A person travels by car from one city to another with different constant speeds between pairs of cities. She drives for 30.0 min at 80.0 km/h, 45.0 min at 40 km/h and 12.0 min at 100 km/h, and spends 15.0 min eating lunch and buying gas. Determine the average sped for the trip. Determine the difference between the intial citties along the route.

Answers

Answer 1

Answer:

Average speed of the trip = 52.9 km/h

Distance between initial pairs of cities (start to end) = 70.0 km

Explanation:

Since distance = speed × time

If she drives 30.0 min at 80.0 km/h

Distance covered = (30/60) × 80 = 40.0 km

Again she drives 45.0 min at 40 km/h

Distance covered = (45/60) × 40 = 30.0 km

Again she drives 12.0 min at 100 km/h

Distance covered = (12/60) × 100 = 20.0 km

Total distance covered =  40.0 + 30.0 + 20.0

                                       = 90.0 km

Total time spent = 30.0 + 45.0 + 12.0 +15.0

                           = 102 min

Average speed for the trip = Total distance covered/total time spent

                                             = 90/(102/60)

                                             = 52.9 km/h

Distance between initial cities will be between the start of one city to the end of another

Between the first pairs = 40.0 + 30.0 = 70.0 km

Between the second pairs = 30.0 + 20.0 = 50.0 km

Answer 2

Final answer:

The average speed for the trip, excluding stops, is approximately 62.1 km/h, and the total distance traveled between the initial cities is 90.0 km.

Explanation:

To determine the average speed for the trip, we need to calculate the total distance traveled and divide it by the total time taken, excluding any stops. We will calculate distance as speed multiplied by time for each segment of the trip, convert the minutes into hours, and then sum these distances to find the total distance traveled.

First segment: 80 km/h  x 0.5 h = 40.0 km
Second segment: 40 km/h x 0.75 h = 30.0 km
Third segment: 100 km/h x 0.2 h = 20.0 km
Total distance = 40.0 km + 30.0 km + 20.0 km = 90.0 km

Now, let's calculate the total travel time in hours, remembering to exclude the time spent not driving (the lunch and gas stop).
Driving time = 30 min + 45 min + 12 min = 87 min = 1.45 h

The average speed is then total distance divided by total driving time.
Average speed = 90.0 km / 1.45 h ≈ 62.1 km/h

To determine the difference between the initial cities along the route, we use the total distance traveled, which we have found to be 90.0 km.


Related Questions

A child in a boat throws a 5.80-kg package out horizontally with a speed of 10.0 m/s. The mass of the child is 24.6kg and the mass of the boat is 39.0kg . (Figure 1)

Calculate the velocity of the boat immediately after, assuming it was initially at rest.

Express your answer to three significant figures and include the appropriate units. Enter positive value if the direction of the force is in the direction of the velocity of the box and negative value if the direction of the force is in the direction opposite to the velocity of the box.

Answers

Answer:

-0.912 m/s

Explanation:

When the package is thrown out, momentum is conserved. The total momentum after is the same as the total momentum before, which is 0, since the boat was initially at rest.

[tex] (m_c + m_b)v_b + m_pv_p = 0[/tex]

where [tex]m_c = 24.6 kg, m_b = 39 kg, m_p = 5.8 kg[/tex] are the mass of the child, the boat and the package, respectively. [tex], v_p = 10m/s, v_b[/tex] are the velocity of the package and the boat after throwing.

[tex] (24.6 + 39)v_b + 5.8*10 = 0[/tex]

[tex]63.6v_b + 58 = 0[/tex]

[tex]v_b = -58/63.6 = -0.912 m/s[/tex]

We have three identical metallic spheres A, B, C. Initially sphere A is charged with charge Q, while B and C are neutral. First, sphere A is brought into contact with sphere B and then separated from it. After that, sphere A is brought into contact with sphere C and then separated from it. Finally, sphere A is brought into contact with sphere B again, and then separated from it.

Answers

Final answer:

When two conducting spheres come into contact, they share their total charge evenly. If sphere A has a charge of -5 nC and sphere B has -3 nC, each sphere will have -4 nC after contact and separation.

Explanation:

When two identical conducting spheres are brought into contact, charge redistribution occurs. The charge will spread evenly across both spheres, because both have equal capacity to hold charge being identical conductors. To find the final charge on each sphere, one must add the initial charges of both spheres and then divide by two because the total charge will be shared equally.

In the scenario given where sphere A has a charge of −5 nC and sphere B has a charge of −3 nC:

Total charge before contact: -5 nC + (-3 nC) = -8 nC

After contact and separation, each sphere will have half the total charge: -8 nC / 2 = -4 nC

Therefore, both sphere A and sphere B will end up with a charge of −4 nC after being brought into contact and separated. The equivalent number of electrons is determined by the charge on each sphere divided by the elementary charge (approximately 1.6 x 10^-19 Coulombs).

How much work is done by the motor in a CD player to make a CD spin, starting from rest? The CD has a diameter of 12.70 cm and a mass of 16.30 g. The laser scans at a constant tangential velocity of 1.150 m/s. Assume that the music is first detected at a radius of 20.90 mm from the center of the disk. Ignore the small circular hole at the CD's center.

Answers

Final answer:

The work done by the motor in a CD player to make the CD spin can be calculated using the formula: Work = Torque * Angle. The final angular velocity can be calculated using the formula: v = r * ω. The moment of inertia can be calculated using the formula: Moment of Inertia = (1/2) * Mass * Radius^2.

Explanation:

The work done by the motor in a CD player to make the CD spin can be calculated using the formula:

Work = Torque * Angle

In this case, since the CD starts from rest, the initial angular velocity is zero. The final angular velocity can be calculated using the formula:

v = r * ω

where r is the radius of the CD and ω is the angular velocity.

The torque can be calculated using the formula:

Torque = Moment of Inertia * Angular Acceleration

Since we have the mass and diameter of the CD, the moment of inertia can be calculated using the formula:

Moment of Inertia = (1/2) * Mass * Radius^2

Once we have the torque and the angle, we can calculate the work done by the motor.

A student measures the diameter of a small cylindrical object and gets the following readings: 4.32, 4.35, 4.31, 4.36, 4.37, 4.34 cm (a) What is the average diameter from these readings? (b) What is the standard deviation of these measurements? The student also measured the length of the object to be (0.126 ± 0.005) m and the mass to be object to be (1.66 ± 0.05) kg. Using the method from this week's lab, determine (c) the density and (d) the proportion of error in the density calculation.

Answers

Answer:

a. [tex]\bar{d}=4.34 cm[/tex]

b. [tex]\sigma=0.023 cm[/tex]

c. [tex]\rho=(0.0089\pm 0.00058) kg/cm^{3}[/tex]

Explanation:

a) The average of this values is the sum each number divided by the total number of values.

[tex]\bar{d}=\frac{\Sigma_{i=1}^(N)x_{i}}{N}[/tex]

[tex]x_{i}[/tex] is values of each diameterN is the total number of values. N=6

[tex]\bar{d}=\frac{4.32+4.35+4.31+4.36+4.37+4.34}{6}[/tex]

[tex]\bar{d}=4.34 cm[/tex]

b) The standard deviation equations is:

[tex]\sigma=\sqrt{\frac{1}{N}\Sigma^{N}_{i=1}(x_{i}-\bar{d})^{2}}[/tex]

If we put all this values in that equation we will get:

[tex]\sigma=0.023 cm[/tex]

Then the mean diameter will be:

[tex]\bar{d}=(4.34\pm 0.023)cm[/tex]

c) We know that the density is the mass divided by the volume (ρ = m/V)

and we know that the volume of a cylinder is: [tex]V=\pi R^{2}h[/tex]

Then:

[tex]\rho=\frac{m}{\pi R^{2}h}[/tex]

Using the values that we have, we can calculate the value of density:

[tex]\rho=\frac{1.66}{3.14*(4.34/2)^{2}*12.6}=0.0089 kg/cm^{3}[/tex]

We need to use propagation of error to find the error of the density.

[tex]\delta\rho=\sqrt{\left(\frac{\partial\rho}{\partial m}\right)^{2}\delta m^{2}+\left(\frac{\partial\rho}{\partial d}\right)^{2}\delta d^{2}+\left(\frac{\partial\rho}{\partial h}\right)^{2}\delta h^{2}}[/tex]  

δm is the error of the mass value.δd is the error of the diameter value.δh is the error of the length value.

Let's find each partial derivative:

1. [tex]\frac{\partial\rho}{\partial m}=\frac{4m}{\pi d^{2}h}=\frac{4*1.66}{\pi 4.34^{2}*12.6}=0.0089[/tex]

2.  [tex]\frac{\partial\rho}{\partial d}=-\frac{8m}{\pi d^{3}h}=-\frac{8*1.66}{\pi 4.34^{3}*12.6}=-0.004[/tex]

3. [tex]\frac{\partial\rho}{\partial h}=-\frac{4m}{\pi d^{2}h^{2}}=-\frac{4*1.66}{\pi 4.34^{2}*12.6^{2}}=-0.00071[/tex]

Therefore:

[tex]\delta\rho=\sqrt{\left(0.0089)^{2}*0.05^{2}+\left(-0.004)^{2}*0.023^{2}+\left(-0.00071)^{2}*0.5^{2}}[/tex]

[tex]\delta\rho=0.00058[/tex]

So the density is:

[tex]\rho=(0.0089\pm 0.00058) kg/cm^{3}[/tex]

I hope it helps you!

A circuit consists of a 12.0-V battery connected to three resistors (44ohm , 17ohm and 110ohm ) in series.a. Find the current that flows through the battery.I=__mAb.Find the potential difference across the 44ohm resistor.V1=__Vc.Find the potential difference across the 17ohm resistor.V2=__Vd.Find the potential difference across the 110ohm resistor.V3=__V

Answers

Answer:

I = 70.2mA

V1 = 3.09V

V2 = 1.19V

V3 = 7.72V

Explanation:

Total resistance for a series connection = R1 + R2 + R3 = 44ohm + 17ohm + 110ohm = 171ohm

From ohm's law

Voltage (V) = current (I) × resistance (R)

I = V/R = 12/171 = 0.0702A = 0.0702×1000mA = 70.2mA

V1 = I×R1 = 0.0702×44 = 3.09V

V2 = I×R2 = 0.0702×17 = 1.19V

V3 = I×R3 = 0.0702×110 = 7.72V

Answer:

a) I = 0.0702A = 70.2mA

b) V1 = 3.09V

c) V2 = 1.19V

d) V3 = 7.72V

Explanation:

Given that the circuit consist of three series resistors.

For resistors arranged in series, the total resistance R can be given as:

R = R1 + R2 + R3

R1 = 44 ohms

R2 = 17 ohms

R3 = 110 ohms.

R = 44 + 17 + 110 = 171 ohms

V = 12 V

a) The current of a circuit is given by;

Potential difference V = current × total resistance

V = IR

Making I the subject of formula,

I = V/R

I = 12/171 = 0.0702A

I = 7.02mA

b) the potential difference across any resistors is given by:

V = IR

Since the arrangement is parallel, the same current flows through each of the resistors.

V1 = IR1

V1 = 0.0702 × 44

V1 = 3.09V

c) applying the same rule as b above:

V2 = IR2

V2 = 0.0702 × 17

V2 = 1.19V

d) applying the same rule as b above.

V3 = IR3

V3 = 0.0702 × 110

V3 = 7.72V

A nautical mile is 6076 feet, and 1 knot is a unit of speed equal to 1 nautical mile/hour. How fast is a boat going 8 knots going in feet/s

Answers

Answer:

The speed of the boat is equal to 13.50 ft/s.

Explanation:

given,

1  nautical mile = 6076 ft

1 knot = 1 nautical mile /hour

1 knot = 6076 ft/hr

speed of boat = 8 knots

 8 knots = 8 nautical mile /hour

               =[tex]8 \times \dfrac{6076\ ft}{1\nautical\ mile}\times \dfrac{1\ hour}{60\times 60\ s}[/tex]

               = 13.50 ft/s

The speed of the boat is equal to 13.50 ft/s.

The speed of the boat will be    [tex]V=13.50\dfrac{ft}{sec}[/tex]

What will be the speed of the boat?

It is given that

nautical mile   6076 feet

1 knot= 1 nautical mile per hour

[tex]\rm 1\ knot = 6076\dfrac{ft}{hr}[/tex]

Speed of the boat is = 8 knots

[tex]\rm 8 \ knot = 8\ nautical \dfrac{Mile }{Hour}[/tex]

[tex]=\dfrac{8 \times 6076\tines 1}{60\times 60}[/tex]

[tex]\rm 8 \ k not= 13.50\dfrac{ft}{s}[/tex]

Thus  The speed of the boat will be    [tex]V=13.50\dfrac{ft}{sec}[/tex]

To know more about speed follow

https://brainly.com/question/4931057

STOP TO THINK 17.1 Two pulses on a string approach each other at speeds of 1 m/s. What is the shape of the string at t = 6 s?

Answers

Final answer:

At t = 6 seconds, two wave pulses on a string moving toward each other at 1 m/s would have just passed through each other, provided they began more than 6 meters apart. If starting exactly 12 meters apart, they would be overlapping completely at this moment.

Explanation:

Understanding Wave Pulse Interaction on a String

When two wave pulses approach each other on a string, each moving at a speed of 1 m/s, their interaction can be understood through the principles of superposition. At any given moment before and during the overlap, the shape of the string is the sum of the individual displacements of the pulses. So, at t = 6 seconds, since each pulse has traveled a distance of 6 meters toward each other, they would have just passed through each other, assuming that they started more than 6 meters apart. If they started exactly 12 meters apart, at 6 seconds, we would observe them just meeting and overlapping at the midpoint. The string's shape would display features of both pulses combined at the instant of full overlap; thereafter, they would continue on their paths as though they'd passed through each other, effectively unchanged in shape apart from any damping effects.

An uncharged metal sphere hangs from a nylon thread. When a positively chargedglass rod is brought near it, the sphere is drawn toward the rod. But if the spheretouches the rod, it suddenly flies away from the rod. Explain why the sphere is firstattracted and then repelled.

Answers

Answer:

Explanation:

When  a positively charged glass rod is brought near the uncharged sphere (which contains equal amount of positive and negative charge) then it started attracting metal sphere. This occurs because glass rod polarize metal sphere such that negative charge is induced at end near to the rod.

But when rod is touched to sphere it started to repel because some of the rod positive charge goes into metal sphere and thus similar charges repel each other.

       

At a certain instant a particle is moving in the +x direction with momentum +8 kg m/s. During the next 0.13 seconds a constant force acts on the particle, with Fx=-7N and Fy= +5N.
What is the magnitude of the momentum of the particle at the end of this 0.13-second interval?

Answers

Answer:

The momentum of the particle at the end of the 0.13 s time interval is 7.12 kg m/s

Explanation:

The momentum of the particle is related to force by the following equation:

Δp = F · Δt

Where:

Δp =  change in momentum = final momentum - initial momentum

F = constant force.

Δt = time interval.

Let´s calculate the x-component of the momentum after the 0.13 s:

final momentum - 8 kg m/s = -7 N · 0.13 s

final momentum = -7 kg m/s² · 0.13 s + 8 kg m/s

final momentum = 7.09 kg m/s

Now let´s calculate the y-component of the momentum vector after the 0.13 s. Since the particle wasn´t moving in the y-direction, the initial momentum in this direction is zero:

final momentum = 5 kg m/s² · 0.13 s

final momentum = 0.65 kg m/s

Then, the mometum vector will be as follows:

p = (7.09 kg m/s,  0.65 kg m/s)

The magnitude of this vector is calculated as follows:

[tex]|p| = \sqrt{(7.09 kg m/s)^{2} + (0.65 kg m/s)^{2}} = 7.12 kg m/s[/tex]

The momentum of the particle at the end of the 0.13 s time interval is 7.12 kg m/s

What is the speed of a car going v=1.000mph in SI units? Notice that you will need to change from miles to meters and from hours to seconds. You can do each conversion separately. Use the facts that 1mile=1609m and 1hour=3600s. Express your answer i

Answers

Answer: 0.4469 m/s

Explanation:

First, convert mile into meters.

1 mile = 1609 m

Secondly, convert hour into seconds

1 hour = 3600 s

Finally, convert 1.000 mph to meters per second.

1.000 mph is same as 1 mile / 1 hour

Put SI units we converted earlier.

1 mile / 1 hour = 1609 m / 3600 s

1 mile / 1 hour = 0.4469 m/s

The appropriate solution is "0.4469 m/s". A further explanation is provided below.

According to the question,

Speed of a car, v = 1.000 mph

Given facts:

1 mile = 1609 m1 hour = 3600 s

The speed of the car will be:

= [tex]1 \ mile/hour[/tex]

By substituting the above given values, we get

= [tex]1.000\times \frac{1609 \ m}{3600 \ s}[/tex]

= [tex]1.000\times 0.447[/tex]

= [tex]0.4469 \ m/s[/tex]

Thus the above solution is correct.

Learn more about distance, speed and time here:

https://brainly.com/question/2088319

If this speed is based on what would be safe in wet weather, estimate the radius of curvature for a curve marked 45 km/hkm/h . The coefficient of static friction of rubber on wet concrete is μs=0.7μs=0.7, the coefficient of kinetic friction of rubber on wet concrete is μk=0.5μk=0.5

Answers

Answer:

 r = 22.78 m

Explanation:

For this exercise let's use Newton's second law

Axis y

                 N- W = 0

                 N = W

X axis

                F = m a

Where the acceleration is centripetal

               a = v² / r

The force is the friction that the formula has

               fr = μ N

               fr = μ mg

Let's replace

            μ m g = m v² / r

           r = v² / μ g

Let's reduce the speed to the SI system

         v = 45 km / h (1000 m / 1 km) (1h / 3600 s) = 12.5 m / s

          r = 12.5 2 / (0.7 9.8)

          r = 22.78 m

A particle starts from the origin at t = 0 with a velocity of and moves in the xy plane with a constant acceleration of . At the instant the particle's x coordinate is 29 m, what are (a) its y coordinate and (b) its speed?

Answers

Answer:

a) When the x-component of the position of the particle is 29 m, the y-component is 45 m.

b)When the x-component of the position of the particle is 29 m, its speed is 21.8 m/s.

Explanation:

I´ve found the complete question on the web:

A particle starts from the origin at t=0 with a velocity of 8.0 j m/s and moves in the x-y plane with a constant acceleration of (4i + 2j) m/s^2. At the instant the particle's x-coordinate is 29m. What are its y-coordinate and speed?

a) First, let´s find at which time the particle is located at 29 m along the x-axis. For that let´s use the equation of position of an object moving in a straight line at constant acceleration:

x = x0 + v0x · t + 1/2 · ax · t²

Where:

x = x-component of the position of the particle at time t

x0 = initial x-position.

v0x = initial x-component of the velocity.

t = time

ax = x-component of the acceleration.

We have the following data:

x = 29 m

x0 = 0 (because the particle starts from the origin, x = 0 and y = 0).

v0x = 0 (the initial velocity only has an y-component).

ax = 4 m/s²

Then, the equation of position gets reduced to this:

x = 1/2 · a · t²

29 m = 1/2 · 4 m/s² · t²

29 m/ 2 m/s² = t²

t = 3.8 s

Now, we can find the y-component of the position of the particle at that time:

y = y0 + v0y · t + 1/2 · ay · t²

Where:

y = y-component of the position of the particle at time t.

y0 = initial y-component of the position.

v0y = initial y-component of the velocity.

ay = y-component of the acceleration

t = time.

We have the following data:

y0 = 0

v0y = 8.0 m/s

ay = 2 m/s²

t = 3.8 s (calculated above)

Then, we can calculate "y" at t = 3.8 s

y = 0 + 8.0 m/s · 3.8 s + 1/2 · 2 m/s² · (3.8 s)²

y = 45 m

When the x-component of the position of the particle is 29 m, the y-component is 45 m.

b) To find the speed of the particle, let´s use the equation of velocity.

For the x-component of the velocity (vx):

vx = v0x + ax · t   (v0x = 0)

vx = 4 m/s² · 3.8 s

vx = 15.2 m/s

The y-component of the velocity will be:

vy = v0y + ay · t

vy = 8.0 m/s + 2 m/s² · 3.8 s

vy = 15.6 m/s

Then, the vector velocity will be:

v = (15.2, 15.6) m/s

To calculate the speed, we have to find the magnitude of the velocity vector:

[tex]|v| = \sqrt{(15.2 m/s)^{2}+(15.6 m/s)^{2}} = 21.8 m/s[/tex]

When the x-component of the position of the particle is 29 m, its speed is 21.8 m/s.

A glass object receives a positive charge of +3 nC by rubbing it with a silk cloth. In the rubbing process have protons been added to the object or have electrons been removed from it?

Answers

Final answer:

When a glass rod is rubbed with a silk cloth, electrons are removed from the rod, resulting in a positive charge.

Explanation:

When an object, such as a glass rod, is rubbed with a silk cloth, it can acquire a positive charge. In this case, electrons are removed from the object, leaving behind a net positive charge. The process of rubbing causes the cloth to transfer some of its excess electrons to the glass rod, resulting in the glass rod gaining a positive charge.

Ricardo and Jane are standing under a tree in the middle of a pasture. An argument ensues, and they walk away in different directions. Ricardo walks 27.0 m in a direction 60.0 ∘ west of north. Jane walks 16.0 m in a direction 30.0 ∘ south of west. They then stop and turn to face each other. In what direction should Ricardo walk to go directly toward Jane?

Answers

Answer:

the direction that should be walked by Ricardo to go directly to Jane is 23.52 m, 24° east of south

Explanation:

given information:

Ricardo walks 27.0 m in a direction 60.0 ∘ west of north, thus

A= 27

Ax =  27 sin 60 = - 23.4

Ay = 27 cos 60 = 13.5

Jane walks 16.0 m in a direction 30.0 ∘ south of west, so

B = 16

Bx = 16 cos 30 = -13.9

By = 16  sin 30 = -8

the direction that should be walked by Ricardo to go directly to Jane

R = √A²+B² - (2ABcos60)

   = √27²+16² - (2(27)(16)(cos 60))

   = 23.52 m

now we can use the sines law to find the angle

tan θ = [tex]\frac{R_{y} }{R_{x} }[/tex]

         = By - Ay/Bx -Ax

         = (-8 - 13.5)/(-13.9 - (-23.4))

     θ  = 90 - (-8 - 13.5)/(-13.9 - (-23.4))

         = 24° east of south

a. A beam of light is incident from air on the surface of a liquid. If the angle of incidence is 26.7° and the angle of refraction is 18.3°, Find the critical angle for the liquid when surrounded by air?b. A light ray, traveling in air, strikes the surface of abeaker of mineral oil at an angle of 37.5° with thenormal to the surface. The speed of light in mineral oil is 2.17 x10^8 m/s.. Calculate the angle of refraction.

Answers

Answer:

(a). The critical angle for the liquid when surrounded by air is 44.37°

(b). The angle of refraction is 26.17°.

Explanation:

Given that,

Incidence angle = 26.7°

Refraction angle = 18.3°

(a). We need to calculate the refraction of liquid

Using Snell's law

[tex]n=\dfrac{\sin i}{\sin r}[/tex]

Put the value into the formula

[tex]n=\dfrac{\sin 26.7}{\sin 18.3}[/tex]

[tex]n=1.43[/tex]

We need to critical angle for the liquid when surrounded by air

Using formula of critical angle

[tex]C=\sin^{-1}(\dfrac{1}{n})[/tex]

Put the value into the formula

[tex]C=\sin^{-1}(\dfrac{1}{1.43})[/tex]

[tex]C=44.37^{\circ}[/tex]

(b). Given that,

Incidence angle = 37.5°

Speed of light in mineral [tex]v=2.17\times10^{8}\ m/s[/tex]

We need to calculate the index of refraction

Using formula of index of refraction

[tex]n=\dfrac{c}{v}[/tex]

Put the value into the formula

[tex]n=\dfrac{3\times10^{8}}{2.17\times10^{8}}[/tex]

[tex]n=1.38[/tex]

We need to calculate the angle of refraction

Using Snell's law

[tex]n=\dfrac{\sin i}{\sin r}[/tex]

[tex]\sin r=\dfrac{\sin i}{n}[/tex]

Put the value into the formula

[tex]\sin r=\dfrac{\sin 37.5}{1.38}[/tex]

[tex]r=\sin^{-1}(\dfrac{\sin 37.5}{1.38})[/tex]

[tex]r=26.17^{\circ}[/tex]

Hence, (a). The critical angle for the liquid when surrounded by air is 44.37°

(b). The angle of refraction is 26.17°.

Answer

a) Angle of incidence i  = 26.7°

Angle of refraction r = 18.3°

From Snell’s law index of refraction of the liquid

[tex]n = \dfrac{sin\ i}{sin\ r}[/tex]

[tex]n = \dfrac{sin\ 26.7^0}{sin\ 18.3^0}[/tex]

      n = 1.43

So, critical angle

[tex]C= sin^{-1}(\dfrac{1}{n})[/tex]

[tex]C= sin^{-1}(\dfrac{1}{1.43})[/tex]

       C = 44.33°

b) Angle of incidence, i = 37.5°

  speed of light in mineral oil , v = 2.17 x 10⁸ m/s

  speed of light in air, c = 3 x 10⁸ m/s

refractive index of the oil

 [tex]n = \dfrac{c}{v}[/tex]

 [tex]n = \dfrac{3\times 10^8}{2.17\times 10^8}[/tex]

  n = 1.38

again using Snell's law

[tex]n = \dfrac{sin\ i}{sin\ r}[/tex]

[tex]sin\ r = \dfrac{sin\ i}{n}[/tex]

[tex]sin\ r = \dfrac{sin\ 37.5^0}{1.38}[/tex]

[tex] r = sin^{-1}(0.441)[/tex]

       r = 26.18°

hence, the angle of refraction is equal to r = 26.18°

The tow spring on a car has a spring constant of 3,086 N / m and is initially stretched 18.00 cm by a 100.0 kg college student on a skateboard. Which of the following is the velocity when the potential energy is 20.0 J?

Select one:

a. This problem cannot be solved without knowing the time because velocity is a function of time.

b. 0.774 m / s

c. 1.00 m / s

d. 0.600 m / s

Answers

Answer:

The velocity of the skateboard is 0.774 m/s.

Explanation:

Given that,

The spring constant of the spring, k = 3086 N/m

The spring is stretched 18 cm or 0.18 m

Mass of the student, m = 100 kg

Potential energy of the spring, [tex]P_f=20\ J[/tex]

To find,

The velocity of the car.

Solution,

It is a case of conservation of energy. The total energy of the system remains conserved. So,

[tex]P_i=K_f+P_f[/tex]

[tex]\dfrac{1}{2}kx^2=\dfrac{1}{2}mv^2+20[/tex]

[tex]\dfrac{1}{2}\times 3086\times (0.18)^2=\dfrac{1}{2}mv^2+20[/tex]

[tex]50-20=\dfrac{1}{2}mv^2[/tex]

[tex]30=\dfrac{1}{2}mv^2[/tex]

[tex]v=\sqrt{\dfrac{60}{100}}[/tex]

v = 0.774 m/s

So, the velocity of the skateboard is 0.774 m/s.

Discuss what in particular makes the light bulb a non-ohmic resistor. Specifically, how does temperature affect resistance? Can thermal expansion explain the non-ohmic behavior? If not, describe what happens at the atomic level that accounts for the non-ohmic property

Answers

Final answer:

A light bulb acts as a non-ohmic resistor due to its changing resistance with temperature changes, primarily caused by increased atomic vibrations impeding electron flow. This contrasts with Ohm's Law's assumption of constant resistance, illustrating the complex atomic level interactions that govern a light bulb's resistance and thereby its non-ohmic behavior.

Explanation:

The reason a light bulb is considered a non-ohmic resistor primarily lies in its changing resistance with variations in temperature, a characteristic that defies the principle of Ohm's Law which presumes constant resistance. In a light bulb, particularly an incandescent one, the filament's resistance increases significantly as it heats up from room temperature to its operating temperature. This increase in temperature, and consequently resistance, is not simply due to thermal expansion but is rooted in atomic level interactions.

At the atomic level, as the filament's temperature rises, the atoms inside the metal filament vibrate more vigorously. This enhanced vibration creates more impediments for the free flow of electrons, which is the principal cause of electrical current. Hence, with more obstacles in their path, electrons face increased resistance. This change in resistance with temperature illustrates the non-ohmic behavior as it shows that the resistance isn't constant but varies with temperature. It's clear that thermal expansion plays a role in this scenario, but the key factor is the increased atomic vibrations that hinder electron flow.

The power dissipation in resistors, and by extension in light bulbs, can be described by the equations P = V^2/R and P = I^2R. These seemingly contradictory formulae actually complement each other in explaining how power dissipation can either increase or decrease with rising resistance, depending on whether the scenario is considered from the perspective of voltage or current, further illustrating the complex relationship between these variables in a non-ohmic conductor like a light bulb.

A particle moves along the x axis. It is initially at the position 0.270 m, moving with velocity 0.140 m/s and acceleration 20.320 m/s2. Suppose it moves as a particle under constant acceleration for 4.50 s. Find (a) its position and (b) its velocity at the end of this time interval. Next, assume it moves as a particle in simple harmonic motion for 4.50 s and x 5 0 is its equilibrium position. Find (c) its position and (d) its velocity at the end of this time interval.

Answers

The position and velocity of the particle in equilibrium position at the given parameters are;

A) x = -2.34 m

B) v_x = -1.3 m/s

C) x(4.5) = -0.076 m

D) v = 0.314 m/s

We are given;

Initial distance; x_i = 0.27 m

Initial velocity; v_xi = 0.14 m/s

Acceleration; a_x = - 0.32 m/s²

Time; t = 4.5 s

A) Formula for the particle's position as a function of time under constant acceleration is;

x = x_i + v_xi•t + ½a_x•t²

x = 0.27 + (0.14 × 4.5) + ½(-0.32 × 4.5²)

x = -2.34 m

B) Formula for it's velocity at the end of the time interval is;

v_x = v_xi + a_x•t

v_x = 0.14 + (-0.32 × 4.5)

v_x = -1.3 m/s

C) Formula for position in simple harmonic motion is;

x(t) = A cos(ωt + ϕ)

We know that acceleration is;

a = -ω²x

Thus;

-0.32 = -ω²(0.27)

ω = √(0.32/0.27)

ω = 1.089 rad/s

Now, velocity is the derivative of x(t). Thus;

v(t) = x'(t) = -Aω sin (ωt + ϕ)

At t = 0, we have;

0.14 = -A(1.089) × sin ϕ  - - -(1)

Also, at t = 0,

0.27 = A cos ϕ  - - - (2)

Divide equation 1 by equation 2 to get;

0.14/0.27 = -1.089 tan ϕ

ϕ = tan^(-1) (0.14/(0.27 × -1.089))

ϕ = -25.46°

Thus, putting -25.46° for ϕ in eq 2 gives;

0.27 = A cos (-25.46)

0.27 = A × 0.90183

A = 0.27/0.90183

A = 0.2994

Thus,

x(4.5) = 0.2994 cos((1.089 × 4.5) + (-25.46))

x(4.5) = -0.076 m

D) v = -0.2994 × 1.089 × sin 254.6

v = 0.314 m/s

Read more at; https://brainly.com/question/15089829

Final answer:

The position of the particle after 4.50 s of constant acceleration is 207.360 m, and its velocity is 91.580 m/s. In simple harmonic motion, the position of the particle at the end of 4.50 s is 0 m, and its velocity is -1.080 m/s.

Explanation:

(a) Position:

To find the position of the particle after 4.50 s, we can use the equation x = x0 + v0t + 0.5at^2, where x is the final position, x0 is the initial position, v0 is the initial velocity, a is the acceleration, and t is the time interval.

Plugging in the given values:

x = 0.270 m + (0.140 m/s)(4.50 s) + 0.5(20.320 m/s^2)(4.50 s)^2

x = 0.270 m + 0.630 m + 206.460 m

x = 207.360 m

Therefore, the position of the particle at the end of 4.50 s is 207.360 m.

(b) Velocity:

To find the velocity of the particle at the end of 4.50 s, we can use the equation v = v0 + at, where v is the final velocity.

Plugging in the given values:

v = 0.140 m/s + (20.320 m/s^2)(4.50 s)

v = 0.140 m/s + 91.440 m/s

v = 91.580 m/s

Therefore, the velocity of the particle at the end of 4.50 s is 91.580 m/s.

(c) Position:

Since the particle is in simple harmonic motion, its position can be described by the equation x = x0 + A* sin(ωt + φ), where x0 is the equilibrium position, A is the amplitude, ω is the angular frequency, t is the time, and φ is the phase constant.

Plugging in the given values:

x = 0 + 0.270*sin(4.00 rad/s * 4.50 s + 0)

x ≈ 0.270*sin(18.000 rad)

x ≈ 0.270*sin(π rad)

x ≈ 0 m

Therefore, the position of the particle at the end of 4.50 s in simple harmonic motion is 0 m.

(d) Velocity:

The velocity of the particle in simple harmonic motion can be described by the equation v = A*ω*cos(ωt + φ).

Plugging in the given values:

v = 0.270*4.00*cos(4.00 rad/s * 4.50 s + 0)

v ≈ 1.080*cos(18.000 rad)

v ≈ 1.080*cos(π rad)

v ≈ -1.080 m/s

Therefore, the velocity of the particle at the end of 4.50 s in simple harmonic motion is -1.080 m/s.

Learn more about Particle motion here:

https://brainly.com/question/23148906

#SPJ12

One speaker generates sound waves with amplitude A.
How does the intensity change if we add two more speakers at the same place generating sound waves of the same frequency; one with amplitude 4A in the same phase as the original and the other with the amplitude 2A in the opposite phase?

i) It stays the same.
ii) It is 3x bigger than before.
ii) It is 7x bigger than before.
iv) It is 9x bigger than before.
v) It is 49x bigger than before.

Answers

Answer:

iv) It is 9x bigger than before

Explanation:

As the amplitudes of the new speakers add directly with the original one, taking into account the phase that they have, the composed amplitude of the sound wave is as follows:

At = A + 4A -2A = 3 A

The intensity of the wave, assuming it propagates evenly in all directions, is constant at a given distance from the source, and can be expressed as follows:

I = P/A

where P= Power of the wave source, A= Area (for a point source, is equal to the surface area of a sphere of radius r, where is r is the distance to the source along a straight line)

For a sinusoidal wave, the power is proportional to the square of the amplitude, so the intensity is proportional to the square of the amplitude also.

If the amplitude changes increasing three times, the change in intensity will be proportional to the square of the change in amplitude, i.e., it will be 9 times bigger.

So, the statement iv) is the right one.

At the equator, the radius of the Earth is approximately 6370 km. A plane flies at a very low altitude at a constant speed of v = 219 m/s. Upon landing, the jet can produce an average deceleration of a=17 m/s^2. How long will it take the plane to circle the Earth at the equator?

Answers

Final answer:

The time it takes for the plane to circle the Earth at the equator is approximately 182588 seconds or about 50.72 hours.

Explanation:

In order to calculate the time it takes for the plane to circle the Earth at the equator, we need to determine the distance of the circumference of the Earth at the equator. The circumference of a circle is given by the formula C = 2πr, where r is the radius of the circle. In this case, the radius is approximately 6370 km. Plugging this value into the formula, we get C ≈ 2π(6370 km) ≈ 40030 km.

Next, we can calculate the time it takes for the plane to travel this distance by using the formula time = distance / speed. The speed of the plane is given as v = 219 m/s, which is equivalent to approximately 0.219 km/s. Therefore, the time it takes for the plane to circle the Earth at the equator is approximately 40030 km / 0.219 km/s ≈ 182588 seconds (or about 50.72 hours).

Learn more about Time to circle the Earth at the equator here:

https://brainly.com/question/30427557

#SPJ12

When setting up a statics problem, does it matter around which point we calculate the torques?

Answers

Answer: Yes, it matters.

Explanation:

Torque is a measure of the ability of an applied force to cause an object to turn and is the rotational analogue to force. In a static system, torque should be measured due to a force and one needs adjust the magnitude of one or more forces.

A scooter has wheels with a diameter of 120 mm. What is the angular speed of the wheels when the scooter is moving forward at 6.00 m/s?

Answers

To develop this problem we will apply the concepts related to angular kinematic movement, related to linear kinematic movement. Linear velocity can be described in terms of angular velocity as shown below,

[tex]v = r\omega \rightarrow \omega = \frac{v}{r}[/tex]

Here,

v = Lineal velocity

[tex]\omega[/tex]= Angular velocity

r = Radius

Our values are

[tex]v = 6/ms[/tex]

[tex]r = \frac{d}{2} = \frac{120*10^{-3}}{2} = 0.06m[/tex]

Replacing to find the angular velocity we have,

[tex]\omega = \frac{6m/s}{0.06m}[/tex]

[tex]\omega = 100rad/s[/tex]

Convert the units to RPM we have that

[tex]\omega = 100rad/s (\frac{1rev}{2\pi rad})(\frac{60s}{1m})[/tex]

[tex]\omega = 955.41rpm[/tex]

Therefore the angular speed of the wheels when the scooter is moving forward at 6.00 m/s is 955.41rpm

Final answer:

The angular speed of the scooter's wheels when the scooter is moving at 6.00 m/s is 100 rad/sec. This value is calculated using the formula for relating linear velocity, radius, and angular speed, and converting the wheel's diameter to a radius in meters.

Explanation:

To find the angular speed of the scooter's wheels, we need to use the equation that relates linear velocity (v), radius (r), and angular speed (w). This equation is v = r*w where v is the linear speed, r is the radius, and w is the angular speed which we are trying to find.

First, radius r needs to be calculated using the provided diameter as r = diameter / 2 = 120 mm / 2 = 60 mm. Since the linear speed is provided in m/s, we need to convert the radius from mm to m. So, r = 60 mm = 0.06 m.

Then, we can substitute the known values into the equation. 6 m/s = 0.06 m * w, and solve for w: w = (6 m/s) / 0.06 m = 100 rad/s. Therefore, the angular speed of the wheels when the scooter is moving forward at 6.00 m/s is 100 rad/sec.

Learn more about Angular Speed here:

https://brainly.com/question/32114693

#SPJ12

Given two vectors A--> = 4.20 i^+ 7.20 j^ and B--> = 5.70 i^− 2.40 j^ , find the scalar product of the two vectors A--> and B--> .

Find the angle between these two vectors.

Answers

Answer:

[tex]\vec{A}\times \vec{B}=-51.12\hat{k}[/tex]

[tex]\theta=83.2^{\circ}[/tex]

Explanation:

We are given that

[tex]\vec{A}=4.2\hat{i}+7.2\hat{j}[/tex]

[tex]\vec{B}=5.70\hat{i}-2.40\hat{j}[/tex]

We have to find the scalar product and the  angle between these two vectors

[tex]\vec{A}\times \vec{B}=\begin{vmatrix}i&j&k\\4.2&7.2&0\\5.7&-2.4&0\end{vmatrix}[/tex]

[tex]\vec{A}\times \vec{B}=\hat{k}(-10.08-41.04)=-51.12\hatk}[/tex][tex]\hat{k}[/tex]

Angle between two vectors is given by

[tex]sin\theta=\frac{\mid a\times b\mid}{\mid a\mid \mi b\mid}[/tex]

Where [tex]\theta[/tex] in degrees

[tex]\mid{\vec{A}}\mid=\sqrt{(4.2)^2+(7.2)^2}=8.3[/tex]

Using formula[tex]\mid a\mid=\sqrt{x^2+y^2}[/tex]

Where x= Coefficient of unit vector i

y=Coefficient of unit vector j

[tex]\mid{\vec{B}}\mid=\sqrt{5.7)^2+(-2.4)^2}=6.2[/tex]

[tex]\mid{\vec{A}\times \vec{B}}\mid=\sqrt{(-51.12)^2}=51.12[/tex]

Using the formula

[tex]sin\theta=\frac{51.12}{8.3\times 6.2}=0.993[/tex]

[tex]\theta=sin^{-1}(0.993)=83.2[/tex]degrees

Hence, the angle between given two vectors=[tex]83.2^{\circ}[/tex]

Final answer:

The scalar product of vectors A = 4.20 i + 7.20 j and B = 5.70 i - 2.40 j is 6.66. To find the angle between A and B, calculate the magnitudes of each vector and use the cosine formula involving the scalar product and magnitudes.

Explanation:

Finding Scalar Product and Angle Between Two Vectors

To find the scalar product (also known as the dot product) of two vectors A and B, you multiply the corresponding components of the vectors and add them up. For vectors A = 4.20 i + 7.20 j and B = 5.70 i - 2.40 j, the scalar product A · B is:

Scalar Product = (Ax * Bx) + (Ay * By) = (4.20 * 5.70) + (7.20 * -2.40) = 23.94 - 17.28 = 6.66.

To find the angle between the two vectors, we use the formula that involves the scalar product and the magnitudes of the two vectors:

cos(θ) = (A · B) / (|A| * |B|).

First, calculate the magnitudes of A and B:

|A| = √(4.202 + 7.202)|B| = √(5.702 + -2.402)

Then, calculate cos(θ) and finally θ using the arccos function on a calculator. Plug in the scalar product and the magnitudes into the formula to get the angle.

If an evil genius decided to free the Earth from the Sun by charging both (with an equal charge) to generate an electrical force equal to the gravitational force between them, how much charge would be needed on each?

Answers

Answer:

[tex]2.96866\times 10^{17}\ C[/tex]

Explanation:

G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²

k = Coulomb constant = [tex]8.99\times 10^{9}\ Nm^2/C^2[/tex]

r = Distance between the objects and particles

[tex]q_1=q_2[/tex] = Charges

M = Mass of Sun = [tex]1.989\times 10^{30}\ kg[/tex]

m = Mass of Earth = [tex]5.972\times 10^{24}\ kg[/tex]

Here, the Electric force will balance the gravitational force

[tex]\dfrac{GMm_2}{r^2}=\dfrac{kq_1q_2}{r^2}\\\Rightarrow q=\sqrt{\dfrac{GMm}{k}}\\\Rightarrow q=\sqrt{\dfrac{6.67\times 10^{-11}\times 5.972\times 10^{24}\times 1.989\times 10^{30}}{8.99\times 10^{9}}}\\\Rightarrow q=2.96866\times 10^{17}\ C[/tex]

Charge on each particle will be [tex]2.96866\times 10^{17}\ C[/tex]

A small piece of dust of mass m = 4.1 µg travels through an electric air cleaner in which the electric field is 466 N/C. The electric force on the dust particle is equal to the weight of the particle.

(a) What is the charge on the dust particle?
C

(b) If this charge is provided by an excess of electrons, how many electrons does that correspond to?
electrons

Answers

Answer:

Explanation:

mass, m = 4.1 x 10^-6 g

Electric field, E = 466 N/C

Electric force = weight

(a) Electric force = q x E = m x g

where, q be the charge on the dust particle.

q x 466 = 4.1 x 10^-6 x 9.8

q = 8.62 x 10^-8 C

(b) Number of electron  = charge / charge of one electron

n = 8.62 x 10^-8 / (1.6 x 10^-19)

n = 5.4 x 10^11

A glass marble is rubbed against a piece of silk. As a resultthe piece of fabric acquires extra electrons.

What happens to theglass marble?

a)The marble has lost the same number ofelectrons acquired by the piece of silk.

b)The marble acquires a positive charge andrepels the piece of silk.

c)The marble acquires a negative charge andattracts the piece of silk.

d)The marble has acquired the same numberof electrons acquired by the piece of silk.

e)The marble acquires a positive charge andattracts the piece of silk.

f)The marble acquires a negative charge andrepels the piece of silk.

Answers

Answer:

the marble has lost the same number of electrons acquired by the piece of silk.  

the marble acquires a positive charge and attracts the piece of silk.

Explanation:

When an object or a material acquires extra electrons it becomes negatively charged while when it losses electrons it becomes positively charged. The glass marble was rubbed against the silk cloth, and the silk cloth acquires extra electron thereby becoming negatively charged, the same amount of charge the silk cloth acquires was lost from the glass marble thereby causing the marble to become positively charged. Also opposite charges attracts while likes charges repel and due to equal and opposite charge on silk and glass marble, they both will attract each other. thus option A and E is correct.

In an effort to stay awake for an all-night study session, a student makes a cup of coffee by first placing a 200 WW electric immersion heater in 0.400 kgkg of water.

Answers

Answer:

The heat is 115478.4 J.

Explanation:

Given that,

Mass of water = 0.400 kg

Power = 200 W

Suppose, we determine how much heat must be added to the water to raise its temperature from 20.0°C to 89.0°C?

We need to calculate the heat

Using formula of heat

[tex]Q=mc\Delta T[/tex]

Where, m = mass of water

c = specific heat

Put the value into the formula

[tex]Q=400\times4.184\times(89-20)[/tex]

[tex]Q=115478.4\ J[/tex]

Hence, The heat is 115478.4 J.

Final answer:

The subject of this question is Physics, and the student is asking about using an electric immersion heater to heat water for an all-night study session. To calculate the resistance of the heater, the formula Resistance = (Voltage)^2 / Power is used. The current flowing through the heater can be determined using Ohm's Law: Current = Voltage / Resistance.

Explanation:

The subject of this question is Physics. The student is asking about using an electric immersion heater to heat water for an all-night study session.

To calculate the resistance of the heater, we need to use the formula: Resistance = (Voltage)^2 / Power. The power can be calculated using the formula: Power = Current x Voltage.

We can determine the current flowing through the heater using Ohm's Law: Current = Voltage / Resistance.

A stone is dropped into a river from a bridge at a height h above the water. Another stone is thrown vertically down at a time t after the first is dropped. Both stones strike the water at the same time. What is the initial speed of the second stone? Give your answer in terms of the given variables and g. -g

Answers

Answer:

[tex]v_{y_0} = \frac{\frac{g}{2}t(t - 2\sqrt{\frac{2h}{g}})}{\sqrt{\frac{2h}{g}} - t}[/tex]

Explanation:

We will apply the equations of kinematics to both stones separately.

First stone:

Let us denote the time spent after the second stone is thrown as 'T'.

[tex]y - y_0 = v_{y_0}(t+T) + \frac{1}{2}a(t+T)^2\\0 - h = 0 + \frac{1}{2}(-g)(t+T)^2\\(t+T)^2 = \frac{2h}{g}\\T = \sqrt{\frac{2h}{g}}-t[/tex]

Second stone:

[tex]y - y_0 = v_{y_0}T + \frac{1}{2}aT^2\\0 - h = v_{y_0}T -\frac{1}{2}gT^2\\-h = v_{y_0}(\sqrt{\frac{2h}{g}} - t) - \frac{g}{2}(\sqrt{\frac{2h}{g}} - t)^2\\-h = v_{y_0}(\sqrt{\frac{2h}{g}} - t) - \frac{g}{2}(\frac{2h}{g} + t^2 - 2t\sqrt{\frac{2h}{g}})\\-h = v_{y_0}\sqrt{\frac{2h}{g}} - v_{y_0}t - h -\frac{g}{2}t^2 + gt\sqrt{\frac{2h}{g}}\\v_{y_0}(\sqrt{\frac{2h}{g}} - t) = \frac{g}{2}t^2 - gt\sqrt{\frac{2h}{g}}\\v_{y_0} = \frac{\frac{g}{2}t(t - 2\sqrt{\frac{2h}{g}})}{\sqrt{\frac{2h}{g}} - t}[/tex]

Final answer:

The initial speed of the second stone thrown vertically down is the same as its final velocity when it reaches the water, which is given by gt.

Explanation:

To find the initial speed of the second stone, we can use the equation of motion for an object in free fall. The equation is given by: h = ½gt^2, where h is the height of the bridge, g is the acceleration due to gravity, and t is the time taken by the second stone to reach the water.

Rearranging the equation, we can solve for t: t = √(2h/g). Since the second stone is thrown vertically down, its initial velocity is zero. The final velocity of the second stone when it reaches the water is given by: v = gt. Therefore, the initial speed of the second stone is simply the same as its final velocity, which is gt.

Learn more about Stone thrown here:

https://brainly.com/question/32911738

#SPJ3

A spherical surface surrounds a point charge q. Describe what happens to the total flux through the surface if the following happens:

(a) The charge is tripled.
*The flux is tripled.
*The flux decreases by 1/3.
*The flux remains constant.
*The flux goes to zero.

(b) The volume of the sphere is doubled.

*The flux is tripled.
*The flux decreases by 1/3.
*The flux remains constant.
*The flux goes to zero.

(c) The surface is changed to a cube.
*The flux is tripled.
*The flux decreases by 1/3.
*The flux remains constant.
*The flux goes to zero.

(d) The charged is moved to another location inside the surface.

*The flux is tripled.
*The flux decreases by 1/3.
*The flux remains constant.
*The flux goes to zero.

(e) The charge is moved outside the surface.

*The flux is tripled.
*The flux decreases by 1/3.
*The flux remains constant.
*The flux goes to zero.

Answers

The charge is tripled, flux is tripled.The volume of the sphere is doubled, flux remains constant.The surface is changed to a cube, flux remains constant.The charge is moved to another location inside the surface, flux remains constant.The charge is moved outside the surface, flux goes to zero.

Gauss' law states that the total charge contained within a closed surface immediately proportionately affects the electric flux through that surface. The flux across the spherical surface will quadruple if the charge is tripled.

The enclosed charge determines the electric flux through a closed surface, not the size or shape of the surface. The quantity of charge confined does not change when the sphere's volume is doubled, hence the flux does not change.

Similar to component (b), the flux is unaffected by changing the surface's shape as long as the enclosed charge stays constant.

The total charge contained by the surface is the only factor that affects the electric flux across a closed surface.

Thus, since there is no longer any charge contained by the closed surface if the charge is transported outside of it, there is no longer any electric flux through the surface.

For more details regarding electric flux, visit:

https://brainly.com/question/30409677

#SPJ12

Final answer:

The total flux through a spherical surface surrounding a point charge depends on the charge, while the flux through the surface remains constant when the volume of the sphere or the shape of the surface is changed. If the charge is moved to another location inside the surface, the total flux remains constant, but if the charge is moved outside the surface, the total flux goes to zero.

Explanation:

(a) When the charge is tripled, the total flux through the surface also triples. This is because the total flux is directly proportional to the charge enclosed by the surface.

(b) When the volume of the sphere is doubled, the total flux through the surface remains constant. This is because the total flux is independent of the volume of the surface.

(c) When the surface is changed to a cube, the total flux through the surface remains constant. This is because the total flux is independent of the shape of the surface.

(d) When the charge is moved to another location inside the surface, the total flux through the surface remains constant. This is because the total flux is independent of the position of the charge within the surface.

(e) When the charge is moved outside the surface, the total flux through the surface goes to zero. This is because the total flux is zero when there are no charges enclosed by the surface.

Learn more about Electric Field and Flux here:

https://brainly.com/question/33167286

#SPJ3

Calculate the wavelength of the electromagnetic radiation required to excite an electron from the ground state to the level with n = 5 in a one-dimensional box 45.7 pm in length.

Answers

Answer: wavelength λ = 2.9Å

Explanation:

Using the particle in a box model. The energy level level increases with n^2

En = (n^2h^2)/ 8mL^2 .....1

For the ground state, n = 1 to level n= 5, the energy level changes from E1 to E5

∆E = (5^2 - 1^2)h^2/8mL^2

but 5^2 - 1^2 = 24.

so,

∆E = 24h^2/8mL^2 .....2

And the wavelength of the radiation can be derived from the equation below:

E = hc/λ

λ = hc/E .......3

Substituting equation 2 to 3

λ = hc/[(24h^2)/ 8mL^2]

λ = 8mcL^2/(24h)

λ = 8mcL^2/24h .....4

Where,

n = energy state

h = Planck's constant = 6.626 × 10^-34 Js

m= mass of electron = 9.1 × 10^-31 kg

L = length = 45.7pm = 45.7×10^-12 m

E = energy

c= speed of light = 3.0 ×10^8 m/s

λ= wavelength

Substituting the values into equation 4 above

λ = [(8×9.1×3×45.7^2)/(24×6.626)] × 10^(-31+8-24+34)

λ = 2868.285390884 × 10^-13 m

λ = 2.9 × 10^-10 m

λ = 2.9Å

Final answer:

The wavelength of the electromagnetic radiation required to excite an electron can be calculated using the formula wavelength = (2 * box length) / n, where n is the energy level. The wavelength of the electromagnetic radiation required is 9.14 pm.

Explanation:

To calculate the wavelength of the electromagnetic radiation required to excite an electron from the ground state to the level with n = 5 in a one-dimensional box, we can use the formula:

wavelength = (2 * box length) / n

Given that the box length is 45.7 pm and n = 5, we can substitute the values into the formula:

wavelength = (2 * 45.7 pm) / 5

Simplifying the expression gives us:

wavelength = 9.14 pm

Therefore, the wavelength of the electromagnetic radiation required is 9.14 pm.

Learn more about Electromagnetic Radiation here:

https://brainly.com/question/2334706

#SPJ3

Other Questions
A chemist adds of a 0.0013 mM copper(II) fluoride solution to a reaction flask. Calculate the mass in micrograms of copper(II) fluoride the chemist has added to the flask. Round your answer to significant digits. Communicable disease can be prevented by1) eating healthy2)keeping a clean kitchen3) not smoking4) both 1_2P.S. I was going to go with bolf 1 + 2 not sure though Define the three energy pathways. For each pathway, identify two exercises that utilize thepathway. If you were training to run a marathon, which pathway would be the focal point of yourtraining? What types of activities would you incorporate into your marathon training and why?How will an understanding of energy pathways help you in your future training endeavors? Anton is mentally ill and lives in Gheel, Belgium during the 1400s. What kind of care does he receive? How to find final velocity How do I mutiply 14(a+5+6b) What is the equation of the line that is parallel to y = 4x + 3 and has a y-intercept of -1/3 _____ is the broad term that refers to a condition in which a person feels psychologically and physically compelled to take a specific drug. Identify the factors that govern the speed and direction of a reaction. Check all that apply. a. Reaction rates increase when the products are more concentrated b. Reaction rates increase when the reactants are more concentrated c. Reaction rates increase as the temperaturenses d. Reaction rates decrease when als we present According to Selye (1956, 1976), the _____ phase of the general adaptation syndrome occurs if the person fails to overcome the threat and depletes its physiological resources in the process of trying. A. alarm B. resistance C. exhaustion D. flight Light, x-rays, microwaves, and radio waves are examples of which type of energy?Electrical energyNuclear energyThermal energyRadiant energy Nadias Stage Fright Clark Benson Nadia sat at the piano, tapping her shoe to keep time with the rhythm of the song she had been practicing for a month. Her dog Lucky, her biggest fan, lay near her feet. At first, Nadia had to shoo him away and distract him with his favorite toy, a blue rubber ball. But now, Lucky had found the ideal spot on the floor; close enough to be near Nadia, but far enough away that he wouldnt disturb her playing.2Nadia had practically perfected this particular song, but she had to perform it at the school talent show and was relentless in her practicing. Before she started to play, she had a routine to prepare herself. First, she would stretch and wiggle her fingers to get them loose for playing. Then, she would take a few deep breaths to relax and clear her mind from the days activities. Finally, she would close her eyes and imagine herself playing the song; she envisioned her hands moving along the keys. After Nadia performed this routine, the song seemed to flow freely from her fingertips. Of course, she knew well enough that hours of practicing had resulted in her playing the song so well. Still, her routine allowed her to clear her mind and quiet the butterflies in her stomach.4Nadia knew those butterflies would be worse once she had to play the song in front of her entire school. When she decided to participate in the school talent show, she had chosen a more complicated piece of classical music. Nadia had been playing the piano since she was seven, and she truly wanted to challenge herself. When the big night finally arrived, Nadia prepared backstage. She watched her classmates display their own various talents. Then came the moment that both excited and terrified her; she was up next.6The audiences applause sounded like ocean waves and made her feel welcome. Still, she could feel those butterflies fluttering in her belly, and she felt her palms start to sweat. Nadia had already performed her routine backstage, but it seemed as if it hadnt worked this time! She sat down on the piano bench and looked at the black and white keys, which seemed unfamiliar now.7For a moment, she panicked and glanced at the audience in front of her. Nadia spotted her mother in the first row. Seeing her mother made her think of home and Lucky. This time, when she looked down at the piano keys, she imagined she was at home with Lucky beside her. In that moment, her nerves settled as she forgot about the audience eagerly awaiting her performance. Now that it was just her and Lucky, she struck the first note, and the other notes just fell in line with ease. When Nadia hit the last note, she turned to the audience and smiled. Just as she did, the audience erupted in applause. What does the figure of speech butterflies in her stomach reveal about Nadia?A)that Nadia has an unusual medical condition in which small butterflies live in her stomachB)that Nadia is extremely nervous about performing her piano routine in the school talent showC)that, while Nadia loves her dog Lucky, she has an allergic reaction to his being too close to herD)that Nadia is confident about her skill as a pianist and can't wait to perform in the school talent show If f(x) = 6x 4, what is f(x) when x = 8?O2116 (30 pts) Simplify 252Show steps plz What is the equation of the line through (2,-4) and (0,4) Ben left the corporate rat race to start his own business that will allow him to earn a small income while providing plenty of time to pursue his love of pottery making. He does not expect either growth or high profits. Bens prospects for attracting outside financing are______________. Dissatisfaction with public education has led many parents to try home schooling for their children. If parents cut back on their jobs outside the home in order to spend time teaching their children at home, how will this affect GDP? Find the quotient.-56 -8 = a0 a barrel of water contains 60 gallons of water if 21 gallons leaked out what percent of water was left in the barrel Which of the following accurately defines segregation? The process by which a minority individual or group takes on the characteristics of the dominant culture. The deliberate annihilation of a targeted, usually subordinate, group. The integration of diverse cultural concepts into a public school curriculum. The physical separation of two groups, particularly in residence, but also in workplace and social functions. Steam Workshop Downloader