + 50 = 180

Combine like terms

10x + 10 = 180

10x = 170

  x = 17

x = 17,  line a parallel to line b

-------------------------------------------------

If line a parallel to line b then 5x - 16 = 74

Solve for x

5x - 16 = 74

5x = 90

  x = 18

x = 18,  line a parallel to line b

 

Final answer:

The value of x which makes line a parallel to line b can be found by equating the slopes of the two lines and solving for x.

Explanation:

In mathematics, two lines a and b are parallel if and only if their slopes are equal. When we are given the equations of the lines and are asked to find the value of x that make the lines parallel, we start by setting the slopes of the two lines equal to each other. Let's assume now that line a is represented by y = mx + b1 and line b by y = nx + b2. In order for line a to be parallel to line b, m must be equal to n. Therefore, you solve for x from the equation m=n.

Learn more about Parallel Lines here:

https://brainly.com/question/29762825

#SPJ12

What is the value of x? In this figure
A:53
B:43
C:57
D:47

Answers

Answer:

should be 53 if im right

Answer is D
It is given that PQ is tangent to the circle at Q. That means that angle OQP is 90 degrees.
Since all angles in a triangle add up to 180deg,
X = 180 - 90 - 43 = 47deg

The concept of determining which reactant is limiting and which is in excess is akin to determining the number of sandwiches that can be made from a set number of ingredients. Assuming that a cheese sandwich consists of 2 slices of bread and 3 slices of cheese, determine the number of whole cheese sandwiches that can be prepared from 44 slices of bread and 75 slices of cheese.

Answers

Answer: There are 22 whole cheese sandwiches that can be prepared.

Step-by-step explanation:

Since we have given that

Number of slices of bread = 44

Number of slices of cheese = 75

According to question, a cheese sandwich consists of 2 slices of bread and 3 slices of cheese.

So, we need to find the number of whole cheese sandwiches that can be prepared.

Number of sandwich containing only slice of bread is given by

[tex]\dfrac{44}{2}=22[/tex]

Number of sandwich containing only slice of cheese is given by

[tex]\dfrac{75}{3}=25[/tex]

As we know that each sandwich should contain both slice of bread and slice of cheese.

So, Least of (22, 25) = 22

Hence, there are 22 whole cheese sandwiches that can be prepared.

A ball is thrown upward from the top of a building. The function below shows the height of the ball in relation to sea level, f(t), in feet, at different times, t, in seconds: f(t) = −16t2 + 48t + 100 The average rate of change of f(t) from t = 3 seconds to t = 5 seconds is _____feet per second.

Answers

Answer:

The average rate of change of f(t) from t = 3 seconds to t = 5 seconds is __-80___feet per second.

Step-by-step explanation:

The average change rate m is calculated using the following formula

[tex]m=\frac{f(t_2)-f(t_1)}{t_2-t_1}[/tex]

In this case [tex]f(t) = -16t^2 + 48t + 100[/tex],  [tex]t_2 = 5\ s\ \ , t_1=3\ s[/tex]

Then

[tex]f(t_2) = f(5) =-16(5)^2 + 48(5) + 100[/tex]

[tex]f(t_2) = -60[/tex]

[tex]f(t_1) = f(3) =-16(3)^2 + 48(3) + 100[/tex]

[tex]f(t_1) = 100[/tex]

Finally

[tex]m=\frac{(-60)-100}{5-3}[/tex]

[tex]m=-80[/tex]

Which is an equation for the nth terms of the sequence 12,15,18,21

Answers

[tex]\bf 12~~,~~\stackrel{12+3}{15}~~,~~\stackrel{15+3}{18}~~,~~\stackrel{18+3}{21}~\hspace{10em}\stackrel{\textit{common difference}}{d=3} \\\\[-0.35em] ~\dotfill\\\\ n^{th}\textit{ term of an arithmetic sequence} \\\\ a_n=a_1+(n-1)d\qquad \begin{cases} a_n=n^{th}\ term\\ n=\textit{term position}\\ a_1=\textit{first term}\\ d=\textit{common difference}\\ \cline{1-1} a_1=12\\ d=3 \end{cases} \\\\\\ a_n=12+(n-1)3\implies a_n=12+3n-3\implies a_n=3n+9[/tex]

Answer:

tₙ = 3(3 + n)

Step-by-step explanation:

Points to remember

nth term of an AP

tₙ = a + (n - 1)d

Where a - first term of AP

d - Common difference of AP

To find the nth term  

The given series is,

12,15,18,21 .....

Here a = 12 and d = 15 - 12 = 3

tₙ = a + (n - 1)d

  = 12 + (n - 1)3

  =12 + 3n - 3

  = 9 + 3n

  = 3(3 + n)

Therefore tₙ = 3(3 + n)

(1 point) The players on a soccer team wear shirts, with each player having one of the numbers 1, 2, ..., 11 on their backs. The set A contains players with even numbers on their shirts. The set B comprises players wearing an odd number less than 7. The set C contains the defenders, which are those wearing numbers less than 6. Select the correct set that corresponds to each of the following. Part a) A∩(B∪C) A. {1,2,3,4,5} B. ∅ C. {1,3,5} D. {2,4} E. {2} Part b) (A∩Bc)∪(B∩C)c A. {6,7,8,9,11} B. {2,4,6,7,8,9,10,11} C. {2,3,4,5,6,8,10} D. {1,2,3,4,5,6,8,10} E. {6,7,8,10,11}

Answers

Final answer:

This question involves operations on sets to identify specific members based on conditions. Part a) resolves to D. {2,4}, while part b) finds the solution to be B. {2,4,6,7,8,9,10,11}, highlighting the application of intersection, union, and complement operations in set theory.

Explanation:

To solve these problems, we need to understand the operations on sets such as intersection (A∩B), union (A∪B), and the complement of a set (Bc). For part a), we identify set A as {2,4,6,8,10}, B as {1,3,5}, and C as {1,2,3,4,5}. A∩(B∪C) means we're looking for the intersection of A with the union of B and C. Since B∪C = {1,2,3,4,5}, intersecting this with A gives us D. {2,4} as the answer.

For part b), (A∩Bc)∪(B∩C)c means we're looking at elements in A but not in B, combined with elements not in both B and C. Since Bc = {6,7,8,9,10,11} and (B∩C)c = {6,7,8,9,10,11}, union these two gives us answer B. {2,4,6,7,8,9,10,11}, by including A∩Bc = {2,4,6,8,10} and excluding duplicates when union with (B∩C)c.


Suppose a man is 25 years old and would like to retire at age 60. ?Furthermore, he would like to have a retirement fund from which he can draw an income of ?$100,000 per yearlong dash?forever! How can he do? it? Assume a constant APR of 8?%.

He can have a retirement fund from which he can draw ?$100,000 per year by having ?$ ______ in his savings account when he retires.

Answers

Answer:

$1314.37

Step-by-step explanation:

We have to calculate final value i.e. balance to earn $100,000 annually from interest.

= [tex]\frac{100,000}{0.08}[/tex] = $1,250,000

Now, N = n × y  = 12 × 25 = 300

         I  = 8% =  APR = 0.08

        PV = 0  = PMT = 0

        FV = 1,250,000 = A

[tex]A=\frac{PMT\times [(1+\frac{apr}{n})^{ny}-1]}{\frac{apr}{n}}[/tex]

[tex]PMT=\frac{A\times (\frac{APR}{n})}{[(1+\frac{APR}{n})^{ny}-1]}[/tex]

[tex]PMT=\frac{1,250,000\times (\frac{0.08}{12})}{[(1+\frac{0.08}{12})^{12\times 25}-1]}[/tex]

[tex]PMT=\frac{1,250,000\times (0.006667)}{[(1+\frac{0.08}{12})^{12\times 25}-1]}[/tex]

[tex]PMT=\frac{1,250,000\times (0.006667)}{[(1+0.006667)^{300}-1]}[/tex]

[tex]PMT=\frac{\frac{25000}{3}}{[1.006667^{300}-1]}[/tex]

[tex]PMT=\frac{\frac{25000}{3}}{6.340176}[/tex]

Monthly payment (PMT) = $1314.369409 ≈ $1314.37

$1314.37 is required monthly payment in order to $100,000 interest.

Find f if f ''(x) = 12x2 + 6x − 4, f(0) = 9, and f(1) = 1.

Answers

Answer:

  f(x) = x^4 +x^3 -2x^2 -8x +9

Step-by-step explanation:

You know that the anitderivative of ax^b is ax^(b+1)/(b+1). The first antiderivative is ...

  f'(x) = 4x^3 +3x^2 -4x +p . . . . . where p is some constant

The second antiderivative is ...

  f(x) = x^4 +x^3 -2x^2 +px +q . . . . where q is also some constant

Then the constants can be found from ...

  f(0) = q = 9

  f(1) = 1 + 1 - 2 +p + 9 = 1

  p = -8

The solution is ...

  f(x) = x^4 +x^3 -2x^2 -8x +9

_____

The graphs verify the results. The second derivative is plotted against the given quadratic, and they are seen to overlap. The function values at x=0 and x=1 are the ones specified by the problem.

Final answer:

To find f(x) given f''(x) = 12x² + 6x − 4, one must integrate twice and use the initial conditions f(0) = 9 and f(1) = 1 to solve for the constants. The final function is f(x) = x⁴ + x³ - 2x² - 8x + 9.

Explanation:

The question asks to find the antiderivative f(x) given its second derivative f''(x) =  12x² + 6x − 4, and two initial conditions, f(0) = 9, and f(1) = 1. To solve for f(x), we first integrate the second derivative twice to get the original function.

Integrating f''(x), we get:

f'(x) = ∫( 12x² + 6x - 4)dx = 4x³ + 3x² - 4x + C

We then integrate f'(x) to find f(x):

f(x) = ∫(4x³ + 3x² - 4x + C)dx = x⁴ + x³ - 2x² + Cx + D

Using the initial conditions:

For f(0) = 9, we substitute x = 0 and determine D = 9.For f(1) = 1, we substitute x = 1: 1 + 1 - 2 + C + 9 = 1, solving for C gives us C = -8.

Therefore, the original function is f(x) =  x⁴ + x³ - 2x² - 8x + 9.

When are two distinct non vertical lines parallel

Answers

Answer:

Two lines are parallel when they share the same slope.

Step-by-step explanation:

Two lines are parallel when they share the same slope.

The slope-intercept form of the equation of a line is: y=mx + b, where 'm' is the slope and 'b' the y-intercept.

If two equations have the same value for 'm', then those lines are parallel, for example:

y = 3x + 8 (Red line)

y = 3x + 5 (Blue line)

y = 3x - 10 (Green line)

All the equations stated above are parallel, to show that, I'm attaching the graph of the equations :).

Camille Uses a 20 % Off Coupon When Buying a Sweater That Costs $ 47.99 .If, She Also pays 6 % Sales tax on the Purchase , How Many does She Paid For ???? ​

Answers

40.69. 47.99*.2=9.598. Round it to 9.6 and then subtract from 47.99. Equals 38.39. 38.39*1.06 equals 40.69.

Answer:

take 47.99 x .20 = 9.598

$9.60 off

then take 47.99 - 9.60 = $ 38.39

take 38.39 x .06 = 2.3034

$ 2.30 (tax)

add 38.39 + 2.30 = $40.69 or $40.70 is the final purchase price

(the two amounts depends on your choice answer or how it is rounded)

Step-by-step explanation:

Suppose that 45% of all adults regularly consume coffee, 40% regularly consume carbonated soda, and 55% regularly consume at least one of these two products. (a) What is the probability that a randomly selected adult regularly consumes both coffee and soda? (b) What is the probability that a randomly selected adult doesn't regularly consume at least one of these two products?

Answers

Answer: a) 30% and b) 45%

Step-by-step explanation:

Since we have given  that

Probability that adults regularly consume coffee P(C) = 45% = 0.45

Probability that adults regularly consume carbonated soda P(S) = 40% = 0.40

Probability that adults regularly consume atleast one of these two products P(C∪S) = 55% = 0.55

a) What is the probability that a randomly selected adult regularly consumes both coffee and soda?

As we know that

P(C∪S ) = P(C) +P(S)-P(C∩S)

[tex]0.55=0.45+0.40-P(C\cap S)\\\\0.55=0.85-P(C\cap S)\\\\0.55-0.85=-P(C\cap S)\\\\-0.30=-P(C\cap S)\\\\P(C\cap S)=0.30=30\%[/tex]

b) What is the probability that a randomly selected adult doesn't regularly consume at least one of these two products?

P(C∪S)'=n(U)-P(C∪S)

[tex]\\P(C\cup S)'=100-55=45\%[/tex]

Hence, a) 30% and b) 45%

The claim is that the IQ scores of statistics professors are normally​ distributed, with a mean greater than 135. A sample of 23 professors had a mean IQ score of 140 with a standard deviation of 13. Find the value of the test statistic.

Answers

Answer: 1.8446

Step-by-step explanation:

Given claim : [tex]\mu>\mu_0,\text{ where }\mu_0=135[/tex]

Sample size : [tex]n=23[/tex]

Sample mean : [tex]\overline{x}=140[/tex]

Standard deviation : [tex]\sigma = 13[/tex]

The test statistic for population mean is given by :-

[tex]z=\dfrac{x-\mu_0}{\dfrac{\sigma}{\sqrt{n}}}[/tex]

[tex]\Rightarrow\ z=\dfrac{140-135}{\dfrac{13}{\sqrt{23}}}\\\\\Rightarrow\ z=1.84455058589\approx1.8446[/tex]

Hence, the value of test statistic =  1.8446

3.17 Scores on stats final. Below are final exam scores of 20 Introductory Statistics students. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 57, 66, 69, 71, 72, 73, 74, 77, 78, 78, 79, 79, 81, 81, 82, 83, 83, 88, 89, 94 (a) The mean score is 77.7 points. with a standard deviation of 8.44 points. Use this information to determine if the scores approximately follow the 68-95-99.7% Rule. (b) Do these data appear to follow a normal distribution? Explain your reasoning using the graphs provided below.

Answers

Answer:

Yes they do.

And yes they do follow a normal distribution.

Percentages are close to 68-95-99.7%, we can declare that yes, the 68-95-99.7% rule is roughly followed and yes data appear to follow a normal distribution.

What is a normal distribution?

It's the probability curve of a continuous distribution that's most likely symmetric around the mean. On the Z curve, at Z=0, the chance is 50-50. A bell-shaped curve is another name for it.

We have a data of final exam scores of 20 Introductory.

a) Range of 1 standard deviation:

(77.7 – 8.44, 77.7 + 8.44)                [69.3, 86.1]

Range of 2 standard deviation:

(77.7 – 2(8.44), 77.7 + 2(8.44))            [60.8, 94.6]

Range of 3 standard deviation:

(77.7 – 3(8.44), 77.7 + 3(8.44))           [52.4, 103.0]

Number of data points lie within 1 standard deviation = 14

Percent of data points lie within 1 SD = (14/20)×100 = 70%

Number of data points lie within 2 SD = 19

Percent of data points lie within 1 SD = (19/20)×100 = 95%

Number of data points lie within 3 SD = 20

Percent of data points lie within 1 SD = (20/20)×100 = 100%

Because these percentages are close to 68-95-99.7%, we can declare that yes, the 68-95-99.7% rule is roughly followed.

b)

Because the histogram in the graph is symmetric, and the normal probability plot reveals that the points are very close to a straight line, the data appears to follow a normal distribution.

Thus, percentages are close to 68-95-99.7%, we can declare that yes, the 68-95-99.7% rule is roughly followed and yes data appear to follow a normal distribution.

Learn more about the normal distribution here:

brainly.com/question/12421652

#SPJ2

What is the possible solution?

Answers

[tex]\sin(3x+13)=\cos(4x)\\\sin(3x+13)=\cos(90-4x)\\3x+13=90-4x\\7x=77\\x=11[/tex]

A weather forecasting website indicated that there was a 90​% chance of rain in a certain region. Based on that​ report, which of the following is the most reasonable​ interpretation? Choose the correct answer below. A. 90​% of the region will get rain today. B. There is a 0.90 probability that it will rain somewhere in the region at some point during the day. C. In the​ region, it will rain for 90​% of the day. D. None of the above interpretations are reasonable.

Answers

Final answer:

The most B. reasonable interpretation of a 90% chance of rain is that there is a 0.90 probability that it will rain somewhere in the region.

Explanation:

The most reasonable interpretation of a 90% chance of rain, according to the given weather forecasting website, is option B: There is a 0.90 probability that it will rain somewhere in the region at some point during the day. This means that there is a high likelihood that rain will occur in the region, but it does not guarantee that every part of the region will experience rain. It indicates that out of 100 instances, rain is expected in approximately 90 of them.

It is important to note that options A, C, and D are not reasonable interpretations because option A assumes that 100% of the region will get rain, option C assumes that it will rain for 90% of the day, and option D states that none of the interpretations are reasonable, which is not accurate.

Final answer:

The most reasonable interpretation of a 90% chance of rain in a weather forecast is that there is a 0.90 probability of rainfall somewhere in the specified region at some point during the day.

Explanation:

When a weather forecast indicates a 90% chance of rain, it means there is a 0.90 probability that it will rain somewhere in the specified region at some point during the day. Therefore, the correct interpretation based on the given options is B. There is a 0.90 probability that it will rain somewhere in the region at some point during the day. Interpretation A, suggesting that 90% of the region will get rain, is not accurate because the percentage given in a forecast refers to probability, not an area's coverage. Interpretation C, suggesting it will rain for 90% of the day, is also incorrect because the percentage does not refer to the duration of rain but to the probability of occurrence. Statement D is incorrect because B provides a reasonable interpretation.

What is the solution of the equation 4^(x + 1) = 21? Round your answer to the nearest ten-thousandth.

Answers

For this case we must solve the following equation:

[tex]4 ^ {x + 1} = 21[/tex]

We find Neperian logarithm on both sides:

[tex]ln (4 ^ {x + 1}) = ln (21)[/tex]

According to the rules of Neperian logarithm we have:

[tex](x + 1) ln (4) = ln (21)[/tex]

We apply distributive property:

[tex]xln (4) + ln (4) = ln (21)[/tex]

We subtract ln (4) on both sides:

[tex]xln (4) = ln (21) -ln (4)[/tex]

We divide between ln (4) on both sides:

[tex]x = \frac {ln (21)} {ln (4)} - \frac {ln (4)} {ln (4)}\\x = \frac {ln (21)} {ln (4)} - 1\\x = 1,19615871[/tex]

Rounding:

[tex]x = 1.1962[/tex]

Answer:

x = 1.1962

Answer: [tex]x[/tex]≈[tex]1.196[/tex]

Step-by-step explanation:

Given the equation [tex]4^{(x + 1)} = 21[/tex] you need to solve for the variable "x".

Remember that according to the logarithm properties:

[tex]log_b(b)=1[/tex]

[tex]log(a)^n=nlog(a)[/tex]

Then, you can apply  [tex]log_4[/tex] on both sides of the equation:

[tex]log_4(4)^{(x + 1)} = log_4(21)\\\\(x + 1)log_4(4) = log_4(21)\\\(x + 1) = log_4(21)[/tex]

Apply the Change of base formula:

 [tex]log_b(x) = \frac{log_a( x)}{log_a(b)}[/tex]

Then you get:

[tex]x =\frac{log(21)}{log(4)}-1[/tex]

[tex]x[/tex]≈[tex]1.196[/tex]

What is the sign of 4.3 .(-3.2) .0 ? Is it positive or negative

Answers

Answer:

Zero

Step-by-step explanation:

We are given the following expression and we are to determine what is the sign of its product:

[tex] 4 . 3 . ( - 3 . 2 ) . 0 [/tex]

One of the three terms in the expression is positive while one is negative. So if we start multiplying the two terms from the left side. we will get a negative number.

But when we will multiply it with zero, the whole product will become zero as anything times zero is always zero. Therefore, answer will be zero.

Answer:

it is negative

Step-by-step explanation:

a positive times a negative is a negative.

Polygon ABCDE and polygon FGHIJ are similar. The area of polygon ABCDE is
40. What is the area of FGHIJ?

Answers

Answer: 640

Step-by-step explanation:

Since the two triangles are similar we can simply multiply the lesser triangle's area by a constant to get our answer.

Polygon FGHIJ is ABCDE with a scale change of 4

For the reason that we are dealing with area, we will multiply 40 by 4² in stead of just 4.

40 * 16 = 640

Answer:

B. 640

Step-by-step explanation:

got it right 2021

Analyze the diagram below and complete the instructions that follow.
Find Sin

Answers

Sin is the measure of the opposite leg over the hypotenuse from the given angle:

opposite/hypotenuse

We must find the sin of Angle A, and in order to do so we must find the opposite leg and hypotenuse:

opposite leg/hypotenuse

8/10

Simplify:

8/10 = 4/5

Hence, the sin of <A is 4/5

For this case we have by definition, the sine of an angle is given by the leg opposite the angle on the hypotenuse of the triangle. Then, according to the figure we have:

[tex]Sin (A) = \frac {8} {10}[/tex]

Simplifying we have to:

[tex]Sin (A) = \frac {4} {5}[/tex]

Answer:

Option B

y 7 • y 9

Multiply or divide as indicated.

Answers

For this case we have the following expression:

[tex]y^ 7 * y^ 9 =[/tex]

By definition of multiplication of powers of the same base, we have to put the same base and add the exponents, that is:

[tex]a ^ n * a ^ m = a ^ {n + m}[/tex]

So:

[tex]y ^ 7 * y ^ 9 = y ^{7 + 9} = y ^ {16}[/tex]

Answer:

[tex]y^{16}[/tex]

Three boxes contain red and green balls. Box 1 has 5 red balls* and 5 green balls*, Box 2 has 7 red balls* and 3 green balls* and Box 3 contains 6 red balls* and 4 green balls*. The respective probabilities of choosing a box are 1/4, 1/2, 1/4. What is the probability that the ball chosen is green?

Answers

Final answer:

The probability of choosing a green ball from the three boxes, given their individual selection probabilities and color distributions, is calculated using the law of total probability. The overall probability of selecting a green ball is found to be 29/80, or roughly 36.25%.

Explanation:

The question asks for the probability of choosing a green ball from three different boxes, given their individual probabilities of being chosen and the distribution of red and green balls in each box. To solve this, we employ the law of total probability which combines the probability of each event (selecting a box) with the conditional probability of finding a green ball within that selected box.

Box 1: Probability of green ball = 5 green balls / (5 red + 5 green) = 1/2

Box 2: Probability of green ball = 3 green balls / (7 red + 3 green) = 3/10

Box 3: Probability of green ball = 4 green balls / (6 red + 4 green) = 2/5

The overall probability is calculated as: P(Green) = P(Box 1) * P(Green|Box 1) + P(Box 2) * P(Green|Box 2) + P(Box 3) * P(Green|Box 3) = (1/4) * (1/2) + (1/2) * (3/10) + (1/4) * (2/5) = 1/8 + 3/20 + 1/10 = 29/80.

Therefore, the probability that the ball chosen is green is 29/80 or approximately 36.25%.

(a + 8)(b + 3)

ab + 8a + 3b + 24
ab + 3a + 8b + 24
11ab
24ab

Answers

The answer is ab+3a+8b+24.

Answer:

ab + 3a + 8b + 24

Step-by-step explanation:

(a + 8)(b + 3)

a(b + 3) + 8(b + 3)

ab + 3a + 8b + 24

(a + 3)(a - 2)


hurry helpppp asapppp

Answers

(a+3)(a-2)

Multiply the two brackets together

a^2-2a+3a+3*-2

a^2+a-6

Answer is a^2+a-6

ANSWER

[tex]{a}^{2} + a - 6[/tex]

EXPLANATION

The given expression is

[tex](a + 3)(a - 2)[/tex]

We expand using the distributive property to obtain:

[tex]a(a - 2) + 3(a - 2)[/tex]

We multiply out the parenthesis to get:

[tex] {a}^{2} - 2a + 3a - 6[/tex]

Let us now simplify by combining the middle terms to obtain;

[tex]{a}^{2} + a - 6[/tex]

Assume that 1400 births are randomly selected and 1378 of the births are girls. Use subjective judgment to describe the number of girls as significantly​ high, significantly​ low, or neither significantly low nor significantly high. Choose the correct answer below. A. The number of girls is neither significantly low nor significantly high. B. The number of girls is significantly high. C. The number of girls is significantly low. D. It is impossible to make a judgment with the given information.

Answers

Answer: Hence, Option 'B' is correct.

Step-by-step explanation:

Since we have given that

Number of births = 1400

Number of birth of girls = 1378

Number of birth of boys is given by

[tex]1400-1378\\\\=22[/tex]

so, the number of girls is significantly higher than the number of boys.

So, the number of births of girls is significantly high.

Hence, Option 'B' is correct.

B. The number of girls is significantly high.

When evaluating whether the number of girl births in a sample is significantly high or low, we can reference the expected natural ratio of girls to boys, which is typically 100:105. Given that in the scenario 1378 out of 1400 births were girls, this significantly deviates from the expected natural ratio. For comparison, an article in Newsweek states that the natural ratio is 100:105, and in China, it is 100:114, which equals 46.7 percent girls. If we consider a sample where out of 150 births, there are 60 girls (or 40%), this is lower than the expected percentage based on China's statistics but not implausible. However, in the case of the scenario with 1378 girls out of 1400 births, the proportion of girls is approximately 98.43%, which seems very unlikely given the natural ratio, suggesting an unusual or non-random process may be involved.

Therefore, based on subjective judgment and without applying more precise statistical tests, the number of girls being 1378 out of 1400 births is significantly high compared to natural birth rates or the stated birth rate in China. This leads us to select the correct answer: B. The number of girls is significantly high.

What are the solutions of the following system?

Answers

Answer:(-6,312), (6,312)

Step by Step explanation:

Solve the first equation for y.

10x^2-y=48

y=-48+10x^2

Substitute the given value of y into the equation 2y=16x^2+48

2(-48+10x^2)=16x^2+48

Solve the equation for x.

x=-6

x=6

Substitute the given value of x into the equation y=-48+10(-6)^

y=-48+10(-6)^2

y=-48+10×6^2

Solve the equation for y

y=312

y=312

Other Questions
3x3 matrix A. r1(3 -2 0) r2(0 1 1) r3(2 -1 0). don't calculate A^-1 or raise any matrix to a power first. calculate det(2A^-2) The class of drug that increases the activity of the central nervous system is known as:stimulantsnarcoticshallucinogensdepressants Consider the quadratic function shown in the table below. x y 0 0 1 3 2 12 3 27 Which exponential function grows at a faster rate than the quadratic function for 0 Using the values from the graph, compute the values for the terms given in the problem. Choose the correct answer. Age of car = 7 years. Original cost = $23,500. The cost of maintenance and repairs is $ . The Hudson Corporation has 7,600 obsolete units of a product that are carried in inventory at a manufacturing cost of $152,000. If the units are remachined for $36,400, they could be sold for $68,000. Alternatively, the units could be sold for scrap for $29,400. The alternative that is more desirable and the total relevant costs for that alternative are: Which is the correct first step in finding the area of the base of a cylinder with a volume of 26x cubic meters and a height of 6.5 meters?v=bh 6.5=b(26x)v=bh v=26pi+(6.5)v=bh v=26pi(6.5)v=bh 26pi=b(6.5) Which nims management characteristic includes developing and issuing assignments An electron traveling horizontally to the right enters a region where a uniform electric field is directed downward. What is the direction of the electric force exerted on the electron once it has entered the electric field? charles deposited $12,000 in the bank. He withdrew $5,000 from his account after one year. If he recives a total amount of $9,340 after 3 years, find the rate of simple interest. What area of study in chemistry is concerned with the heat transfers that occur during chemical reactions? What is the slope of the line passing through the points (3,3) and (5,7) ?1. 22. 1/23. 24. 1/2 which best describes the act of using senses or tools to gather information Question 9 (1 point)32% of 300 is what number? Simplify completely quantity 6 x squared minus 54 x plus 84 over quantity 8 x squared minus 40 x plus 48 divided by quantity x squared plus x minus In carbon monoxide, there is always 1.33 g of oxygen for every1g of carbon. How many grams of carbon are in a 16.03 gsample of carbon monoxide? ______g carbon Ajar contains a mixture of 20 black marbles, 16 red marbles, and 4 white marbles, all the same size. Find the probabilityof drawing a white or red marble on the first draw.1251201NEXT QUESTIONASK FOR HELPTURN IT IN Use the equation and type the ordered-pairs. y = 2 ^x the applied force of 3 washers will increase the applied force on the car to n. who estbished the jamestown colny in north america The line l has equation 3x+4y=24. It crosses the x-axis at the point P and the y-axis at point Q. (a)Find the coordinates of P and Q.