Gauss law states that the electric flux through any closed surface is proportional to the net electric charge inside the surface. This is expressed mathematically in the form of:
Φ = Q / εo
Where,
Φ = the electric flux = unknown (which we have to find for)
Q = the net electric charge = 5.0 µC = 5 E-6 C
εo = the permittivity of free space = a constant value = 8.85 E-12 C^2 / N m^2
Plugging in the values into the equation will result in:
Φ = 5 E-6 C / (8.85 E-12 C^2 / N m^2)
Φ = 564,971.75 Wb = 5.6 x 10^5 Wb
Discuss how electromagnets have been created that are strong enough to pick up cars in a wrecking yard and are able to be switched off, dropped the cars onto a scrap pile to be crushed.
An inductor is just a coil of wire with magnetic properties. It is a device that stores electromotive force or energy in the form of magnetic field. A current yields a magnetic field around it through a conductor. The pattern of flux for this magnetic field would be the number of concentric circle perpendicular to the detection of current. The capacity of the inductor is affected by the number of coils which would give more inductance, the material that is used for the coil, the cross sectional area of the coil and the length of the coil. For instance you have an 8 meters diameter coil with seven loops of wire. You place the coil on an area where there is a parked car. The inductance of the coil will be much larger compared to the coil without a parked car nearby because of the presence of the steel from the car. It changes the magnetic field of the coil because it acts as a core of the inductor.
(02.01)triangle xyz slides 2 units left and 1 unit down on the coordinate plane. if the original measure of angle x was 40 degrees, what is the measure of angle x'?
Let us say that triangle XYZ has sides of XY, YZ, and ZX.
Each of the corners X, Y, and Z are located at their own (x, y) points.
If all of the triangle are transformed through translation by a movement of 2 units left and 1 unit down on the coordinate plane then we generate a triangle X’Y’Z’.
Then each of the corners X’, Y’ and Z’ are now located at (x – 2, y – 1) coordinates.
Since all of the corners were moved then we can also say that:
XY is congruent to X’Y’
YZ is congruent to Y’Z’
ZX is congruent to Z’X’
Since all sides are congruent, therefore all angles are also congruent.
Therefore the measure of angle x’ is equal to the measure of angle x.
Answer:
40 degrees
What is the ratio of the earth's orbital period about the sun to the earth's period of rotation about its own axis?
One complete
orbit of the earth around the sun is 365 and ¼ days. Because of this, the earth
has to completely orbit around the sun in respect to the stars too no the sun
only and so the earth spins 366.26 times every rotation. The ratio of
the earth's orbital period about the sun to the earth's period of rotation
about its own axis will then be 1 is to
366.26.
Final answer:
The ratio of the Earth's orbital period about the sun to its period of rotation about its axis is 365.26:1.
Explanation:
The ratio of the earth's orbital period about the sun to the earth's period of rotation about its own axis is 365.26 days to 1 day.
This means it takes approximately 365.26 days for the Earth to orbit the Sun once, while it takes 1 day for the Earth to complete one full rotation about its axis.
Therefore, the ratio can be simplified to 365.26:1.
A tennis ball traveling horizontally at 22.0 m/s suddenly hits a vertical brick wall and bounces back with a horizontal velocity of 18.0 m/s
Part A: Make a free-body diagram of this ball just before it hits the wall.
The only force acting on the ball is the pull of the Earth, this is its weight; so the diagram is a vertical vector downwards.
Part B: Make a free-body diagram of this ball just after it has bounced free of
the wall.
Again, the only force acting on the ball is the pull of the Earth, its weight, and the free-body diagram is identical to that of the part A.
Part C: Make a free-body diagram of this ball while it is in contact with the
wall.
Calculate the buoyant force due to the surrounding air on a man weighing 700 n . assume his average density is the same as that of water. suppose that the density of air is 1.20 kg/m3. express your answer to two significant figures and include the appropriate units.
Buoyant force due to the surrounding air on a man is 0.84 Newton
[tex]\texttt{ }[/tex]
Further explanationThe basic formula of pressure that needs to be recalled is:
Pressure = Force / Cross-sectional Area
or symbolized:
[tex]\large {\boxed {P = F \div A} }[/tex]
P = Pressure (Pa)
F = Force (N)
A = Cross-sectional Area (m²)
Let us now tackle the problem !
[tex]\texttt{ }[/tex]
Given:
Density of Air = ρ_air = 1.20 kg/m³
Weight of the man = w = 700 N
Density of the man = ρ = 1000 kg/m³
Asked:
Buoyant Force = F = ?
Solution:
We will use Archimedes' principle to solve the problem as follows:
[tex]F = \rho_{air} g V[/tex]
[tex]F = \rho_{air} g \frac{m}{\rho}[/tex]
[tex]F = \rho_{air} g \frac{w}{g\rho}[/tex]
[tex]F = \rho_{air} \frac{w}{\rho}[/tex]
[tex]F = 1.20 \times \frac{700}{1000}[/tex]
[tex]F = 0.84 \texttt{ Newton}[/tex]
[tex]\texttt{ }[/tex]
Learn moreMinimum Coefficient of Static Friction : https://brainly.com/question/5884009The Pressure In A Sealed Plastic Container : https://brainly.com/question/10209135Effect of Earth’s Gravity on Objects : https://brainly.com/question/8844454[tex]\texttt{ }[/tex]
Answer detailsGrade: High School
Subject: Physics
Chapter: Pressure
[tex]\texttt{ }[/tex]
Keywords: Gravity , Unit , Magnitude , Attraction , Distance , Mass , Newton , Law , Gravitational , Constant , Liquid , Pressure
The buoyant force due to the surrounding air on a man weighing 700 N is approximately 0.84 N. The ratio of the buoyant force to his weight is approximately 0.00120, which shows the buoyancy effect in air is minimal compared to his weight.
Explanation:To calculate the buoyant force due to the surrounding air on a man weighing 700 N (equivalent to a mass of approximately 71.4 kg assuming g = 9.81 m/s2), we can use Archimedes' principle. This principle states that the buoyant force on an object immersed in a fluid is equal to the weight of the fluid displaced by the object. Since the man's average density is the same as that of water (about 1000 kg/m3), his volume V can be calculated using the formula:
V = mass / density = 71.4 kg / 1000 kg/m3 = 0.0714 m3.
The buoyant force (Fb) in air can then be calculated with the density of air (1.20 kg/m3):
Fb = density of air × volume × g = 1.20 kg/m3 × 0.0714 m3 × 9.81 m/s2 ≈ 0.841 N.
Therefore, the buoyant force is approximately 0.84 N.
To find the ratio of the buoyant force to the man's weight, we divide the buoyant force by the weight:
Ratio = Fb / weight = 0.841 N / 700 N ≈ 0.00120.
So, the ratio of the buoyant force to the man's weight is approximately 0.00120, which implies the effect of buoyancy in air is quite small compared to the weight of the man.
The cold protective response may be activated when a person's face is submerged in water that is less than ________ degrees fahrenheit.
Rahul goes to school daily on his cycle. It is his daily observation that he
needs to apply more force to start the cycle to move, as compared to when the
cycle is in motion. Explain.
A tow truck exerts a force of 2000 N on a car, accelerating it at 1 m/s2. What is the mass of the car?
Answer:
Mass, m = 2000
Explanation:
Given that,
Force acting on the truck, F = 2000 N
Acceleration of the truck, [tex]a=1\ m/s^2[/tex]
To find,
The mass of the car
Solution,
The second law of motion gives the relationship between the mass force and the acceleration. It is given by :
[tex]F=ma[/tex]
[tex]m=\dfrac{F}{a}[/tex]
[tex]m=\dfrac{2000\ N}{1\ m/s^2}[/tex]
m = 2000 kg
So, the mass of the car is 2000 kg.
If the distance between two asteroids is doubled, the gravitational force they exert on each other will.
The gravitational force the asteroids exert on each other will be one fourth of their initial force.
What is gravitational force?Any two bodies will be attracted to one another by the force of gravity, also known as gravity. There is an attraction between every thing in the cosmos, but most of the time it is too faint to be noticed due to the extreme distance between the objects. Furthermore, although the influence of gravity is weaker as objects are moved away, its range is infinite.
We know that, gravitational force acting between two bodies,
F=[tex]\frac{ G m_1 m_2}{r^2}[/tex]
Where, G = universal gravitational constant
m₁ and m₂ are masses of the two bodies and r is distance between them.
Let, the masses of the two asteroids are M₁ and M₂ and initial distance between them is R.
Hence, gravitational force they exert on each other, F₁ =[tex]\frac{ G M_1 M_2}{R^2}[/tex]
Now, when the distance between two asteroids is doubled, that is 2R, the gravitational force they exert on each other will, F₂ = [tex]\frac{ G M_1 M_2}{(2R)^2}[/tex] = [tex]\frac{1}{4}[/tex] [tex]\frac{ G M_1 M_2}{R^2}[/tex] = [tex]\frac{1}{4}[/tex] F₁
Hence, the final gravitational force is one-fourth of the initial one.
Learn more about gravitational force here:
https://brainly.com/question/12528243
#SPJ5
The stage of young adulthood in which individuals take time to find themselves is A. emerging adulthood. B. the period of role diffusion. C. the thirty-somethings. D. the trying twenties.
Answer:
(a) Emerging adulthood.
Explanation:
Emerging adulthood is a period between teenagers' dependence on guardians and grown-ups' long haul duties in adoration and work, and during these years, rising grown-ups center around themselves as they build up the information, abilities, and self-understanding they will requirement for grown-up life.
So the correct option is (a)
How much heat energy is required to raise the temperature of 5 kilograms of coal from 20°C to 220°C? A. 314 J B. 6,573 J C. 1,314,718 J D. 4,187,000 J
Answer:
C. 1,314,718 J
Explanation:
The heat energy needed to raise the temperature of the coal is given by:
[tex]Q=m C_s \Delta T[/tex]
where:
m = 5 kg is the mass of the coal
[tex]C_s = 1314 J/kg ^{\circ}C[/tex] is the specific heat of coal
[tex]\Delta T= 220^{\circ}C-20^{\circ}C=200^{\circ}C[/tex] is the increase in temperature
Substituting into the formula, we find
[tex]Q=(5 kg)(1314 J/kg ^{\circ}C )(200^{\circ}C)=1,314,000 J[/tex]
So, the closest option is
C. 1,314,718 J
For safety reasons, in case of an aborted takeoff, the length of the runway must be three times the takeoff distance. what is the minimum length runway this aircraft can use?
The minimum length runway this aircraft can use is about 4.1 km
Further explanationAcceleration is rate of change of velocity.
[tex]\large {\boxed {a = \frac{v - u}{t} } }[/tex]
[tex]\large {\boxed {d = \frac{v + u}{2}~t } }[/tex]
a = acceleration ( m/s² )
v = final velocity ( m/s )
u = initial velocity ( m/s )
t = time taken ( s )
d = distance ( m )
Let us now tackle the problem !
Let's look at the table in the attachment
Given:
u = 0 m/s
v = 79 m/s
a = 23 / 10 = 2.3 m/s²
Unknown:
d = ?
Solution:
Let's calculate the takeoff distance.
[tex]v^2 = u^2 + 2as[/tex]
[tex]79^2 = 0^2 + 2(2.3)s[/tex]
[tex]6241 = 4.6s[/tex]
[tex]s = 6241 \div 4.6[/tex]
[tex]s \approx 1400 ~ m[/tex]
The length of the runway must be three times the takeoff distance.
[tex]d = 3s[/tex]
[tex]d = 3(6241 \div 4.6)[/tex]
[tex]d \approx 4100 ~ m[/tex]
Learn moreVelocity of Runner : https://brainly.com/question/3813437Kinetic Energy : https://brainly.com/question/692781Acceleration : https://brainly.com/question/2283922The Speed of Car : https://brainly.com/question/568302Answer detailsGrade: High School
Subject: Physics
Chapter: Kinematics
Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle , Speed , Time , Rate
To determine the minimum runway length for an aircraft, multiply the takeoff distance by three. If the takeoff distance is known, this simple multiplication will provide the minimum runway requirement.
Explanation:The question asks for the minimum runway length required for an aircraft, given that the runway must be three times the takeoff distance for safety reasons in the event of an aborted takeoff. To determine this, if we know the takeoff distance required for the aircraft, we simply multiply that distance by three to find the minimum runway length the aircraft can use. For example, if an aircraft requires 1 kilometer (1,000 meters) to take off, the minimum runway length must be 3 kilometers (3,000 meters) for safety reasons.
A plane flies from base camp to lake a, 205 km away in the direction 20.0° north of east. after dropping off supplies it flies to lake b, which is 175 km at 30.0° west of north from lake
a. determine the distance and direction from lake b to the base camp.
Compared to energy-flow in ecosystems, the flow of matter ________.
Compared to energy-flow, which enters ecosystems as sunlight and leaves as heat, the flow of matter is continually recycled and conserved, obeying the law of conservation of mass.
Compared to energy-flow in ecosystems, the flow of matter is conserved and recycled. While energy enters an ecosystem, typically in the form of sunlight, and is eventually dissipated as heat, matter circulates within the ecosystem through various biotic and abiotic processes. The law of conservation of mass supports the notion that matter is neither created nor destroyed, but rather continuously reused and transformed. Substances like water, carbon, and nitrogen undergo recycling through ecosystems; essential for life, these elements are integral components of the food web, influencing the distribution and abundance of organisms.
Dilute, saturated, concentrated is the order of terms for increasing solute to solvent ratio for solutions.
An object is placed exactly halfway between the Earth and moon. The object will fall toward the
Answer:
Force of Earth will be dominating and the object will fall towards Earth
Explanation:
As we know that
Mass of Earth
[tex]M_e = 5.98 \times 10^{24} kg[/tex]
Mass of Moon
[tex]M_m = 7.35 \times 10^{22} kg[/tex]
since we know that gravitational force depends on mass and the distance between two objects
so here if an object is placed midway between Moon and Earth then as we can see that mass of Earth is approx 100 times more than the mass of Moon
So here we can say that Force of Earth will be dominating and the object will fall towards Earth
How many magnitude 8 earthquakes does it take to equal the energy release for a magnitude 9 earthquake?
Can something have energy without having momentum? explain. can something have momentum without having energy? defend your answer
A driver sets out on a journey. for the first half of the distance she drives at the leisurely pace of 30 mi/h; during the second half she drives 60 mi/h. what is her average speed on this trip?
A driver sets out on a journey. for the first half of the distance she drives at the leisurely pace of 30 mi/h; during the second half she drives 60 mi/h, the driver's average speed on this trip is 40 mi/h.
To find the average speed for the entire trip, we can use the formula for average speed:
Average Speed = Total Distance ÷ Total Time.
In this case, the driver covers the first half of the distance at 30 mi/h and the second half at 60 mi/h.
Let's assume the total distance of the trip is [tex]\(D\)[/tex] miles. The first half of the distance is [tex]\(D/2\)[/tex] miles, and the second half of the distance is also [tex]\(D/2\)[/tex] miles.
Let's calculate the time taken for each half of the distance:
Time taken for the first half = Distance / Speed
= [tex]\((D/2) \, \text{miles} / (30 \, \text{mi/h})\)[/tex].
Time taken for the second half = Distance / Speed
= [tex]\((D/2) \, \text{miles} / (60 \, \text{mi/h})\).[/tex]
Total time for the trip = Time for the first half + Time for the second half.
Total time = [tex]\((D/2) / (30) + (D/2) / (60)\)[/tex].
Total time = [tex]\(\dfrac{D}{60} + \dfrac{D}{120}\)[/tex].
Total time = [tex]\(\dfrac{3D}{120} = \dfrac{D}{40}\)[/tex].
Now we can calculate the average speed:
Average Speed = Total Distance / Total Time.
Average Speed = [tex]\(D / \dfrac{D}{40}\)[/tex].
Average Speed = [tex]\(40\) mi/h[/tex].
Thus, the driver's average speed on this trip is 40 mi/h.
For more details regarding average speed, visit:
https://brainly.com/question/13318003
#SPJ12
The driver's average speed on this trip is 30 mi/h.
Explanation:To find the average speed on this trip, we can use the formula: average speed = total distance / total time. Let's assume the total distance is D miles. According to the given information, the driver spends the first half of the distance at a speed of 30 mi/h and the second half at a speed of 60 mi/h. Therefore, the total time taken for the trip is D / (30 mi/h) + D / (60 mi/h) = D / (1/30 h) + D / (1/60 h) = 2D / (1/60 h) = 120D h. We can substitute this value into the average speed formula and simplify: average speed = D / (120D h) = 1/120 h. So, the driver's average speed on this trip is 1/120 h = 0.00833 h = 0.00833 x 60 min = 0.5 min/h = 0.5 x 60 = 30 mi/h. Therefore, the driver's average speed on this trip is 30 mi/h.
At fifty-five miles per hour, a vehicle travels __________ feet in one second.
Final answer:
A vehicle traveling at 55 miles per hour covers approximately 80.67 feet in one second, calculated by converting miles per hour to feet per second.
Explanation:
To find out how many feet a vehicle travels in one second at a speed of 55 miles per hour, we can perform a unit conversion from hours to seconds. First, we need to determine how many feet are in a mile and then convert miles per hour to feet per second.
There are 5,280 feet in a mile, therefore:
55 miles × 5,280 feet/mile = 290,400 feet per hourSince there are 3,600 seconds in an hour, we divide the total feet per hour by the number of seconds in an hour to find the distance in feet per second.
290,400 feet/hour ÷ 3,600 seconds/hour = 80.67 feet per second (rounded to two decimal places)So, a vehicle traveling at 55 miles per hour travels approximately 80.67 feet in one second.
The time between two successive meridian crossings of the vernal equinox (or any other fixed point in the celestial sphere) is called ___________ day and it is ___________ long.
The best answers to complete this sentence would be the following:
“sidereal day”
“upper median”
It keeps the time, in the two successive upper meridian of the sun during the crossing. Also it is when the star crosses the celestial meridian.
Explanation:
“sidereal day”
“upper median”
It keeps the time, in the two successive upper meridian of the sun during the crossing. Also it is when the star crosses the celestial meridian.
Hope this helps!
If you lose control of your vehicle and collide with a fixed object, such as a tree, at 60 m.p.h., the force of impact is the same as driving your vehicle off a
The force of impact is the same as driving your vehicle off a 10.0 story structure.
Given the following data:
Velocity = 60 mph.Conversion:
Velocity = 60 mph to m/s = 26.82 m/s.How to calculate the height.In this exercise, you're required to compare the force of impact with an equivalent height. Thus, we would use the following formula to calculate the height:
[tex]H = \frac{V^2}{2g}[/tex][tex]H = \frac{V^2}{2g}[/tex]
Where:
H is the height.V is the velocity.g is the acceleration due to gravity.Substituting the parameters into the formula, we have;
H = \frac{26.82^2}{2(9.8)}
H = 36.70 meters.
Assuming a distance of 3.6 meters:
Height = \frac{36.70}{3.6}
Height = 10.0 meters.
Read more on forces here: brainly.com/question/1121817
The air that flows over the top part of an airplane's wing moves faster than the air that flows across the bottom. This faster moving air causes the wing to rise.
Which of the following principles or laws helps explain why the wing rises?
Boyle
Bernoulli
Pascal
Charles
When photons with a wavelength of 310. nm strike a magnesium plate, the maximum velocity of the ejected electrons is 3.45 105 m/s. calculate the binding energy of electrons to the magnesium surface?
The binding energy of electrons to the magnesium surface can be calculated using the equation KE = hf - BE, where KE is the kinetic energy of the ejected electrons, hf is the energy of the incident photons, and BE is the binding energy. Given that the maximum velocity of the ejected electrons is 3.45 × 10^5 m/s, we can calculate the kinetic energy using the equation KE = (1/2)mv^2. Using the given wavelength of the photons (310 nm), we can calculate the energy of the photons using the equation E = hc/λ, where h is Planck's constant (6.63 × 10^-34 J.s), c is the speed of light (3.00 × 10^8 m/s), and λ is the wavelength in meters. By rearranging the equation to solve for the binding energy, we find that the binding energy is equal to the energy of the incident photons minus the kinetic energy of the ejected electron.
Explanation:The binding energy of electrons to the magnesium surface can be calculated using the equation KE = hf - BE, where KE is the kinetic energy of the ejected electrons, hf is the energy of the incident photons, and BE is the binding energy. Given that the maximum velocity of the ejected electrons is 3.45 × 10^5 m/s, we can calculate the kinetic energy using the equation KE = (1/2)mv^2.
Using the given wavelength of the photons (310 nm), we can calculate the energy of the photons using the equation E = hc/λ, where h is Planck's constant (6.63 × 10^-34 J.s), c is the speed of light (3.00 × 10^8 m/s), and λ is the wavelength in meters.
By rearranging the equation to solve for the binding energy, we find that the binding energy is equal to the energy of the incident photons minus the kinetic energy of the ejected electrons.
Learn more about Binding Energy here:https://brainly.com/question/33710857
#SPJ12
The binding energy of electrons to the magnesium surface is calculated to be approximately 0.62 eV.
To determine the binding energy of electrons ejected from a magnesium plate by photons with a wavelength of 310 nm, we use the photoelectric effect equation:
Binding Energy (Eb) = Energy of Photon (E(photon)) - Kinetic Energy (Ke)Calculate the energy of the photon (E(photon)):
E(photon) = hc/λGiven:
h = 6.626 × 10⁻³⁴ J·s (Planck's constant)Convert the photon energy from joules to electron volts (eV):
Since 1 eV = 1.602 × 10⁻¹⁹ J, E(photon) ≈ 6.41 × 10⁻¹⁹ J / 1.602 × 10⁻¹⁹ J/eV E(photon)≈ 4.00 eVCalculate the kinetic energy (Ke) of the ejected electrons:
Ke = 0.5 * m * v₂m = 9.11 × 10⁻³¹ kg (mass of electron)Convert the kinetic energy into electron volts (eV):
Ke ≈ 5.42 × 10⁻¹⁹ J / 1.602 × 10⁻¹⁹ J/eV Ke≈ 3.38 eVCalculate the binding energy (Eb):
Binding Energy (Eb) = E(photon) - KeEb ≈ 4.00 eV - 3.38 eV Eb≈ 0.62 eVTherefore, the binding energy of electrons to the magnesium surface is approximately 0.62 eV.
A motorboat approaches you head-on and sounds one short blast. how do you signal that you agree to let it pass on your port (left) side?
Sb-26 what information is most important when passing near a lighthouse
The information, most important when passing near a lighthouse is the
Water's depth or depth of the water.
What is a lighthouse?A lighthouse is simply a structure that emits a bright light that provides navigators with a constant or intermittent signal.
In conclusion, When passing near a lighthouse we consider looking at the water's depth around the area
Read more about water
https://brainly.com/question/24623157
If the sound of an electric can opener causes a cat to salivate because it has been associated with the presentation of food, the cat's salivation to the sound of the can opener is
Which moon of uranus has the greatest variety of landforms of any body yet examined?
Miranda is the right answer
Why does helium exhibit more visible emission lines than hydrogen?
The helium atom exhibit more visible emission lines than hydrogen atom as hydrogen has one electron per atom, while helium atom has two electrons per atom.
What are emission lines?
Emission lines are generally used to determine the atoms and the molecules.
A emission line is formed when a electron falls behind the low-level state of energy by freeing a photon.
Difference between the helium visible emission lines and hydrogen visible emission lines-
Main difference between the helium visible emission lines and hydrogen visible emission lines, that the helium visible emission exhibit more lines.These emission lines are the formations of wavelength of electromagnetic radiation, emitted by the helium and hydrogen atom.This is because hydrogen has one electron per atom, while helium atom has two electrons per atom.Hence, the helium atom exhibit more visible emission lines than hydrogen atom as hydrogen has one electron per atom, while helium atom has two electrons per atom.
Learn more about the emission lines here;
https://brainly.com/question/19706211
Helium exhibits more visible emission lines than hydrogen due to its complex electron energy level structure. As helium has two electrons and more possible transitions, it results in more visible lines in its emission spectrum compared to hydrogen.
Explanation:Helium exhibits more visible emission lines than hydrogen due to the complexity of its electron energy level structure. When energy is absorbed by an atom, electrons get excited and move to higher orbitals. When these electrons transition back to lower energy levels, they emit energy in the form of light at specific frequencies, which are visible as emission lines in an emission spectrum.
For Hydrogen, in its ground state, no electrons are in the higher-energy levels required to produce either emission or absorption lines in the visible part of the Balmer series, therefore, the spectral features of hydrogen in the visible range are limited primarily to the Balmer line that only excited hydrogen atoms produce.
Helium, on the other hand, has two electrons in different energy levels. As such, there are more possible transitions and hence more lines visible in its emission spectrum.
This concept is fundamental to our understanding of interstellar mediums and the chemical composition of celestial bodies. Recognizing the unique spectral features in visible light allows us to decode the mysteries of the universe.
Learn more about Spectral Emission here:https://brainly.com/question/31325355
#SPJ11
Which process is a form of mechanical weathering?
A. Hydration
B. Carbonation
C. Exfoliation
D. Oxidation
The form of mechanical weathering is exfoliation, which refers to the peeling off of the outer layers of a rock due to physical forces. Hydration, carbonation, and oxidation represent forms of chemical weathering.
Explanation:The weathering process that exemplifies a form of mechanical weathering is option C, exfoliation. Mechanical weathering, also known as physical weathering, refers to the process where rock is broken down into smaller pieces by physical forces without any changes in its chemical composition.
Exfoliation is a form of mechanical weathering that occurs when the outer layers of rock peel off in layers due to differential heating and cooling, or freeze-thaw cycles. In contrast, options A (hydration), B (carbonation), and D (oxidation) all depict processes of chemical weathering, wherein the rock's mineral composition itself changes.
Learn more about Mechanical Weathering here:https://brainly.com/question/29616569
#SPJ11