Answer: The number of successful throw made in that season in total is 30
Step-by-step explanation:
On average the player successfully made 5 out of 6 free throws .
Thus if number of free throws is x then number of successful throw will be [tex]\frac{5}{6}\times x[/tex] .
The basketball player attempted 36 free trials in a season .
Here x=36
Therefore No of successful throws [tex]=\frac{5}{6}\times 36=30[/tex]
Thus the number of successful throw made in that season in total is 30
4x^2+4y^2=64
what are the domain and range
determine the differential equation giving the slope of the tangent line at point (x,y) for the given family of curves.
x^2+y^2=2cx ...?
Which answer describes the type of sequence?
1, 6, 7, 13, ...
A. geometric
B. neither arithmetic nor geometric
C. arithmetic
b: neither arithmetic nor geometric
The given sequence describes the type of sequence that is neither arithmetic nor geometric. which is the correct answer would be an option (B).
What is an arithmetic sequence?An arithmetic sequence is defined as an arrangement of numbers that is a particular order.
The sequence is given in the question following as:
1, 6, 7, 13, ...
We have to identify the type of given sequence
As per the given question, we have
1, 6, 7, 13, ...
For checking as an arithmetic sequence :
Common difference between 1 and 6 is d = 6 - 1 = 5
Common difference between 6 and 7 is d = 7 - 6 = 1
Since the common difference between consecutive terms is not the same, this means it's not an arithmetic sequence.
For checking as a geometric sequence :
Common ratio between 1 and 6 is r = 6/1 = 6
Common ratio between 6 and 7 is r = 7/6
Since the common ratio between consecutive terms is not the same, this means it's not a geometric sequence
Thus, the given sequence describes the type of sequence that is neither arithmetic nor geometric.
Learn more about arithmetic sequence here:
brainly.com/question/21961097
#SPJ2
Tina lives in a state that charges her 4.5% state income tax on her federal taxable income. If her federal taxable income is $61,600, how much does Tina pay in state income tax?
a. $1,545
b. $227
c. $4,372
d. $2,772
How many different 12-member juries can be made from 150 people? Please explain how. Thank you (:
for the parallelogram, if m<2+5x-28 abd m<4=3x-10, find m< 3. ...?
Final answer:
After finding the value of x by equating m<2 and m<4, we calculate m<4 and then use the property of supplementary angles in a parallelogram to find that m<3 is 163 degrees.
Explanation:
To solve for m<3 in the parallelogram with m<2 = 5x - 28 and m<4 = 3x - 10, we first find the value of x. Given that opposite angles in a parallelogram are equal (m<2 = m<4), we set the two equations equal to each other and solve for x:
5x - 28 = 3x - 10
5x - 3x = 18
2x = 18
x = 9
Now that we have the value of x, we can substitute it into the equation for either angle to find the measure of that angle. Since m<4 = 3x - 10:
m<4 = 3(9) - 10 = 27 - 10 = 17
In a parallelogram, adjacent angles are supplementary, meaning they add up to 180 degrees. Therefore, to find m<3, we subtract m<4 from 180 degrees:
m<3 = 180 - m<4
m<3 = 180 - 17 = 163
Thus, m<3 in the parallelogram is 163 degrees.
The measure of angle 3 in the parallelogram is [tex]\( m\angle 3 = 2x - 18 \).[/tex]
Explanation:In a parallelogram, opposite angles are equal. Therefore, we can set up an equation based on the given angle measures:
[tex]\[ m\angle 2 + m\angle 3 = 180^\circ \][/tex]
Substitute the given expressions for[tex]\( m\angle 2 \) and \( m\angle 4 \):[/tex]
[tex]\[ (2 + 5x - 28) + (3x - 10) = 180 \][/tex]
Combine like terms:
[tex]\[ 5x + 3x - 28 - 10 + 2 = 180 \][/tex]
[tex]\[ 8x - 36 = 180 \][/tex]
Add 36 to both sides:
[tex]\[ 8x = 216 \][/tex]
Divide by 8:
[tex]\[ x = 27 \][/tex]
Now that we have the value for x, substitute it into the expression for \( [tex]m\angle 3 \):[/tex]
[tex]\[ m\angle 3 = 2(27) - 18 \][/tex]
[tex]\[ m\angle 3 = 54 - 18 \][/tex]
[tex]\[ m\angle 3 = 36 \][/tex]
Therefore, the measure of angle 3 in the parallelogram is [tex]\( m\angle 3 = 36^\circ \).[/tex]
What is .62 rounded to the nearest tenth?
WILL MARK BRAINLIEST Harry had $32. He spent all the money on buying 3 notebooks for $x each and 4 packs of index cards for $y each. If Harry had bought 5 notebooks and 5 packs of index cards, he would have run short of $18. A student concluded that the price of each notebook is $5 and the price of each pack of index cards is $1. Which statement best justifies whether the student's conclusion is correct or incorrect? The student's conclusion is incorrect because the solution to the system of equations 3x + 4y = 32 and 5x + 5y = 50 is (8, 2). The student's conclusion is incorrect because the solution to the system of equations 3x + 4y = 32 and 5x + 5y = 18 is (8, 2). The student's conclusion is correct because the solution to the system of equations 3x + 4y = 32 and 5x + 5y = 18 is (5, 1). The student's conclusion is correct because the solution to the system of equations 3x − 4y = 32 and 5x − 5y = 50 is (5, 1).
The folding chair has different settings that change the angles formed by its parts. Suppose m2 is 34 and m3 is 76. Find m1The diagram is not to scale.
A. 130
B. 110
C. 100
D. 120
Three water pipes are used to fill a swimming pool. The 1st pipe alone takes 8 hours to fill the pool, the 2nd pipe alone takes 12 hours to fill the pool, and the 3rd pipe takes 24 hours to fill the pool. If all 3 pipes are opened at the same time, how long will it take all 3 together to fill the pool?
Solve: log2 (x) +log2(x+7) =3
(2 is the base) ...?
Final answer:
To solve the equation log2 (x) + log2(x+7) = 3, you can combine the logarithmic terms using the property log(a) + log(b) = log(a*b). By applying this property and solving the resulting quadratic equation, we find that x = 1.
Explanation:
To solve the equation log2 (x) + log2(x+7) = 3, we need to combine the logarithmic terms using the property log(a) + log(b) = log(a*b). Applying this property, we get log2 (x*(x+7)) = 3. Next, we can rewrite this equation in exponential form as 2^3 = x * (x+7). Simplifying further, we have 8 = x^2 + 7x. Rearranging the equation, we get a quadratic equation x^2 + 7x - 8 = 0. Solving this quadratic equation, we find that x = -8 or x = 1. However, since the logarithm of a negative number is undefined, the solution is x = 1.
what is another name for plane Z?
Crafty Grandma Edith sat her family down during Thanksgiving and told them they couldn’t have any pumpkin pie until they worked out this puzzle. Her 6-year-old granddaughter was the first to solve it! Can you work out what 9183 equals?
8809=6
7111=0
9881=5
6660=4
5531=0
2516=1
3590=2
6855=3
1012=1
5731=0
9191=2
9183=?
your weekly wage is $400 what is your annual?
At the bank brent exchanges $50 in bills for 50 one-dollars coins. the total mass of the coins is 405 grams. estimate the mass of 1 one - dollar coin.
A standard deck of 52 playing cards contains 13 cards in each of four suits: diamonds, hearts, clubs, and spades. Two cards are chosen from the deck at random. What is the approximate probability of choosing one club and one heart?
The approximate probability of choosing one club followed by one heart from a standard deck of 52 playing cards is 5.9%.
The student's question pertains to the calculation of the probability of choosing one club and one heart from a standard deck of 52 playing cards. We start by recognizing that there are 13 clubs and 13 hearts in the deck, with each of the four suits represented equally.
Firstly, the probability of choosing a club (P(club)) is 13/52. After a club is chosen, there are 51 cards left in the deck. The number of hearts remains the same at 13 (since a club was chosen first). So, the probability of then picking a heart (P(heart)) is 13/51.
The two events, choosing a club and then a heart, are dependent events because the outcome of the second event depends on the outcome of the first. Hence, to find the combined probability, we multiply the probabilities of each event.
The probability of choosing one club followed by one heart is therefore P(club) imes P(heart) = (13/52) imes (13/51), which simplifies to approximately 0.059, or 5.9%.
A movie store sells DVDs for $11 each. What is the cost of n DVDs? Identify the situation as discrete or continuous.
A) C= 11n; continuous
B) C= 11+n; discrete
C) C= 11+n; continuous
D) 11n; discrete
Answer:
Complete Quick Check of...
Lesson 4: Graphing a Function Rule
Algebra 1 A: Unit 5
Step-by-step explanation:
1.C) x,0,1,2,3, y,3,-1,-5,-9
2.A) True
3.D) $698.75
4.C) cant write it out.
5.D) C = 11n; discrete
:) hope this helps!
Simplify -3p3 + 5p + (-2p2) + (-4) - 12p + 5 - (-8p3). Select the answer in descending powers of p.
1 - 7p - 2p2 + 5p3
5p3 - 2p2 - 7p + 1
1 + 7p + 2p2 - 5p3
-5p3 + 2p2 + 7p + 1
Answer:
B. 5p³ - 2p² - 7p + 1
Step-by-step explanation:
Good luck! Hope it was found helpful to you!
Perform the operations, multiply, and simplify.-a^3b (3a^2 b^5 - ab^4 - 7a ^2
b.
There are around 132 births in the united states per minute. how many births per day
A circle has an area of 98mm^2. Find the circumference of the circle
a 14 foot ladder is leaning against a building. the ladder makes a 45 degree angle with the building. how far up the building does the ladder reach?
Using the sine function and known angle and ladder length, the distance up the building the ladder reaches is \(7\sqrt{2}\) feet.
The correct answer is option C) \(7\sqrt{2}\) feet.
To find how far up the building the ladder reaches, we can use trigonometric functions, specifically the sine function since we have the angle and the length of the ladder.
Given:
- Length of the ladder (hypotenuse) = 14 feet
- Angle with the building = 45 degrees
Let [tex]\(x\)[/tex]be the distance up the building that the ladder reaches.
Using the sine function [tex](\(\sin\))[/tex] in a right triangle:
[tex]\[ \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} \][/tex]
Substituting the known values:
[tex]\[ \sin(45^\circ) = \frac{x}{14} \][/tex]
Since [tex]\(\sin(45^\circ) = \frac{\sqrt{2}}{2}\),[/tex] we have:
[tex]\[ \frac{\sqrt{2}}{2} = \frac{x}{14} \][/tex]
To solve for [tex]\(x\),[/tex] multiply both sides by 14:
[tex]\[ x = 14 \times \frac{\sqrt{2}}{2} \][/tex]
[tex]\[ x = 7\sqrt{2} \, \text{feet} \][/tex]
Therefore, the ladder reaches [tex]\(7\sqrt{2}\)[/tex] feet up the building.
Therefore the correct answer is option C) [tex]\(7\sqrt{2}\)[/tex]feet.
The question probable may be:
A 14 foot ladder is leaning against a building. The ladder makes a 45 degree angle with the building. How far up the building does the ladder reach?
A. 7 feet
B. 28sqrt(2) feet
c. 7sqrt(2) feet
D. 14sqrt(2) feet.
what is the answer to n * $3.25 = 325.00 ?
A box has a width 9 inches less than its height and a length 7 inches more than its height.
a. If h is the height of the box, write a polynomial that represents the volume of the box.
b. Use this polynomial to calculate the volume for h = 17 inches.
Transform the formula for the given variable: I=Prt solve for t
At an end of the year sale, Gabriela bought more than 12 bottles of hand soaps and lotions. If x represents the number of hand soaps and y represents the number of lotions she bought, which inequality best represents her purchase?
a. x + y < 12
b. x + y > 12
c. x + y ≤ 12
d. x + y ≥ 12
the answer is B hope it helps
In ELECTRONICS, the total resistance to the flow of electricity in a circuit is called the impedance, Z. Impedance is represented by a complex number. The total impedance in a series circuit is the sum of individual imepedances. The impedance in one part of a circuit is Z1 = 3 + 4i. In another part of a circuit, the impedance is Z1 = 5 - 2i. What is the total impedance of the circuit?
The total impedance of the circuit is 8 + 2i.
Explanation:The total impedance in a series circuit is the sum of the individual impedances. To find the total impedance of the circuit, add the real parts and imaginary parts separately. In this case, Z1 = 3 + 4i and Z2 = 5 - 2i. So, the total impedance Zt = (3 + 5) + (4 - 2)i. Simplifying this, Zt = 8 + 2i.
Solve 16 1/2 ÷ 2 1/4
A:7 1/3
B:5 3/7
C:133/8
Please help !!
Answer correct for a brainliest and also a thanks ! Don't answer if you don't know it .
An increase in total assets can be financed by an increase in which of the following capital components:
a. debt
b. preferred stock
c. common equity
d. All of the above ...?