A group of animals that have similar characteristics that they pass to their offspring is called what

Answers

Answer 1

Final answer:

A species is a group of individual organisms that have similar characteristics they pass to their offspring, can interbreed, and produce fertile offspring. These characteristics can include adaptations to their environment and shared physical traits.

Explanation:

The group of animals you are referring to is known as a species. A species is a group of individual organisms that interbreed and produce fertile, viable offspring. They share genetic characteristics that are passed along to their offspring, ensuring they belong to the same species and exhibit similar features such as body size and shape. Members of a species often share adaptations that enhance survival and reproduction within their environment. When observing a species, it's clear that offspring are not exact replicas of their parents but rather a blend of their traits, showing continuous variation. The concept of species is fundamental in understanding biological diversity and the process of inheritance.

For example, all humans belong to the species Homo sapiens and children inherit a combination of traits from their parents. This same principle applies across various animal species, indicating the shared process of genetic transmission and reproduction.


Related Questions

Suppose a truck has a momentum of 40,120 kg • meters per second and a mass of 1,180 kg. What is the truck’s velocity?

4.7 × 107 meters per second
47 × 107 meters per second
34 meters per second
3.4 meters per second

Answers

34 meters per second because 1180 kg times 34 Mps is 40120 kg/mps

Final answer:

To find the velocity of a truck given its momentum and mass, divide the momentum by the mass; the truck has a velocity of 34 meters per second.

Explanation:

The question is asking us to calculate the velocity of a truck given its momentum and mass. The formula to find velocity when momentum and mass are known is velocity = momentum / mass.

Plug in the values to get the velocity: velocity = 40,120 kg·m/s ÷ 1,180 kg = 34 m/s. Therefore, the velocity of the truck is 34 meters per second.

To find the velocity of a truck given its momentum and mass, divide the momentum by the mass; the truck has a velocity of 34 meters per second.


Based on the idea of isostasy, which of these statements is NOT correct?

A) Continental crust is less dense than oceanic crust.
B) The depth at which a crustal plate sits is a function of its mass.
C) When more weight is added to the crust, through a process like mountain building, it slowly sinks deeper into the mantle.
D) The formation ice sheets cause the Earth's surface to sink so much that when the ice melts, the crust and mantle does not rebound.

Answers

The formation ice sheets cause the Earth's surface to sink so much that when the ice melts, the crust and mantle does not rebound.

Explanation:

The above-mentioned statement is the only false statement

During the Ice ages, large continental parts were covered under thick ice sheets. This imposed a superincumbent additional load on the Earth's crust.

Isostasy refers to the balance that exists between parts of Earth's mantle and crust.  Isostatic adjustments are a common phenomenon.  As a result of isostatic adjustments, several parts of the world have risen by as much as 900 feet as an adjustment to superincumbent load since ice ages. E.g. Parts of Scandinavian countries have witnessed these activities and also undergoing this process.

Answer: d

Explanation:

A block on an inclined plane experiences a force due to gravity of 300 N straight down. If the slope is inclined at 67. 8° to the horizontal;

(a) what is the component of the force due to gravity perpendicular and parallel to the slope? and
(b) at what angle would the perpendicular and parallel components of the force due to gravity be equal?

Answers

Answer:

Correct answer: (a) F|| = 277.8 N  and F⊥ = 113.4 N  (b) α = 45°

Explanation:

Given :

Fg = 300 N  and angle α = 67.8°

Let be perpendicular component be F⊥ and parallel component F||

(a)

F|| = Fg · sinα = 300 · sin 67.8° = 300 · 0.926 = 277.8 N

F|| = 277.8 N

F⊥ = Fg · cosα =  300 · cos 67.8° = 300 · 0.378 = 113.4 N

F⊥ = 113.4 N

(b)

Perpendicular and parallel components will be equal at angle

α = 45°

F⊥ = F|| = Fg · sinα = Fg · cosα =  300 · √2/2 =  212.13 N

God is with you!!!

Final answer:

When an object rests on an inclined plane, the force of gravity is divided into two components: one perpendicular to the slope and one parallel to the slope. The perpendicular component can be found using the formula w₁ = w * sin(θ), where w is the force due to gravity and θ is the angle of inclination. The parallel component can be found using the formula w|| = w * cos(θ). The perpendicular and parallel components of the force due to gravity will be equal when the object is on an incline with an angle of 45° to the horizontal.

Explanation:

When an object rests on an inclined plane that makes an angle with the horizontal, the force of gravity acting on the object can be divided into two components: a component perpendicular to the slope and a component parallel to the slope. The component perpendicular to the slope is equal in magnitude and opposite in direction to the normal force exerted by the inclined plane on the object. The component parallel to the slope causes the object to accelerate down the incline. In this case, the force due to gravity is 300 N straight down. To find the components of this force, we can use trigonometry.

(a) Perpendicular and Parallel Components

To find the component of the force due to gravity perpendicular to the slope, we can use the formula: w₁ = w * sin(θ) where w is the magnitude of the force due to gravity and θ is the angle of inclination. Substituting the values, we have: w₁ = 300 N * sin(67.8°) = 274.16 N So, the component of the force due to gravity perpendicular to the slope is approximately 274.16 N.

To find the component of the force due to gravity parallel to the slope, we can use the formula: w|| = w * cos(θ) Substituting the values, we have: w|| = 300 N * cos(67.8°) = 125.85 N So, the component of the force due to gravity parallel to the slope is approximately 125.85 N.

(b) Equal Components of Force

The perpendicular and parallel components of the force due to gravity will be equal when the object is on an incline with an angle of 45° to the horizontal. At this angle, the sine and cosine functions will have the same value, resulting in equal components of force.

what has to happen for a feather and ball to fall at the same time

Answers

This means that two objects will reach the ground at the same time if they are dropped simultaneously from the same height. ... When air resistance plays a role, the shape of the object becomes important. In air, a feather and a ball do not fall at the same rate.

How much force is required to accelerate a 50 kg with a mass at 4 m/s2?

Answers

Answer:200N

Explanation:

Mass=50kg

Acceleration=4m/s^2

Force=mass x acceleration

Force=50 x 4

Force=200N



A certain microwave has a
wavelength of 0.032 meters. Calculate the frequency of this
microwave​

Answers

Answer:

[tex]9.375\times 10^{9} Hz[/tex]

Explanation:

Frequency is mathematically defined as the quotient of speed divided by wavelength.

[tex]Frequency= \frac {v}{W}[/tex]

where

v-is the speed of light

-w is wavelength.

Given the speed of the wave  as [tex]V=300000000 \ m/s[/tex] and the wavelength [tex]\lambda= 0.032\ m[/tex], we substitute these values in the Frequency function to solve for frequency:

[tex]Frequency=\frac {300000000}{0.032}=9375000000 Hz=9.375\times 10^{9} Hz[/tex]

Hence, the wave's frequency is [tex]9.375\times 10^9\ Hz[/tex]

Microwave has the  wavelength of 0.032 meters so, the frequency is [tex]\rm 9.375\times 10^9 \; Hz[/tex] and this will be determined by using the frequency formula.

Given :

Wavelength = 0.032 m

The Formula of Frequency can be used to determine the wavelength of the microwave:

[tex]\rm Frequency = \dfrac{c}{w}[/tex]   --- (1)

where, [tex]\rm c = 3 \times 10^8\;m/sec[/tex] is the speed of light and w is the wavelength.

Now, put the values of speed of light (c) and wavelength (w) in equation (1).

[tex]\rm Frequency = \dfrac{3\times 10^8}{0.032}[/tex]

[tex]\rm Frequency = 9.375\times 10^9 \; Hz[/tex]

For more information, refer to the link given below:

https://brainly.com/question/14316711

A car accelerates from 20mi/hr to 60mi/hr. How many times greater is the car's kinetic energy at the higher speed compared to the kinetic energy at the slower speed

Answers

Answer:

9 times

Explanation:

Kinetic energy is:

KE = ½ mv²

When we triple the velocity, the kinetic energy increases by a factor of 9.

9KE = ½ m(3v)²

The kinetic energy of the car at 60 m/hr is 9 times greater than the kinetic energy at 20 m/hr.

What do you mean by kinetic energy?

Kinetic energy is a form of energy that an object possesses by virtue of its motion and is dependent on the mass and velocity of the object.

The kinetic energy of an object is given by the equation:

KE = (1/2)mv²

Where

KE = is the kinetic energy,

m = is the mass of the object,

v = its velocity.

Here in this question,

The kinetic energy of an object is proportional to the square of its velocity, so if a car accelerates from 20 km/hr to 60 km/hr, its kinetic energy at the higher speed will be:

KE(higher) = 1/2 ×m × v(higher)²

And at the lower speed, the kinetic energy will be:

KE(lower) = 1/2 ×m × v(lower)²

Where

m = the mass of the car.

Now for ratio, we have to divide the two equations:

KE(higher) / KE(lower) = [1/2× m ×v(higher)²] / [1/2 × m × v(lower)²]

The mass of the car cancels out, leaving us with:

KE(higher) / KE(lower) = (v(higher)²) / (v(lower)²)

Now, we get:

KE(higher) / KE(lower) = (60²) / (20²) = 9

Therefore, the kinetic energy of the car which is moving at a speed of 60 m/hr is 9 times greater than the kinetic energy of the car which is moving at 20 m/hr.

To learn about the conversion of  Kinetic energy  click:

brainly.com/question/12807194

#SPJ3


Two equal and opposite charges separated by a distance, d, experience an attractive force, F. If each charge is doubled in magnitude, what should be the new distance between them so that the force remains unchanged?

Answers

If the each charge is doubled in magnitude and force remains unchanged then the distance between the charged particle is four times the original distance.

Explanation:

The force between two charged objects are shown by Coulomb's law.

In the scalar form, this law is represented as:

[tex]F = k \frac{q_1 q_2}{d^2}[/tex]

where,

k = coulomb's constant

q₁ and q₂ are the magnitude of charged objects

d = distance between the charges.

According to the question,

Case1:

charge on object 1 = +q₁

Charge on object 2 = -q₂

Distance between the charges = d

[tex]Force, F = k\frac{+q_1 X -q_2}{d^2} \\\\F = k\frac{-q_1q_2}{d^2}[/tex]

Case 2:

Charge on object 1 = +2q₁

Charge on object 2 = -2q₂

Force between the objects is same

New distance, dₓ = ?

If both the forces are equal then,

[tex]k\frac{-q_1q_2}{d^2} = k\frac{+2q_1 X -2q_2}{d_x^2} \\\\[/tex]

On simplifying the equation we get,

[tex]\frac{-1}{d^2} = \frac{-4}{d_x^2} \\\\d_x^2 = 4d^2[/tex]

So, if the each charge is doubled in magnitude and force remains unchanged then the distance between the charged particle is four times the original distance.

Final answer:

If the charges are doubled and the force is to remain the same, the new distance between the charges should be the initial distance multiplied by the square root of 2.

Explanation:

The force experienced by two equal and opposite charges separated by a distance d can be calculated using Coulomb's Law: F = k*q1*q2/d^2, where F is the force, k is a constant, q1 & q2 are the charges, and d is the distance between them. If the magnitude of each charge is doubled, the equation becomes F = k*2q1*2q2/d'^2, where d' is the new distance. If we want the force to remain unchanged, we have the equation: k*q1*q2/d^2 = k*2q1*2q2/d'^2. Solving for d', we get d' = sqrt (2) * d. Therefore, the new distance between the charges should be sqrt (2) times the initial distance to keep the force the same when the magnitude of the charges is doubled.

Learn more about Coulomb's Law here:

https://brainly.com/question/32002600

#SPJ3


The Richter scale measures the __ of an earthquake.

Answers

Answer: magnitude

Explanation: I just did it

The Richter scale measures the magnitude of an earthquake. The correct option is A.

The Richter scale is a logarithmic scale for measuring earthquake magnitude, which is a quantitative estimate of the amount of energy generated during an earthquake.

The Richter scale, developed by Charles F. Richter in 1935, provides a numerical value to earthquakes based on the amplitude of seismic waves measured by seismographs.

The Richter scale is logarithmic, which means that each whole number rise reflects a tenfold increase in ground motion amplitude and about 31.6 times greater energy release.

As a result, a higher Richter scale value signifies a more violent and damaging earthquake with greater potential for damage and devastation.

Thus, the correct option is A.

For more details regarding Richter scale, visit:

https://brainly.com/question/14028329

#SPJ2

Your question seems incomplete, the probable complete question is:

The Richter scale measures the __ of an earthquake.

A. Magnitude.

B. Density.

C. Direction.

D. type.

When the number of electrons striking the anode of an x-ray tube is increased, the ____ of emitted X-Rays increases.


1. density

2. frequency

Answers

When the number of electrons striking the anode of an x-ray tube is increased, the density of emitted X-Rays increases.

Option: 1

Explanation:

As the electron speed increases, the heat radiation also increases from thermionic emission, which causes more heat and more X-ray release. X-rays are produced by an a vacuum tube called X-ray tube that uses more voltage to make the electrons accelerate which the hot cathode releases to a high velocity.

This high speed electrons meets in a collision with a metal target which is the anode, and thus create the X-rays. So, the electron number available and the time period set for their release from the filament determines how many x-rays are produced from the anode. Hence, more the number of electrons striking the anode,the more is the emission of x-rays.

Infrasounds _____.

can be used to view internal organs
are sounds with frequencies below 20 Hz
are sounds with frequencies above 20,000 Hz
travel in transverse waves

Answers

Infra sounds are sounds with frequencies below 20 Hz.The popular concept that infra sounds are in audible holds false

Explanation:

Some example of Infrasounds  are- some animals such as whales, elephants and giraffes which  communicate with each other  using infrasound over long distances. Various natural phenomenon such as Avalanches, volcanoes, earthquakes, ocean waves, water falls and meteors also generate infrasonic wavesInfrasound, is sound that is lower in frequency than 20 Hz or cycles per second.Even the human body can generate mechanical vibrations at very low frequencies, which are known as the  infrasonic waves. Such low-frequency vibrations/infrasonic waves  are produced by physiological processes—such as heartbeats, respiratory movements, blood flow in vessels, and other processes.

When you are running around a track, what kind of energy are you using?

Answers

Answer:

kinetic energy

Explanation:

we are using chemical energy in our bodies to produce movement, whitch in turn convents to warmth.

Final answer:

While running around a track, the main type of energy used is kinetic energy, the energy of motion. Gravitational potential energy also plays a role when changing elevation. Energy from food provides the caloric input, but losses to heat and friction during digestion and running result in less energy available for motion.

Explanation:

When you are running around a track, the kind of energy you are using is primarily kinetic energy. This is the energy that an object possesses due to its motion. As you exert force on the ground, for instance when a sprinter's foot pushes off the track, kinetic energy increases, which prevents the runner from slowing down. This aspect of energy in motion is known as work being done on the runner by the force exerted through the ground.

Additionally, when a runner is starting or going uphill, potential energy, specifically gravitational potential energy, comes into play. This type of energy is relative to the position of the runner's body and the Earth's gravitational pull. As they ascend, they gain potential energy, which can be converted into kinetic energy as they descend.

The circumference of the earth is 40,000 km. The distance from the
North Pole to the equator is 1/4 of the circumference of the earth, which equals __ m.

Answers

Answer:

The distance from the North Pole to the equator is [tex]1*10^{7}[/tex]m.

Explanation:

Circumference of Earth = 40,000 km    ......................(1)

Distance from the North Pole to the Equator is =  1/4th of the Circumference of Earth  ......................  (2)

Let Distance from the North Pole to the Equator be  d ,

the equation formed will be ,

d = 1/4 * Circumference of Earth       ........(3)......... ( from equation 1 )

put the value of Circumference of Earth in equation (3),

d = 1/4 * 40,000  km

d = 10,000 km

converting km to m ,

d = 10,000 * [tex]10^{3}[/tex] m

d =  1 * [tex]10^{7}[/tex] m

The distance from the North Pole to the equator is [tex]1*10^{7}[/tex]m.

Final answer:

The distance from the North Pole to the equator is 1/4 of the Earth's circumference, which equals 10,000,000 meters.

Explanation:

The distance from the North Pole to the equator is 1/4 of the circumference of the earth. Given that the circumference of the earth is 40,000 kilometers, we can calculate this by dividing the circumference by 4. So, 40,000 km ÷ 4 = 10,000 km. To convert this into meters, we multiply by 1,000 (since there are 1,000 meters in a kilometer), thus 10,000 km × 1,000 = 10,000,000 meters. The distance from the North Pole to the equator is 1/4 of the circumference of the earth. The circumference of the earth is 40,000 km, so 1/4 of that distance would be 10,000 km.

Wind blowing sand from one location to another is an example of
erosion
movement
weathering
deposition

Answers

Erosion is the answer

Wind blowing sand from one location to another is an example of erosion. Sand being blown by the wind from one place to another is an actual instance of erosion.

When the wind's force moves and displaces loose sand or other sediment particles, the process is known as wind erosion. Sand particles are picked up and carried by the wind as it sweeps across an open surface, where they impact with other items or surfaces.

Rocks, dunes, cliffs, and other geological structures can all be eroded over time as a result of the continuous movement and influence of wind-blown sand on the environment. Deserts and sandy ecosystems are mostly shaped by wind erosion on a global scale.

To know more about erosion :

https://brainly.com/question/30587260

#SPJ5.

Which of these can be considered a system? Check all that apply.
O a computer
O a car
O a bicycle pedal
O a pencil
O a coffeemaker​

Answers

Answer: A b e

Explanation:

Systems are a computer, a car, and a coffeemaker. Therefore, options A, B, and D are correct.

A system refers to a well-defined portion of the physical universe that is the subject of study or analysis. It is a fundamental concept used to simplify and focus investigations into the behavior and interactions of objects or components within a specific region of interest.

A physics system can consist of one or more physical objects, particles, or components that are the primary subjects of study. These components are chosen based on the specific physics principles or phenomena being investigated. Therefore, options A, B, and D are correct.

Learn more about systems, here:

https://brainly.com/question/3602141

#SPJ3

What are some physical activities you can do at home to help you with arm strength , as well as
leg strength? Describe the activity ? Describe the amount of reps, and sets you will be doing per activity. 1 paragraph

Answers

Answer:

See the explanation below

Explanation:

To improve the strength in the arms can be performed arm push-ups, there are different variants for this exercise. But ideally, perform the known basic exercise, try to touch with the chest the floor and then rise up to the length of the arms using the strength of these. It will be necessary for beginners to perform a routine of 3 sets to 10 repetitions. Rest one day. In the third week you can perform 4 sets to 25 repetitions, resting only one day. This will improve the strength in the arms considerably.

For the legs should stimulate the muscle of the quadriceps, should perform an exercise known as squat, to perform it should be lowered with your back straight until the knees form an angle of 90 degrees, for beginners should perform 3 sets of 15 repetitions a day, resting only one day. In the second week you can perform 4 sets of 25 repetitions a day, resting one day a week.

If the vector below is multiplied by 2, what will be its end point?

Answers

Answer:

If the scalar is negative, then multiplying a vector by it changes the vector’s magnitude and gives the new vector the opposite direction. For example, if you multiply by –2, the magnitude doubles but the direction changes. We can summarize these rules in the following way: When vector A is multiplied by a scalar c

Explanation:

Answer: (4, -2)

Explanation:

The vector shown in the image is (2, -1)

 

    2. Now, the scalar multiplication for vectors works in the next way:

    3. for a scalar c and a vector (x,y)

    4. c*(x,y) = (c*x, c*y)

     5. In our case, the scalar is 2, and the vector is (2, -1)

     6.  2*(2, - 1) = (2*2, -1*2) = (4, -2)

one cubic foot of water can store 312btu. a home requires 100,000 what is the volume​

Answers

Volume of water required to store 100,000 Btu of thermal energy is [tex]320.51foot^{3}[/tex] .

Explanation:

The complete question is : One cubic foot of water can store 312 Btu of thermal energy. On a cold winter day a well-constructed home may require 100,000 Btu of nighttime space heating. What is the volume of water required to store this energy? In this question , it's given that One cubic foot of water can store 312 Btu of thermal energy or 312 Btu takes 1 cubic foot of water ,So

1 Btu takes  [tex]\frac{1}{312}[/tex] cubic foot of water

Therefore, 100,000 Btu takes:

⇒ [tex]volume = \frac{1}{312}(100,000)[/tex] [tex]foot^{3}[/tex]

⇒ [tex]volume = \frac{100,000}{312}[/tex] [tex]foot^{3}[/tex]

⇒ [tex]volume = 320.51[/tex] [tex]foot^{3}[/tex]

Volume of water required to store 100,000 Btu of thermal energy is [tex]320.51foot^{3}[/tex] .

Which subatomic particle has a negative charge? A) electron B) neutron C) nucleus D) proton

Answers

Answer:

A) electron

Explanation:

Matter consists of atoms. Each atom consists of three particles:

- The proton: the protons are located inside the nucleus of the atom. They have a mass of [tex]1.67\cdot 10^{-27}kg[/tex], and they have positive electric charge ([tex]+e=+1.6\cdot 10^{-19}C[/tex]). Protons are not fundamental particles, but they actually consists of three quarks (which are instead fundamental particles), in particular of 2 up quarks and 1 down quark.

- The neutron: neutrons are also located inside the nucleus. They have no electric  charge, and their mass is similar to that of the proton (slightly larger). Neutrons consist of three quarks as well, in particular of 2 down quarks and 1 up quark.

- The electron: electrons are located outside the nucleus. They have a mass much smaller than protons (about [tex]9.11\cdot 10^{-31} kg[/tex]) and they have a negative electric charge, opposite to that of the proton ([tex]-e=-1.6\cdot 10^{-19}C[/tex]). The electron is a fundamental particle.

Therefore, the subatomic particle having a negative charge is

A) electron

Final answer:

An electron is the subatomic particle that has a negative charge. Electrons orbit the nucleus, which contains the protons and neutrons, and its negative charge helps to balance the positive charge of the protons.

Explanation:

The subatomic particle that has a negative charge is the electron. Subatomic particles, namely protons, neutrons, and electrons, make up atoms. Protons carry a positive charge and are found in the nucleus of the atom. Neutrons are neutral as they do not carry any charge and are also found in the nucleus. Electrons, which carry a negative charge, move in spaces around the nucleus known as energy levels or electron shells. The negative charge of the electron balances the positive charge of the protons, causing an atom to be neutral under normal conditions.

Learn more about Electron here:

https://brainly.com/question/34085707

#SPJ3

suppose an electrically charged ruler transfers some of its charge by contact to a tiny plastic sphere. will the ruler and the sphere attract or repel afterwards? explain your reasoning

Answers

Final answer:

The ruler and sphere, after the charge transfer, will acquire the same type of charge. As a result, they will repel each other as like charges repel in Electrostatics.

Explanation:

In the field of Physics, the force between two electrically charged objects can be either attraction or repulsion. However, in this case where an electrically charged ruler transfers some of its charge by contact to a tiny plastic sphere, the two objects will repel each other. This phenomenon is based on the fundamental principle that like charges repel each other. After the transfer of charge, both the ruler and the sphere acquire the same kind of charge, hence they repel. This concept is a foundational part of the study of Electrostatics.

Learn more about Electrostatics here:

https://brainly.com/question/33600060

#SPJ3

The ruler and the sphere will repel each other after charge transfer because they will have the same type of charge, leading to a repulsive force in accordance with the principles of electrostatics and Coulomb's law.

When an electrically charged ruler transfers some of its charge to a tiny plastic sphere by contact, both objects will have the same type of charge, either positive or negative, depending on the ruler's initial charge.

According to the principle of electrostatics, like charges repel each other, meaning that the ruler and the sphere will repel each other after the charge transfer. This can be understood by considering that charges distributed on both objects are of the same sign, leading to a repulsive force between them.

For example, if a plastic ruler is rubbed with a cloth and acquires a negative charge (excess electrons), upon touching a neutral plastic sphere, some of these excess electrons will move to the sphere. This will leave both the ruler and sphere negatively charged, resulting in repulsion due to the interaction of like charges.

This is in accordance with Coulomb's law, which states that the electric force between two point charges is directly proportional to the product of the magnitude of the charges and inversely proportional to the square of the distance between the charges, and that like charges exert a repulsive force on each other.

What circuit that has only one path for the
current to follow?

Answers

Answer:

Series circuit

Explanation:

By definition series circuit is a closed circuit in which the flow of electric current follows only one path.

In a simple electrical circuit (which is a series circuit) where electric cell is the source of power, each component is connected in such a way that there is only one pathway current flows from the positive terminal(+) round to the negative terminal(-) via the external circuit.

Current having only one pathway to flow means that when one of the components is removed, there will be no current flow.

Explain how water freezing and thawing causes weathering and the type of weathering it would be considered.

Answers

Final answer:

Water freezing and thawing causes weathering through a process called frost or ice wedging. This leads to the physical weathering of rocks or soil. In areas with frequent freeze-thaw cycles, such as Iceland, this process can gradually break down rocks into smaller pieces.

Explanation:

Water freezing and thawing can cause weathering through a process called frost or ice wedging. When water freezes, it expands by about 9%, exerting pressure on the rocks or soil in which it is trapped. This pressure can cause the rocks to crack or break apart, leading to physical weathering. As the ice thaws, water seeps into the cracks and when it freezes again, it widens the cracks further, gradually breaking down the rock. This type of weathering is known as mechanical weathering. It is a significant process in areas with frequent freeze-thaw cycles.

Example: In regions with colder climates, such as Iceland, freezing and thawing of water can weather rocks over time. The repeated cycles of freezing and thawing cause the rocks to deteriorate and break down into smaller pieces, contributing to the formation of gravel, sand, and clay.

Acetylene gas (C2H2) is used in welding torches. When it reacts with oxygen, it produces carbon dioxide (CO2) and steam (H2O). The reaction can be described by the equation:
2C2H2 + 5O2 ➔ 4CO2 + 2H2O. How much mass of C2H2 is needed to react with 68.1 g of O2 to produce 75.0 g of CO2 and 15.35 g of steam?

Answers

Explanation:

First thing to understand is how you can manipulate the Ideal Gas Law to your needs. since [tex]\mathrm{PV}=\mathrm{nRT}[/tex] at a constant temperature, [tex]\mathrm{PV} / \mathrm{n}=\mathrm{RT}=[/tex]constant. That means,

[tex]\mathrm{P}_{1} \mathrm{V}_{1} / \mathrm{n} 1=\mathrm{P} 2 \mathrm{V} 2 / \mathrm{n} 21[/tex]

If we say that subscript 1= oxygen and subscript 2= acetylene, then for acetylene,[tex]P 2=(P I V 1 \cap 2) /(\sqrt{2} n 1)[/tex]

Next, we realize from the reaction equation given above that 2 moles of acetylene (n 2 ) react with 5 moles of oxygen (n1). We can plug that right into our equation for P 2, along with the rest of the conditions given in the question:

[tex]P 2=(P 1 V 1 \cap 2) /(V 2 n 1)=\left[(155 a t m)^{*}(5.00 L)^{*}(2 m o l e s)\right] /\left[(25.00 L)^{*}(5 \text { moles }]\right]=124 \text { atm }[/tex]

Answer:

22.13g of C2H2

Explanation:

Step 1:

The balanced equation for the reaction. This is given below:

2C2H2 + 5O2 ➔ 4CO2 + 2H2O

Step 2:

Determination of masses of C2H2 and O2 that reacted from the balanced equation. We need to obtain the mass of C2H2 and that of O2 that reacted based on the chemical equation, as it will enhance the process of obtaining the desired result. This is illustrated below:

2C2H2 + 5O2 ➔ 4CO2 + 2H2O

Molar Mass of C2H2 = (12x2) + (2x1) = 24 + 2 = 26g/mol

Mass of C2H2 from the balanced equation = 2 x 26 = 52g

Molar Mass of O2 = 16x2 = 32g/mol

Mass of O2 from the balanced equation = 5 x 32 = 160g

From the balanced equation,

52g of C2H2 reacted with 160g of O2.

Step 3:

Determination of the mass of C2H2 needed to react with 68.1g of O2.

From the balanced equation,

52g of C2H2 reacted with 160g of O2

Therefore, Xg of C2H2 will react with 68.1g of O2 i.e

Xg of C2H2 = (52 x 68.1)/160

Xg of C2H2 = 22.13g

From the calculations made above, 22.13g of C2H2 is needed to react with 68.1 g of O2 to produce 75.0 g of CO2 and 15.35 g of steam

This is may mastering physics homework and I just need help solving the question.
Luc, who is 1.80 m tall and weighs 950 N, is standing at the center of a playground merry-go-round with his arms extended, holding a 4.0 kg dumbbell in each hand. The merry-go-round can be modeled as a 4.0-m-diameter disk with a weight of 1500 N. Luc's body can be modeled as a uniform 40-cm-diameter cylinder with massless arms extending to hands that are 85 cm from his center. The merry-go-round is coasting at a steady 27 rpm when Luc brings his hands in to his chest.

Answers

Answer:

Angular speed of the disc after he fold his hands is given as

[tex]\omega_f = 27.5 rpm[/tex]

Explanation:

As we know that the moment of inertia of the solid cylinder is given as

[tex]I_1 = \frac{m_1r_1^2}{2}[/tex]

so we have

[tex]I_1 = \frac{(950/9.81)(0.20)^2}{2}[/tex]

[tex]I_1 = 1.94 kg m^2[/tex]

now moment of inertia of two dumbbell in his hand is given as

[tex]I_2 = 2(m_2 r_2^2)[/tex]

[tex]I_2 = 2(4)(0.85)^2[/tex]

[tex]I_2 = 5.78 kg m^2[/tex]

Now moment of inertia of the disc is given as

[tex]I_3 = \frac{1}{2}MR^2[/tex]

[tex]I_3 = \frac{1}{2}(1500/9.81)(2^2)[/tex]

[tex]I_3 = 305.8 kg m^2[/tex]

Now we can use angular momentum conservation as there is no external torque on it

[tex](I_1 + I_2 + I_3) \omega_i = (I_1 + I_3)\omega_f[/tex]

[tex](1.94 + 5.78 + 305.8) 27 = (1.94 + 305.8) \omega_f[/tex]

[tex]\omega_f = 27.5 rpm[/tex]

Answer: Hello above answerer, Why didn't you add I2 on the other side of the equation?

You just added I1 and I3

Explanation:

Need help pls (projectiles)

Answers

A) 13.13 m (4.13 m above the top of the ramp)

B) 0.92 s,  30.0 m (14.4 m from the top of the ramp)

Explanation:

A)

The motion of the projectile consists of two independent motions:

- A uniform motion along the horizontal direction (constant horizontal velocity)

- A uniformly accelerated motion along the vertical direction (constant downward acceleration)

To find the maximum height, we just analyze the vertical motion.

The initial vertical velocity of the projectile is given by:

[tex]u_y = u sin \theta = (18)(sin 30^{\circ})=9 m/s[/tex]

Where

u = 18 m/s is the initial velocity

[tex]\theta=30^{\circ}[/tex] is the angle of projection

Since this is a uniformly accelerated motion, we can use the following suvat equation:

[tex]v_y^2-u_y^2=2as[/tex]

where:

[tex]v_y=0[/tex] is the final vertical velocity when the projectile reaches the maximum height

[tex]a=-g=-9.8 m/s^2[/tex] is the acceleration due to gravity (negative because it is downward)

s is the vertical displacement

Re-arranging, we find s:

[tex]s=\frac{v_y^2-u_y^2}{2a}=\frac{0^2-(9)^2}{2(-9.8)}=4.13 m[/tex]

However, this is the vertical displacement above the top of the ramp. We see that the ramp is [tex]d=15.6 m[/tex] long in the horizontal direction, so the height of the ramp is

[tex]h=d tan \theta=(15.6)(tan 30^{\circ})=9m[/tex]

So, the maximum height of the projectile is:

[tex]H=h+s=9+4.13 = 13.13 m[/tex]

B)

To find the time at which the projectile reaches the maximum height, we use another suvat equation:

[tex]v_y=u_y + at[/tex]

where:

[tex]v_y=0[/tex] is the vertical velocity at the maximum height

[tex]a=-9.8 m/s^2[/tex] is the acceleration due to gravity

[tex]u_y = 9 m/s[/tex] is the initial vertical velocity

Solving for t, we find the time:

[tex]t=\frac{v_y-u_y}{a}=\frac{0-9}{-9.8}=0.92 s[/tex]

The horizontal position of the projectile instead is given by the equation for uniform motion:

[tex]x(t)=v_x t[/tex]

where:

[tex]v_x = u cos \theta = (18)(cos 30^{\circ})=15.6 m/s[/tex] is the initial horizontal velocity

Substituting t = 0.92 s, we find:

[tex]x=(15.6)(0.92)=14.4 m[/tex]

So, this is the horizontal distance covered from the top of the ramp at the instant of maximum height; and therefore, the horizontal distance from the beginning of the ramp is

[tex]d=15.6+14.4=30.0 m[/tex]

Elements have the same number of ______ as you move from left to right

Answers

Answer:

protons

Explanation:

Answer:

Electron shells

Explanation:

2 characteristics of constant speed

Answers

Answer:

it has no acceleration

Explanation:

8. Grass uses energy from the Sun
to grow. A cow eats grass so it
has energy to walk. You drink
milk from the cow so you have
energy to hit a ball. This makes
a loud sound and sends the ball
flying. In these steps, energy
keeps moving and changing.
What is this series of steps called?
® energy movement
® energy switching
© energy transfer
O energy conversion

Answers

Answer:

The correct option is D) energy conversion

Explanation:

As we all know, energy is neither created nor destroyed but is can be converted from one form to another.

For example, the chemical energy in food is converted into kinetic energy when we run or walk.

The changing of the energy is called energy conversion and the movement of the energy is called energy transfer.


So
Some lakes, such as the Great Salt Lake, accumulate soluble minerals such as salt. In
those lakes, people find it much easier to float than when they are in fresh water. Why is
this the case?

Answers

The reason for people to swim easier in salt water than fresh water is because of buoyancy

Explanation:

In fresh water there is lack of minerals and has fresh water alone. The density of fresh water is 1000 kg/m³.  Hence, in fresh water  cannot exert the suitable buoyancy for the swimmer to float easier than that of salt water.

But in Salt water due to enrichment of salts  and minerals it is found that salt water has more density than fresh water. Here the salt water offers more buoyancy to the swimmer to lift him up in the water surface and to swim faster and easier than fresh water.

It is similar to that egg floats in the salt water and sinks inside the fresh water because of its own body weight.

Does reflection occur when a wave bounces off a surface that cannot pass through

Answers

Answer: yes

Explanation: bc

Other Questions
The leader of the soviet union who succeeded joseph stalin was 8 divided by 6040 fill in the blank Which is NOT a class that might be offered by a health educator?A. Nutrition and exerciseB. How to read to your childC. Proper hygieneD. Managing a chronic health condition After deciding to acquire a new car, you realize you can either lease the car or purchase it with a three-year loan. The car you want costs $32,500. The dealer has a leasing arrangement where you pay $94 today and $494 per month for the next three years. If you purchase the car, you will pay it off in monthly payments over the next three years at an APR of 6 percent. You believe that you will be able to sell the car for $20,500 in three years.a. What is the present value of purchasing the car? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16)b. What is the present value of leasing the car? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16)c. What break-even resale price in three years would make you indifferent between buying and leasing? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16) Compare the strengths and weaknesses of the Union and the Confederacy at the start of the Civil War. Focus on economic and militaryissue.You MUST use complete sentences,Please answer If the area of a triangle with a base measuring 22 feet is 93.5 square feet, find its height In k-means clustering, k represents the a. number of clusters. b. mean of the cluster. c. number of observations in a cluster. d. number of variables. PLEASE HELPThe total cost f(x), in dollars, for renting a moving van for a week and driving it x miles is shown below:f(x) = 90 + 0.13xWhat is the value of f(200), and what does f(200) represent? A boy and a girl are riding a merry- go-round which is turning ata constant rate. The boy is near the outer edge, while a girl is closer to the center. Who has the greater tangential acceleration? 1. the boy 2. the girl 3. both have zero tangential 25% try penalty acceleration Hints: 0,0 4. both have the same non-zero tangential acceleration Two 20.0 g ice cubes at 20.0 C are placed into 285 g of water at 25.0 C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature, T f , of the water after all the ice melts. 2. How did the case of Plessy v. Fer-guson serve as a precedent in segre-gation cases? Suppose a movie theater determines it can charge different prices to patrons who go to weekday matinees and people who attend evening and weekend shows . The movie theaters goal is to increase total revenue.The price elasticity of demand for weekend and evening patrons is -0.50, and the price elasticity of demand for matinee moviegoers is -1.70. Based on the price elasticity of demand for each group of people, how should the movie theater adjust its prices? Given the two reactions H2S(aq)HS(aq)+H+(aq), H2S(aq)HS(aq)+H+(aq), K1K1K_1 = 9.39108, and HS(aq)S2(aq)+H+(aq), HS(aq)S2(aq)+H+(aq), K2K2K_2 = 1.451019, what is the equilibrium constant KfinalKfinalK_final for the following reaction? S2(aq)+2H+(aq)H2S(aq) In examining its monthly bank statement, a company discovers that that its account was credited $30 for interest earned. The entry needed to adjust the company's cash balance for this reconciling item will include a: You make a solution that has 20 molecules of glucose, 210 molecules of hemoglobin, and 770 molecules of water. What is the solute concentration in %? Which of the following is the code of acceptable behaviors users should follow while on the Internet; that is, it is the conduct expected of individuals while online? Group of answer choices a. Postoffice Protocolb. The Golden Rulec. Netiquetted. An Faq What are the solutions of x^2-2x+5=0 What is one important element of Romantic literature? The compound responsible for the characteristic smell of garlic is allicin, The mass of 1.00 mol of allicin, rounded to the nearest integer, is __________ g. Identify Central Issues What economic conditions led to the rise of totalitarianism in Europe and Asia? Generate Explanations How Hitler and Mussolini use the Spanish Civil war to their advantage? Support Ideas with Examples Was the policy of appeasement successful against Hitler and Germany? Explain your answer. Identify Patterns What was Franklin Roosevelt's Good Neighbor policy? Identify Central Issues In what way did the Anschluss present a challenge to the United States and its allies?