A cylindrical cable of radius 8.57 mm carries a current of 25.5 a, uniformly spread over its cross-sectional area. at what distance from the center of the wire is there a point within the wire where the magnetic field is 0.447 mt?

Answers

Answer 1
I think there is a problem with this question because the answer is not inside the wire as stated, but would require a bigger wire than stated. This should be a standard ampere's law problem, B = I(mu), where B is the magnetic field, I is the current and mu is the magnetic permitivity constant (4*pi * 10^-7 H/m or T/A). We can describe the amount of current we get from our distance from the center of the wire with a ratio of areas (pi*r^2/pi*d^2), where r is our particular distance from the center (what we're trying to find) and d is the total radius of the wire. Adding this into ampere's law and canceling the pi's we get B = I*(mu)*(r^2/d^2), solving for r we get r = sqrt(B*d^2/(I*(mu))), when you plug values in, it gives an r of 32mm, which is much bigger than the actual radius of the wire. Maybe something was copied wrong?

Related Questions

Which type of electromagnetic radiation cannot be focused?

A. Gamma rays
B. X-rays
C. Infrared
D. Ultraviolet

Answers

The answer is A. Hope this helps. :)

(A)  Gamma rays

Focussing is a process in which a beam of light is passed and concentrated on the particular point.

Gamma rays are the type of elecromagnetic radiation that cannot of focused. Gamma rays has high frequency and also are quite energetic due to which when the beam of light is passed through it, it becomes too difficult to focus on a particular point as they interacts strongly with the matter and destroys itself. Hence, Gamma rays are not easily focused.

A uniform 300-n trapdoor in a floor is hinged at one side. find the net upward force needed to begin to open it and the total force exerted on the door by the hinges (a) if the upward force is applied at the center and (b) if the upward force is applied at the center of the edge opposite the hinges. 11.5 .. raising a ladder. a ladder carried

Answers

The force body diagrams are shown in the picture for the two different cases.

In part a, there are 4 forces acting on the system. Two x and y forces in the point of the hinge on the rightside corner. One force pointing downwards for the weight of the trapdoor which is 300 N. One force pointing up which is what is asked. Let's denote this as x. To find this, we have to know the length of the trapdoor. Since it is not given, let's assume it to be 6 meters. Hence, the distance from the hinge to the center is 3 meters. Using the law of conservation of momentum, 

Summation of Moment = 0
Summation of Moment = x(3)  - 300(3) = 0
x = 300 N

In part b, the upward force is at the leftside corner instead of at the center. Using the same procedure,

Summation of Moment = x(6)  - 300(3) = 0
x = 150 N
Final answer:

This problem is about the physics of rotation and equilibrium. To open the trap-door, an upward force that counteracts the door's weight is necessary. The total force exerted on the door equals the applied force minus the net upward force. If the force is applied farther from the door, More force is required due to the increased torque.

Explanation:

The net upward force to open the door is the force that counteracts the gravitational force acting on the door, which can be calculated using the door’s mass and the acceleration due to gravity. The total force exerted on the door by the side is equal to the total force applied on the door minus this net upward force.

In case (a), where the force is applied at the center of the door, the force required to start opening is equal to the weight of the door distributed over the two sides. In case (b), where the force is applied at the center of the edge opposite the door, the force required is larger because the distance from the door to the point where the force is applied is greater, increasing the torque.

In the case of the ladder problem, an analysis of the torques and the net forces, considering the ladder’s weight and the friction with the floor, would be necessary.

Learn more about Physics of Rotation here:

https://brainly.com/question/36897101

#SPJ11

An inductor is connected across an ac source. suppose the frequency of the source is doubled. what happens to the inductive reactance of the inductor?

Answers

If an inductor is connected across an ac source and suppose the frequency of the source is doubled, then the inductive reactance of the inductor is also doubled. The inductive reactance (XL) is the the opposition to current flowing through a coil in an AC circuit, the impedance measured in Ohms and can be calculated with the following formula:
XL=2*pi*f*L,
where f is the frequency. So, if the frequency is doubled than also the inductive reactance is doubled.

Doubling the frequency of an AC source connected to an inductor results in the inductive reactance being doubled, which means the opposition to current flow increases.

When an inductor is connected across an AC source and the frequency of the source is doubled, the inductive reactance of the inductor also increases. The inductive reactance, denoted by XL, is given by the formula XL = 2πfL, where f is the frequency of the AC voltage source in hertz and L is the inductance in henrys. Since the formula shows that XL is directly proportional to f, when the frequency is doubled, the inductive reactance doubles as well. This implies that the opposition to the current in the circuit will increase, resulting in a decreased current flow for the same applied voltage.

Which of newton's laws could we have used to predict that the forces in parts b and e are equal and opposite?

Answers

That's the The third Newton's Law.

A boy jumps at a speed of 20.0 m/s at an angle of 25.0o above the horizontal. what is the horizontal component of the boy's velocity?

Answers

Given:
Launch velocity  = 20 m/s
Launch angle = 25° above he horizontal.

The horizontal component of velocity is by definition
Vx = 20*cos(25°) = 18.13 m/s

Answer:  18.13 m/s (nearest hundredth)

A temperature of 200°F is equivalent to approximately

Answers

93°C or 366 Kelvin. Be a little more specific next time in your questions.

To convert [tex]200^{\circ}F[/tex] to Celsius, subtract 32 from 200 and then multiply the result by 5/9 to get approximately [tex]93.33^{\circ}C[/tex]. To convert this to Kelvin, add [tex]273.15[/tex] to the Celsius result, which gives about [tex]366.48 K[/tex].

Converting [tex]200^{\circ}F[/tex] to Celsius and Kelvin

To convert a temperature of [tex]200^{\circ}F[/tex] to Celsius (°C), use the formula:

[tex]C = \frac{{F - 32}}{9} \times 5[/tex]

Here's the step-by-step conversion:

Subtract 32 from 200: [tex]200 - 32 = 168[/tex]Multiply 168 by 5/9: [tex]168 \times \frac{5}{9} \approx 93.33^\circ \text{C}[/tex]

So, [tex]200^{\circ}F[/tex]  is approximately [tex]93.33^{\circ}C[/tex].

Next, to convert Celsius to Kelvin ([tex]K[/tex]), use the formula:

[tex]K = C + 273.15[/tex]

Add 273.15 to 93.33: [tex]93.33 + 273.15 = 366.48 K[/tex]

Therefore, [tex]200^{\circ}F[/tex] is approximately [tex]366.48 K[/tex].

In order to induce electrical energy into a conductor or generator, what three factors must be present?

Answers

The electricity produced by a generator works through the concepts of the following three factors; magnetic field, voltage and current. When a conductor with current flowing in it is placed in a magnetic field, it will cause the electrons to move in a direction perpendicular to the magnetic field. When working with generators, the guide for this direction is Fleming's Right Hand Rule. Since the electron move in perpendicular motion with magnetic field all the time, it would cause it to spin in a helical direction. These turns would then induce voltage and create electricity.

Calculate the freezing point of a solution of 40.0 g methyl salicylate, c7h6o2, dissolved in 800. g of benzene, c6h6. and the freezing point is 5.50°c for benzene. calculate the freezing point of a solution of 40.0 g methyl salicylate, c7h6o2, dissolved in 800. g of benzene, c6h6. and the freezing point is 5.50°c for benzene. 3.41°c -2.09°c 7.59°c 2.09°c

Answers

From the problem statement, we are given a solution thus the solute in the solution would have an effect on some of the properties of the whole system. These properties are called the colligative properties. To calculate the freezing point of the solution, we use the freezing point depression equation which is expressed as follows:

ΔTf = kf(m)i

where ΔTf represents the freezing point depression, kf is a constant which 4.90 C/m for benzene, i is the vant hoff factor which is 1 for the given solute since it does not dissociate into ions and m is the molality of the solution. We calculate as follows:

ΔTf = kf(m)i
ΔTf = 4.90 (40.00 / .800 (122.13)) (1)
ΔTf = 2.01 C

ΔTf = Tf - Tfs
Tfs = 5.5 - 2.01
Tfs = 3.49 C

The correct answer would be the first option.


The freezing point of the solution will be 3.9075 [tex]\rm ^\circ C[/tex].

The freezing point of the solution will be calculated by the formula:

[tex]\rm \Delta T_f\;=\;k_f\;\times\;molality\;\times\;i[/tex]

[tex]\rm k_f[/tex] is the constant = 4.90 C/m (benzene), i = von't hoff factor = 1

molality = [tex]\rm \dfrac{weight}{molecular\;weight}\;\times\;mass\;of\;solution[/tex]

molality = [tex]\rm \dfrac{40}{152}\;\times\;\dfrac{1000}{800}[/tex]

molality = 0.325 m

[tex]\rm \Delta T_f[/tex] = 4.90 [tex]\times[/tex] 0.325

[tex]\rm \Delta T_f[/tex] = 1.5925 [tex]\rm ^\circ C[/tex]

The temperature of benzene is [tex]\rm 5.50^\circ C[/tex] and the change in temperature is 1.5925 [tex]\rm ^\circ C[/tex].

So, the solution temperature will be :

= 5.50 - 1.5925 [tex]\rm ^\circ C[/tex].

= 3.9075 [tex]\rm ^\circ C[/tex].

The freezing point of the solution will be 3.9075 [tex]\rm ^\circ C[/tex].

For more information, refer to the link:

https://brainly.com/question/20470260

The position of a simple harmonic oscillator is given by x left-parenthesis t right-parenthesis equals left-parenthesis 0.50 mright-parenthesis cosine left-parenthesis startfraction pi over 3 endfraction t right-parenthesis where t is in seconds. what is the maximum velocity of this oscillator?

Answers

The specified displacement is
[tex]x(t)=(0.50\,m)cos( \frac{ \pi t}{3} )[/tex]

The velocity is the derivative f displacement with respect to time.
The velocity is
[tex]v(t)=-0.50( \frac{ \pi }{3} )sin( \frac{ \pi t}{3} )[/tex]

The maximum valu of v occurs when the sine functin is 1 or -1.
Therefore, the maximum velocity is
vmax = 0.5(π/3) = 0.524 m/s

Answer: 0.524 m/s
Final answer:

The maximum velocity of a simple harmonic oscillator is equal to the amplitude of the motion multiplied by the angular frequency. The angular frequency is defined as 2pi divided by the period of the oscillator. To calculate the maximum velocity, you can use the equation Vmax = A * w = A * 2pi/T.

Explanation:

The maximum velocity of a simple harmonic oscillator occurs when the object is at the equilibrium position, where the displacement is zero. In this case, the equation for displacement is given by x(t) = 0.5m * cos(pi/3t), where t is in seconds. The maximum velocity is equal to the amplitude of the motion, A, multiplied by the angular frequency, w.

The angular frequency is given by w = 2pi/T, where T is the period of the oscillator. The period, T, can be determined by finding the time it takes for the object to complete one full oscillation. The period is the reciprocal of the frequency, f, which is given by f = 1/T.

So the maximum velocity, Vmax, can be calculated as Vmax = A * w = A * 2pi/T.

Learn more about Simple Harmonic Oscillator here:

https://brainly.com/question/29471489

#SPJ3

The main difference between turbojets and rocket engines is the fact that A. turbojets carry their own supply of oxygen as oxidizers. B. turbojets are not dependent on oxygen from the air. C. rocket engines need oxygen from the air. D. rocket engines are not dependent on oxygen from the air.

Answers

The main difference between turbojets and rocket engines is the fact that
A. turbojets carry their own supply of oxygen as oxidizers.
B. turbojets are not dependent on oxygen from the air.
C. rocket engines need oxygen from the air.
D. rocket engines are not dependent on oxygen from the air.

D.  rocket engines are dependent on oxygen from the air.


If the pendulum is brought on the moon where the gravitational acceleration is about g/6, approximately what will its period now be?

Answers

The pendulum movement is a famous situation manifesting the force of tension by the rope and the force of gravity coming into play. There are already derived equations explaining the behavior of the pendulum movement.

Period = t = 2π√(L/g)

Since, we don't have exact values for the parameters, let's just find the ratio to provide comparison. Let's find the ratio of the pendulum on the moon (t,moon) to the period of the pendulum on earth (t,earth).

t,moon/t,earth = 2π√(L/g/6) ÷ 2π√(L/g) = √6

Therefore, the period of the pendulum on the moon is the square root of 6 times that of in the earth.

The period of a pendulum on the Moon will be [tex]\sqrt6[/tex] times that of the period in earth.

Period of a Pendulum on the Moon

The period of a pendulum is given by the formula:

[tex]T = 2\pi\sqrt{(L/g)}[/tex]

where T is the period, L is the length of the pendulum, and g is the gravitational acceleration.

To find the new period on the Moon, we need to consider that the gravitational acceleration on the Moon is approximately g/6 compared to that on Earth.

On Earth, the period Tₑ is:

[tex]T_e = 2\pi\sqrt{(L/g)}[/tex]

On the Moon, the period Tₘ is:

[tex]T_m = 2\pi\sqrt{(L/(g/6))} = 2\pi \sqrt{(6L/g)}[/tex]

This simplifies to:

[tex]T_m = \sqrt6 \times 2\pi\sqrt{(L/g)} = \sqrt6 \times T_e[/tex]

If we approximate [tex]\sqrt6 = 2.45[/tex], then:

[tex]T_m = 2.45 \times T_e[/tex]

Restate the definition of efficiency assuming that the heating properties of a light bulb are more important than the illumination.

Answers

In topics related to power, work or energy, the definition of efficiency is described as:


Efficiency = useful intended output / total input 



Therefore with this definition, we restate that:

Efficiency is energy transferred to light divided by the electrical energy consumed (input).

 

Theories have both an explanatory and a predictive function.
a. True
b. False

Answers

Theories have both an explanatory an a predictive function. True

Answer:

true

Explanation:

Theories have both an explanatory an a predictive function.

What should you do when you cut your palm on a small piece of broken glass that is lying on the lab bench?

Answers

First, report this to your instructor. Small cuts should be cleaned and checked for broken glass. Bandages and dressings are available in the First-Aid Kit found in the laboratory. If bleeding is not stopping, apply pressure to the wound or affected area. Any treatment outside emergency first aid will be referred to the student infirmary. Severe emergencies will be referred to the Hospital emergency room.

A rod 12.0 cm long is uniformly charged and has a total charge of -20.0 µc. determine the magnitude and direction of the electric field along the axis of the rod at a point 32.0 cm from its center.

Answers

Q is the charge and it is Q = -20.0 µC.
Let D denotes the the distance between the center of the rod and the point.Then,
D=0.32 - 0.12 = 0.2 m
L = 0.12 m - the length of the rod
The magnitude and direction of the electric field along the axis of the rod at a point 32.0 cm from its center can be obtained with the formula: 
E = K·Q/r²
E = kQ/D(D+L), where k is a constant with a value of 8.99 x 109 N m2/C2.
So,
E=(8.99 x 109 N m2/C2.* (-20.0 µC))/(0.2 m*0.32m)


When a sound wave moves through a medium such as air, the motion of the molecules of the medium is in what direction (with respect to the motion of the sound wave?

Answers

A sound wave is a pressure wave that results from the vibration of the particles o the medium from the source. The motion of the particles in the medium is parallel to the direction of the energy transport. The type of wave formed by a sound wave is the longitudinal wave. A longitudinal wave is characterized by rarefactions. A longitudinal wave is a wave motion wherein the particles in the wave medium are displaced parallel to transport. When motion is detected from the source, the particle next to it vibrates from its rest position and a progressive change in phase vibration is observed at each particle within that wave. The result is that the energy is transported from one region to the other. These combined motions result in the movement of alternating regions of rarefaction in the direction of propagation.      

Current flows in a light detection device when _____ collide with its pn junction.

Answers

The light detection device is also called photodetector. It transforms any natural or artificial light source it encounters into sound.
Current flows in a light detection device when light collide with its pn junction.
When light falls on the junction, a reverse current flows which is proportional to the illuminance. The linear response to light makes it an element in useful photodetectors for some applications. It is also used as the active element in light-activated switches.

Final Answer:

Current flows in a light detection device when electrons collide with its pn junction.

Explanation:

Current flows in a light detection device when photons collide with its pn junction. This phenomenon is known as the photoelectric effect. Essentially, when photons with sufficient energy strike the surface of a photodetector, they can impart enough energy to materials ejecting electrons. In solid-state radiation detectors, which are semiconductors designed to directly convert incident radiation into electrical current, the flow of electrons across the pn junction generates a measurable electric current. Photomultiplier tubes amplify this effect using a series of metal plates called dynodes, each with a progressively more positive potential, to increase the number of electrons ejected and create a stronger electrical signal proportional to the light's energy.

The stratospheric chemical that prevents much of the solar ultraviolet radiation from penetrating to earth's surface is:

Answers

Ozone prevents much of the solar UV radiation.

A 220-kg speedboat is negotiating a circular turn (radius = 31 m) around a buoy. During the turn, the engine causes a net tangential force of magnitude 590 N to be applied to the boat. The initial tangential speed of the boat going into the turn is 9.9 m/s. (a) Find the tangential acceleration. (b) After the boat is 6.0 s into the turn, find the centripetal acceleration.

Answers

Refer to the figure shown below, which illustrates the problem.

The applied tangential force of 590 N  creates an applied torque of
T = (590 N)*(31 m) = 18290 N-m

The rotational moment of inertia of the boat is
I = (220 kg)*(31 m)² = 211420 kg-m²

Part a.
The angular acceleration is
α = T/I = (18290 N-m)/(211420 kg-m²) = 0.0865 rad/s²
The tangential acceleration is
[tex] a_{t} [/tex] = (0.0865 rad/s²)*(31 m) = 2.68 m/s²

Part b.
The initial tangential speed is v = 9.9 m/s, therefore the initial angular speed is
ω₀ = (9.9 m/s)/(31 m) = 0.3194 rad/s
After 6 s, the angular speed is
ω = (0.3194 rad/s) + (0.0865 rad/s²)*(6 s) = 0.8384 rad/s

The centripetal acceleration is
[tex] a_{n} [/tex] = (31 m)*(0.8384 rad/s)² = 21.79 m/s²
Final answer:

The tangential acceleration is 2.68 m/s² and the centripetal acceleration after 6.0 s is 3.15 m/².

Explanation:

To find the tangential acceleration, we can use the formula:

at = Ft/m

Where Ft is the tangential force and m is the mass of the boat.

Plugging in the given values, we get:

at = 590 N / 220 kg = 2.68 m/s²

To find the centripetal acceleration, we can use the formula:

ac = v² / r

Where v is the tangential speed and r is the radius.

Plugging in the given values and the time, we get:

ac = (9.9 m/s)² / 31 m = 3.15 m/s²

Learn more about Tangential and centripetal acceleration here:

https://brainly.com/question/17689540

#SPJ11

An ideal solenoid having a coil density of 5000 turns per meter is 10 cm long and carries a current of 4.0
a. what is the strength of the magnetic field at its center?

Answers

The rule that is used to get the strength of magnetic field at the center of solenoid (B) is:
B = µ x n x I where:
µ is the permeability of the medium where the solenoid is based. In this problem, the medium is air which means that µ = µ o = 4 pi x 10^-7 Tm/A
I is the current passing (I = 4 amperes)
n is the number of turns per unit length (5000 turns)

Substituting in the mentioned equation, we find that:
B = 4 x 3.14 x 10^-7 x 5000 x 4 = 25.132 mT

Ben runs from a position 3 m west of Main Street to a new position 45 m west of Main Street in 6 seconds. What is Ben's velocity?

Answers

7m/ s west is the answer that you are looking for.

Because the Gulf Stream carries warm water up from the Gulf of Mexico, what effect does it have

Answers

All bodies of water experience thermal stratification. This is when the ocean, for example, forms different layers of water that differ by temperature. It is a result of equilibrium. Since warm water is much heavier than cold, then the thermal stratification starts from the coldest layer as the topmost, and the warmest layers at the very bottom. So, when a stream moves in to a body of water, for a example from gulf to gulf, there will be convection of currents. The stratification gets disturb for a moment causing mixing. After a certain time when it reaches equilibrium, it will achieve thermal stratification again.

In this experiment, you will use a track and a toy car to explore the concept of movement. You will measure the time it takes the car to travel certain distances, and then complete some calculations. In the space below, write a scientific question that you will answer by doing this experiment.

Answers

"What speed is the car traveling at the longest distance and the shortest distance, and how do they compare?"
"Does the car move faster or slower for longer distances?"

An electron at Earth's surface experiences a gravitational force meg. How far away can a proton be and still produce the same force on the electron?

Answers

I will discuss what is a gravitational force since no figures are attached or given. An objects weight is dependent upon its location in the universe because they exhibit gravitational waves. For example, the earth is a massive planet. Because of its massiveness, it exhibits a strong gravitational force within it. In turn, the objects near the earth will be attracted to it and thereby feels a much stronger gravity on earth. That is why bodies of water, despite its liquid features, stick to the earth. The heavier the body is, the stronger its gravitational pull. Another example is the Milky Way Galaxy, there is a gravitational pull because it is to other galaxies. Also, other galaxies are heavier than the earth and therefore, it is attracted to the Milky Way galaxy because of its gravitational pull. 

The proton could be 5 m far away from electron.

Further explanation

Newton's gravitational law states that the force of attraction between two objects can be formulated as follows:

[tex]\large {\boxed {F = G \frac{m_1 ~ m_2}{R^2}} }[/tex]

F = Gravitational Force ( Newton )

G = Gravitational Constant ( 6.67 × 10⁻¹¹ Nm² / kg² )

m = Object's Mass ( kg )

R = Distance Between Objects ( m )

Let us now tackle the problem!

Given:

me = 9.11 × 10⁻³¹ kg

qp = qe = 1.6 × 10⁻¹⁹ kg

Unknown:

R = ?

Solution:

[tex]F_e = F_p[/tex]

[tex]m_e \times g = k \times \frac{q_e \times q_p}{R^2}[/tex]

[tex]9.11 \times 10^{-31} \times 9.81 = 9 \times 10^9 \times \frac{(1.6 \times 10^{-19})^2}{R^2}[/tex]

[tex]R \approx 5 ~ m[/tex]

Learn moreImpacts of Gravity : brainly.com/question/5330244 Effect of Earth’s Gravity on Objects : brainly.com/question/8844454 The Acceleration Due To Gravity : brainly.com/question/4189441

Answer details

Grade: High School

Subject: Physics

Chapter: Gravitational Field

Keywords: Gravity , Unit , Magnitude , Attraction , Distance , Mass , Newton , Law , Gravitational , Constant

Discuss the role of the expanded functions dental assistant in making a provisional coverage

Answers

The expanded-function dental assistant (EFDA) can play a major role in the fabrication and temporary cementation of a provisional crown or bridge. It is the dentist’s and the EFDA’s responsibility to remain current with the new provisional materials and techniques that are available. It is essential that a provisional crown or bridge remain cemented while the fixed prosthesis is being prepared and delivered to the dental office. When the patient returns for final cementation of a fixed crown or bridge, the provisional should be cautiously removed without causing any fracture or harm, just in case it will need to be recemented if the final prostheses needs to be sent back to the lab for adjustments and remake.

Final answer:

The Expanded Functions Dental Assistant in dentistry plays an essential role in creating provisional restorations or temporary crowns. They clean and prepare the tooth, create molds for the provisional coverage, adjust its fit, and provide patient education and care instructions.

Explanation:

The Expanded Functions Dental Assistant (EFDA) plays a crucial role in the process of creating provisional coverage or temporary crowns in dentistry. This involves reestablishing the function, esthetics, and comfort for the patient temporarily until the definitive restoration can be placed.

EFDA's typically apply local anesthesia, clean and prepare the tooth that is to receive the coverage, and take impressions of the tooth to create a mold upon which the provisional coverage will be formed. They have been trained to mix the proper materials to create the provisional restoration and adjust it once in place in order to provide the patient with maximum comfort and functionality. Lastly, they also provide post-procedural care instructions and educate the patient about potential risks and complications.

Learn more about Expanded Functions Dental Assistant Role here:

https://brainly.com/question/34394427

#SPJ6

A rectangular gasoline tank can hold 36.0 kg of gasoline when full. what is the depth of the tank (in m) if it is 0.450 m wide by 0.900 m long? m (b) what is the volume of the tank (in gal)? (it is suitable for a passenger car.) gal

Answers

Let h =  depth of the rectangular tank.
Its volume is
V = (0.450 m)*(0.900 m)*(h m)
   = 0.405h m³

The density of gasoline is about 0.77 kg/L = 719.7 kg/m³.
Because the mass of gasoline is given as  36.0 kg, its volume is
V = (36.0 kg)/(719.7 kg/m³)
    = 0.05 m³

Therefore,
0.405h = 0.05
          h = 0.1235 m 

The capacity of the tank in gallons is
(36 kg)/(0.77 kg/L) = 46.75 L
Because 1 L = 0.264 gal, the capacity is
(46.75 L)/(1/0.264 L/gal) = 177.1 gal.
A typical passenger can hold between 12 and 17 gallons, so this tank is too large.

Answer:
The depth is 0.1235 m.
The volume is 0.05 m³.
The tank is too large for a passenger car.

A semicircular plate ft in diameter sticks straight down into fresh water along the surface find the force exerted by the water on one side of the plate

Answers

You would need to know the diameter of the plate (not in the question). This would tell how much of the plate is in the water. Then you'd need to know the speed of the water current. These two figures would let you calculate the force exerted on the submerged portion of the plate.

When you eat a candy bar and then decide to go for a walk, energy transformations take place. beginning with the food energy in the candy bar, describe the forms of energy used and the changes in energy that occur as you decide to walk and as you do the walking?

Answers

When we eat a candy bar and then decide to go for a walk, we get instant energy in the body due to the food energy in the candy and that is called carbohydrates. The carbohydrates in the candy give our body some instant energy due to which we feel more energetic and do the walk or another physical thing with a boost.  
Our potential energy somewhat increases after eating the candy and when we walk, it gets transformed into kinetic energy

The maximum restoring force that can be applied to the disk without breaking it is 40000 n. what is the maximum oscillation amplitude that won't rupture the disk

Answers

Since it follows a simple harmonic motion then the displacement of the oscillator follows the expression: x (t) = A cos (ω t + δ)

Then this gives that the formula for maximum acceleration is:

a = amax = A w^2

Where,

A = maximum amplitude of the wave

w = angular velocity

We also know that w is equivalent to: w = 2 π f

Therefore combining all and using the Newton’s 2nd law of motion:

F = m a

F = m A w^2

F = m A (2 π f)^2

A = F / m (2 π f)^2

Plugging in the given numbers:

A = 40,000 N / [(10^−4 kg) (2 π * 10^6 / s)^2]

A = 1.0132 * 10^-5 m

or simplifying

A = 10^5 m = 10 microns 

Two point charges of values +3.4 and +6.6 μc are separated by 0.10 m. what is the electrical potential at the point midway between the two point charges? (

Answers

Final answer:

The electrical potential midway between two point charges is determined by adding the potentials due to each charge, calculated using the formula V = kq/r, where V is potential, k is Coulomb's constant, q is charge, and r is the distance to the point.

Explanation:

The question asks about the electrical potential at the point midway between two point charges of values +3.4 and +6.6 μC (microcoulombs) separated by 0.10 m. To solve this, we can use the formula for electric potential due to a point charge, V = kq/r, where V is the electric potential, k is Coulomb's constant (approximately 8.987 × 10^9 Nm^2/C^2), q is the charge in coulombs, and r is the distance from the charge to the point in question. At the midpoint between the two charges, the potentials due to each charge add up algebraically because they are both positive charges.


The distance from each charge to the midpoint is 0.05 m. Thus, the total potential at the midpoint is V_total = V_1 + V_2 = (kq_1/r_1) + (kq_2/r_2) = (8.987 x 10^9 Nm^2/C^2)(3.4 x 10^-6 C/0.05 m + 6.6 x 10^-6 C/0.05 m). Simplifying, the electric potential at the midpoint is calculated to be the sum of the individual potentials from each charge.

Other Questions
Which of these would be considered genocide under the UN definition? Check all that apply. True or False? The current growth associated with the human population places pressure on resources and social organization. A turkey was cooked at 300 f in the oven for 5 hours. the internal temperature rose from 35 f to 150 f. what was the average rise in temperature per hour Salt water is denser than fresh water. a ship floats in both fresh water and salt water. compared to the fresh water, the volume of water displaced in the salt water is What is a possible cost of using renewable energy resources What are the steps for constructing a circumscribed circle for using only a compass and a straightedge? Patricia robertson is running for congress from the sixth district in her state. she is interested in knowing the intended choices of the voters. all the registered voters in her district would constitute the study's _____. When an athlete first starts to exercise, her initial energy needs are provided primarily by the aerobic energy system? 4 . suppose you are setting up a reaction that requires an iodide salt and are planning to use sodium iodide. however, at the last minute you find that you are out of sodium iodide, so you must use potassium iodide instead. will you need to weigh out more, less, or the same mass of potassium iodide in order to get the same number of moles of iodide ions? What is the advantage for scientists of using non scientists to collect data? If a train travels one mile (5,280 feet) while climbing a hill at an angle of five degrees, approximately how many vertical feet has the train climbed? Calculate the vapor pressure of water above a solution prepared by dissolving 28.5 g of glycerin (c3h8o3) in 135 g of water at 343 k. (the vapor pressure of water at 343 k is 233.7 torr.) The above composer, born into a very humble household in hamburg, is best known for taking older forms and styles and redefining them in modern ways. antonin dvorak was inspired by his hungarian dance no. 1. what is this composer's name? Which of these treatments may increase and HIV Patient's life spanA.anit-retoviral therapyB.antibioticsC. HIV vaccine D.message therapy The drawing shows sodium and chloride ions positioned at the corners of a cube that is part of the crystal structure of sodium chloride (common table salt). the edges of the cube are each 0.281 nm (1 nm = 1 nanometer = 109 m) in length. what is the value of the angle the in the drawing? Nicholas bought 5 pens for 3 at this rat how many much will be spend on 10 pens Read this excerpt from a raisin in the sun:beneatha enters. she is about twenty . . . her lean, almost intellectual face has a handsomeness of its own. . . . her speech is . . . different from the rest of the family's insofar as education has permeated her sense of english . . . she passes through the room without looking at either ruth or walter . . .what do these stage directions most reveal about beneatha?a.that she is obsessed with her appearanceb.that she considers herself independentc.that she cares deeply about her familyd.that she does not speak english well 11. I plan to go to the batting cages two days a week in order to improve my hitting. This is an example of a:a.performance goalb.outcome goal In a combustion reaction, 46.0g of ethanol reacts with 96.0 g of oxygen to produce water and carbon dioxide. If 54.0 g of water is produced, what mass of carbon dioxide is produced? Strand company is planning to sell 400 buckets and produce 380 buckets during march. each bucket requires 500 grams of plastic and one-half hour of direct labor. plastic costs $10 per 500 grams and employees of the company are paid $15.00 per hour. manufacturing overhead is applied at a rate of 110% of direct labor costs. strand has 300 kilos of plastic in beginning inventory and wants to have 200 kilos in ending inventory. how much is the total amount of budgeted direct labor for march? Steam Workshop Downloader