A concrete beam may fail either by shear (S) or flexure (F). Suppose that three failed beams are randomly selected and the type of failure is determined for each one. Let X = the number of beams among the three selected that failed by shear. List each outcome in the sample space along with the associated value of X.

Answers

Answer 1

The Possible outcomes and associated values in the sample space along with X are SSS (X = 3), SSF, SFS, FSS, SFF (X = 1), FSF, FFS,

FFF (X = 0).

We have,

Let's list all the possible outcomes in the sample space when three concrete beams are selected and their failure types (shear or flexure) are determined.

For each outcome, we'll also determine the value of X, which represents the number of beams that failed by shear.

Let S represent shear failure and F represent flexure failure.

Possible outcomes and associated values of X:

SSS (All three beams failed by shear)

X = 3

SSF (Two beams failed by shear, one by flexure)

X = 2

SFS (Two beams failed by shear, one by flexure)

X = 2

FSS (Two beams failed by shear, one by flexure)

X = 2

SFF (One beam failed by shear, two by flexure)

X = 1

FSF (One beam failed by shear, two by flexure)

X = 1

FFS (One beam failed by shear, two by flexure)

X = 1

FFF (All three beams failed by flexure)

X = 0

These are the eight possible outcomes in the sample space along with the associated values of X, representing the number of beams that failed by shear in each outcome.

Thus,

Possible outcomes and associated values of X: SSS (X = 3), SSF, SFS, FSS, SFF (X = 1), FSF, FFS, FFF (X = 0).

Learn more about sample space here:

https://brainly.com/question/24273864

#SPJ12

Answer 2
Final answer:

The outcomes in the sample space for three concrete beams failing are: (S,S,S) with X = 3, (S,S,F),(S,F,S),(F,S,S) with X = 2, (S,F,F),(F,F,S),(F,S,F) with X = 1, and (F,F,F) with X = 0. S represents a shear failure, F a flexure failure, and X the number of shear failures.

Explanation:

The sample space for this problem includes all possible outcomes for the three concrete beams that can fail. The possible outcomes are:

(S,S,S) for 3 shear failures with X = 3.(S,S,F),(S,F,S),(F,S,S) for 2 shear failures with X = 2.(S,F,F),(F,F,S),(F,S,F) for 1 shear failure with X = 1.(F,F,F) for no shear failures with X = 0.

Here, S represents a shear failure and F represents a flexure failure. The number specified by X in each scenario represents how many beams among the three randomly selected ones failed by shear.

Learn more about probability here:

https://brainly.com/question/22962752

#SPJ3


Related Questions

How many quarts of water must be added to 3 gallons of soup that is 60% chicken broth to make the soup 40% chicken broth

Answers

Answer:

6 quarts

Step-by-step explanation:

60% 3 gallons = 1.8 gallons of broth

water = 0% broth

1.8=1.2+0.4x

0.6=0.4x

x=1.5

1.5 gallons = 6 quarts

The amount of water must be added to 3 gallons of soup which is 60% chicken broth to make the soup 40% chicken broth is 6 quartz.

What is equation?

In other terms, it is a mathematical statement stating that "this is equivalent to that." It appears to be a mathematical expression on the left, an equal sign in the center, and a mathematical expression on the right.

Given:

There are 3 gallons of soup that is 60% chicken broth to make the soup 40% chicken broth,

Assume the number of gallons is x then write the equation as shown below,

60% 3 gallons = 1.8 gallons of broth

water = 0% broth

1.8 = 1.2 + 0.4x

0.6 = 0.4x

x  = 1.5

As we know that 1 gallon = 4 quartz,

1.5 gallons = 6 quarts

To know more about equation:

https://brainly.com/question/12788590

#SPJ3

(6, -12). (15. -3)
Find the slope

Answers

Answer:

The slope is 1.

Step-by-step explanation:

A first order function has the following format

[tex]y = ax + b[/tex]

In which a is the slope

(6, -12).

This means that when [tex]x = 6, y = -12[/tex]

So

[tex]y = ax + b[/tex]

[tex]-12 = 6a + b[/tex]

(15. -3)

This means that when [tex]x = 15, y = -3[/tex]

So

[tex]y = ax + b[/tex]

[tex]-3 = 15a + b[/tex]

We have to solve the following system of equations:

[tex]-12 = 6a + b[/tex]

[tex]-3 = 15a + b[/tex]

We have to find a

In the second equation i will write as:

[tex]b = -3 - 15a[/tex]

Replacing in the first

[tex]-12 = 6a + b[/tex]

[tex]-12 = 6a - 3 - 15a[/tex]

[tex]-9 = -9a[/tex]

[tex]9a = 9[/tex]

[tex]a = \frac{9}{9}[/tex]

[tex]a = 1[/tex]

The slope is 1.

Answer:

1

Step-by-step explanation:

Slope = (y2-y1)/(x2-x1)

= (-3-(-12))/(15-6)

= (-3+12)/(9)

= 9/9

= 1

Multiple-choice questions each have fourfour possible answers left parenthesis a comma b comma c comma d right parenthesis(a, b, c, d)​, one of which is correct. Assume that you guess the answers to three such questions. Same question with multiplication rule to find P(WWC) with C as Correct and W as wrong__________.

Answers

Answer: 9/64

Step-by-step explanation:

Probability is a chance of prediction. It's a measure of how an event is likely to happen.

P(A) = Number of favorable outcome/Total Number of favorable outcome

Let's make W the correct answer and C the right answer.

The probability of choosing the correct answer from multiple choice question:

P(C) = 1/4

The probability of choosing the wrong answer from multiple choice question:

P(C) =1/4

P(W)= 1 - 1/4

P(W) = 3/4

Therefore, to find P(WWC)

P(WWC) = P(W) × P(W) × P(C)

P(WWC) = 3/4 ×3/4 × 1/4

P(WWC) = 9/64

The probability is 9/64.

What is the mean? If the answer is a decimal, round it to the nearest tenth.

56 47 48 52 62 59 49 56 43 48

Answers

Answer:

The mean is 52.

Step-by-step explanation:

The mean is the sum of all elements divided by the number of elements.

In this problem, we have that:

Elements

56 47 48 52 62 59 49 56 43 48

Sum

[tex]56+47+48+52+62+59+49+56+43+48 = 520[/tex]

Number of Elements

10 elements

The mean is

[tex]M = \frac{520}{10} = 52[/tex]

Let X1 and X2 be two random variables following Binomial distribution Bin(n1,p) and Bin(n2,p), respectively. Assume that X1 and X2 are independent.

(a) The mgf of binomial distribution Bin(n, p) is (1 − p + pet)n. Use this fact to obtain the distribution of X1 + X2.

(b) Find the probability P(X1 + X2 = 1|X2 = k) for k = 0 and 1. Then use the law of total probability to find P (X1 + X2 = 1)

Answers

Answer:

a) X1+X2 have distribution Bi(n1+n2, p)

b)

P(X1+X2 = 1 | X2 = 0) =  np(1-p)ⁿ¹⁻¹

P(X1+X2 = 1| X2 = 1) = (1-p)ⁿ¹

P(X1 + X2 = 1) = (1-p)ⁿ¹ * np(1-p)ⁿ²⁻¹+ (1-p)ⁿ²*np(1-p)ⁿ¹-¹

Step-by-step explanation:

Since both variables are independent but they have the same probability parameter, you can interpret that like if the experiment that models each try in both variables is the same. When you sum both random variables toguether, what you obtain as a result is the total amount of success in n1+n2 tries of the same experiment, thus X1+X2 have distribution Bi(n1+n2, p).

b)

Note that, if X2 = k, then X1+X2 = 1 is equivalent to X1 = 1-k. Since X1 and X2 are independent, then P(X1+X2 = 1| X2 = K) = P(X1=1-k|X2=k) = P(X1 = 1-k).

If k = 0, then this probability is equal to P(X1 = 1) = np(1-p)ⁿ¹⁻¹

If k = 1, then it is equal to P(X1 = 0) = (1-p)ⁿ¹

Thus,

P(X1+X2 = 1) = P(X1+X2 = 1| X2 = 1) * P(X2=1) + P(X1+X2 = 1| X2 = 0) * P(X2 = 0) = (1-p)ⁿ¹ * np(1-p)ⁿ²⁻¹+ (1-p)ⁿ²*np(1-p)ⁿ¹-¹

Steve has ​$25,000 to invest and wishes to earn an overall annual rate of return of 8​%. His financial advisor recommends that he invest some of the money in a​ 5-year CD paying 5​% per annum and the rest in a corporate bond paying 9​% per annum. How much should be placed in each investment in order for Steve to achieve his​ goal?

Answers

Answer:

Steve should place $6,250 in the 5-year CD and $18,750 in the corporate bond

Step-by-step explanation:

System of Equations

We need to find how Steve will distribute his investments between two possible options: one of them will pay 5% per annum and the other will pay 9% per annum. We know Steve has $25,000 to invest and wants to have an overall annual rate of return of 8%.

Let's call x to the amount Steve will invest in the CD paying 5% per annum and y to the amount he will invest in a corporate bond paying 9% per annum.

The total investment is $25,000 which leads to the first equation

[tex]x+y=25,000[/tex]

If x dollars are invested at 5%, then the interest return is 0.05x. Similarly, y dollars at 9% return 0.09y. The overall return is 8% on the total investment, thus

[tex]0.05x+0.09y=0.08(x+y)[/tex]

Rearranging:

[tex]0.05x+0.09y=0.08x+0.08y[/tex]

Simplifying

[tex]0.01y=0.03x[/tex]

Multiplying by 100

[tex]y=3x[/tex]

Substituting in the first equation

[tex]x+3x=25,000\\4x=25,000\\x=6,250[/tex]

And therefore

[tex]y=25,000-6,250=18,750[/tex]

Steve should place $6,250 in the 5-year CD and $18,750 in the corporate bond

All the fourth-graders in a certain elementary school took a standardized test. A total of 85% of the students were found to be proficient in reading, 78% were found to be proficient in mathematics, and 65% were found to be proficient in both reading and mathematics. A student is chosen at random.
What is the probability that the student is proficient in neither reading nor mathematics?

Answers

Answer:

There is a 2% probability that the student is proficient in neither reading nor mathematics.

Step-by-step explanation:

We solve this problem building the Venn's diagram of these probabilities.

I am going to say that:

A is the probability that a student is proficient in reading

B is the probability that a student is proficient in mathematics.

C is the probability that a student is proficient in neither reading nor mathematics.

We have that:

[tex]A = a + (A \cap B)[/tex]

In which a is the probability that a student is proficient in reading but not mathematics and [tex]A \cap B[/tex] is the probability that a student is proficient in both reading and mathematics.

By the same logic, we have that:

[tex]B = b + (A \cap B)[/tex]

Either a student in proficient in at least one of reading or mathematics, or a student is proficient in neither of those. The sum of the probabilities of these events is decimal 1. So

[tex](A \cup B) + C = 1[/tex]

In which

[tex](A \cup B) = a + b + (A \cap B)[/tex]

65% were found to be proficient in both reading and mathematics.

This means that [tex]A \cap B = 0.65[/tex]

78% were found to be proficient in mathematics

This means that [tex]B = 0.78[/tex]

[tex]B = b + (A \cap B)[/tex]

[tex]0.78 = b + 0.65[/tex]

[tex]b = 0.13[/tex]

85% of the students were found to be proficient in reading

This means that [tex]A = 0.85[/tex]

[tex]A = a + (A \cap B)[/tex]

[tex]0.85 = a + 0.65[/tex]

[tex]a = 0.20[/tex]

Proficient in at least one:

[tex](A \cup B) = a + b + (A \cap B) = 0.20 + 0.13 + 0.65 = 0.98[/tex]

What is the probability that the student is proficient in neither reading nor mathematics?

[tex](A \cup B) + C = 1[/tex]

[tex]C = 1 - (A \cup B) = 1 - 0.98 = 0.02[/tex]

There is a 2% probability that the student is proficient in neither reading nor mathematics.

suppose that you made four measurement of a speed of a rocket: 12.7 km/s, 13.4 km/s, 12.6 km, and 13.3 km/s. compute: the mean, the standard deviations, and the standard deviation of the mean

Answers

the mean speed is [tex]\( 12.75 \)[/tex] km/s, the standard deviation is approximately [tex]\( 0.433 \)[/tex] km/s, and the standard deviation of the mean is approximately [tex]\( 0.217 \)[/tex] km/s.

To compute the mean, standard deviation, and standard deviation of the mean, we'll follow these steps:

1. Calculate the mean [tex](\( \mu \))[/tex]:

[tex]\[ \mu = \frac{\text{sum of all measurements}}{\text{number of measurements}} \][/tex]

2. Calculate the standard deviation [tex](\( \sigma \))[/tex]:

[tex]\[ \sigma = \sqrt{\frac{\sum_{i=1}^{n}(x_i - \mu)^2}{n}} \][/tex]

3. Calculate the standard deviation of the mean [tex](\( \sigma_\bar{x} \))[/tex]:

[tex]\[ \sigma_\bar{x} = \frac{\sigma}{\sqrt{n}} \][/tex]

Let's plug in the given measurements:

[tex]\[ x_1 = 12.7 \, \text{km/s} \][/tex]

[tex]\[ x_2 = 13.4 \, \text{km/s} \][/tex]

[tex]\[ x_3 = 12.6 \, \text{km/s} \][/tex]

[tex]\[ x_4 = 13.3 \, \text{km/s} \][/tex]

1. Mean (\( \mu \)):

[tex]\[ \mu = \frac{12.7 + 13.4 + 12.6 + 13.3}{4} \][/tex]

[tex]\[ \mu = \frac{51}{4} \][/tex]

[tex]\[ \mu = 12.75 \, \text{km/s} \][/tex]

2. Standard deviation (\( \sigma \)):

[tex]\[ \sigma = \sqrt{\frac{(12.7 - 12.75)^2 + (13.4 - 12.75)^2 + (12.6 - 12.75)^2 + (13.3 - 12.75)^2}{4}} \][/tex]

[tex]\[ \sigma = \sqrt{\frac{0.05^2 + 0.65^2 + (-0.15)^2 + 0.55^2}{4}} \][/tex]

[tex]\[ \sigma = \sqrt{\frac{0.0025 + 0.4225 + 0.0225 + 0.3025}{4}} \][/tex]

[tex]\[ \sigma = \sqrt{\frac{0.75}{4}} \][/tex]

[tex]\[ \sigma = \sqrt{0.1875} \][/tex]

[tex]\[ \sigma \approx 0.433 \, \text{km/s} \][/tex]

3. Standard deviation of the mean (\( \sigma_\bar{x} \)):

[tex]\[ \sigma_\bar{x} = \frac{0.433}{\sqrt{4}} \][/tex]

[tex]\[ \sigma_\bar{x} = \frac{0.433}{2} \][/tex]

[tex]\[ \sigma_\bar{x} \approx 0.217 \, \text{km/s} \][/tex]

So, the mean speed is [tex]\( 12.75 \)[/tex] km/s, the standard deviation is approximately [tex]\( 0.433 \)[/tex] km/s, and the standard deviation of the mean is approximately [tex]\( 0.217 \)[/tex] km/s.

Quantity A of an ideal gas is at absolute temperature TTT, and a second quantity B of the same gas is at absolute temperature 2T2T. Heat is added to each gas, and both gases are allowed to expand isothermally.

Answers

Answer:

The question is incomplete, here is the complete question ; Quantity A of an ideal gas is at absolute temperature T, and a second quantity B of the same gas is at absolute temperature 2T. Heat is added to each gas, and both gases are allowed to expand isothermally. If both gases undergo the same entropy change, is more heat added to gas A or gas B?

a. More heat is added to gas A

b. More heat is added to gas B

c.The same amount of heat is added to each gas

Option B is the correct answer = more heat is added to gas B

Step-by-step explanation:

Considering dQ = dS/T

dQ(A) = dS/T

dQ(B) = dS/2T

From this, it implies that dQ(B) = dQ(A)/2

and as such, more heat is added to gas B or gas B will undergo the greater entropy change

Kevin Hall is considering an investment that pays 7.70 percent, compounded annually. How much will he have to invest today so that the investment will be worth $30,000 in six years

Answers

Answer:

He will have to invest $20,519.84 today.

Step-by-step explanation:

We can solve this question using the simple interest formula:

This is a simple interest problem.

The simple interest formula is given by:

[tex]E = P*I*t[/tex]

In which E are the earnings, P is the principal(the initial amount of money), I is the interest rate(yearly, as a decimal) and t is the time.

After t years, the total amount of money is:

[tex]T = E + P[/tex].

In this problem, we have that:

[tex]I = 0.077, t = 6, T = 30,000[/tex]

So

[tex]T = E + P[/tex].

[tex]E + P = 30000[/tex]

[tex]E = 30000 - P[/tex]

So

[tex]E = P*I*t[/tex]

[tex]30000 - P= P*0.077*6[/tex]

[tex]30000 - P = 0.462P[/tex]

[tex]1.462P = 30000[/tex]

[tex]P = \frac{30000}{1.462}[/tex]

[tex]P = 20519.84[/tex]

He will have to invest $20,519.84 today.

Kevin Hall needs to invest approximately $19,249.38 today to have $30,000 in six years at an annual interest rate of 7.70%, compounded annually.

To determine how much Kevin Hall should invest today to have $30,000 in six years with a 7.70% annual interest rate, we'll use the formula for present value (PV) of a future amount, which is:

PV = FV / (1 + r)ⁿ

Where:

FV = Future Value = $30,000r = annual interest rate = 7.70% or 0.077n = number of years = 6

Plugging in the values:

PV = 30,000 / (1 + 0.077)⁶

Calculating the denominator:

(1 + 0.077)⁶ ≈ 1.5583

Thus,

PV = 30,000 / 1.5583 ≈ $19,249.38

Kevin Hall should invest approximately $19,249.38 today to have $30,000 in six years with a 7.70% annual interest rate, compounded annually.

Historical data for a local manufacturing company show that the average number of defects per product produced is 2. In addition, the number of defects per unit is distributed according to a Poisson distribution. What is the probability that there will be a total of 7 defects on four units

Answers

Answer:

The probability that there will be a total of 7 defects on four units  is 0.14.

Step-by-step explanation:

A Poisson distribution describes the probability distribution of number of success in a specified time interval.

The probability distribution function for a Poisson distribution is:

[tex]P(X = x)=\frac{e^{-\lambda}\lambda^{x}}{x!}, x=0,1,2,3,...[/tex]

Let X = number of defects in a unit produced.

It is provided that there are, on average, 2 defects per unit produced.

Then in 4 units the number of defects is, [tex](2\times4)=8[/tex].

Compute the probability of exactly 7 defects in 4 units as follows:

[tex]P(X = x)=\frac{e^{-\lambda}\lambda^{x}}{x!}\\P(X=7)=\frac{e^{-8}8^{7}}{7!}\\=\frac{0.0003355\times2097152}{5040}\\ =0.1396\\\approx0.14[/tex]

Thus, the probability of exactly 7 defects in 4 units is 0.14.

Suppose the demand for X is given by Qxd = 100 - 2PX + 4PY + 10M + 2A, where PX represents the price of good X, PY is the price of good Y, M is income and A is the amount of advertising on good X. Good X is

Answers

Answer:

Normal Good

Step-by-step explanation:

A normal good is a good in which a rise in income comes with bigger increases in its quantity demanded. In the demand function, M which is the income is positive and has the highest value.

Therefore Good X is a Normal Good.

Final answer:

The equation represents the demand function for good X. The coefficients of the variables indicate how demand for X is influenced by changes in the price of X itself (PX), the price of a related good (PY), income (M), and advertising (A).

Explanation:

The function Qxd = 100 - 2PX + 4PY + 10M + 2A represents the demand function for a particular good, X. PX represents the price of good X, PY the price of a related good (Y), M is income, and A is the amount of advertising on good X. The coefficients of these variables determine how the demand for good X responds to changes in these variables. For example, the demand for good X decreases with an increase in its own price (as indicated by the negative coefficient -2) and increases with an increase in the price of good Y, income, and the amount of advertising (as indicated by positive coefficients).

Learn more about Demand Function here:

https://brainly.com/question/34102390

#SPJ3

The union of two events A and B is the event that: a) The intersection of A and B does not occur. b) Both A and B occur. c) Either A or B or both occur. d) Either A or B, but not both occur. e) A and B occur at the same time. f) None of the above

Answers

Answer:

c) Either A or B or both occur.

Step-by-step explanation:

Suppose that we have two events

Event A

Event B

We have that:

[tex]A = a + (A \cap B)[/tex]

In which a a happens and b does not and [tex]A \cap B[/tex] is the probability that aboth events happen

By the same logic, we have that:

[tex]B = b + (A \cap B)[/tex]

The union of events A and B is:

[tex](A \cup B) = a + b + (A \cap B)[/tex]

Which includes either one of them or both.

So the correct answer is:

c) Either A or B or both occur.

Among 27 external speakers, there are three defectives. An inspector examines 7 of these speakers.
Find the probability that there are at least 2 defective speakers among the 7
(round off to second decimal place).

Answers

The probability of randomly selecting atleast 2 defective speakers from 7 trials is 0.18

The probability of randomly selecting a defective speaker can be calculated thus :

P(defective) = number of defective speakers / total speakers

P(defective) = 3 / 27 = 0.1111

Using the binomial probability relation :

P(x = x) = nCx * p^x * q^(n-x) Probability of success, p = 0.1111n = number of trials = 7x ≥ 2 q = 1 - p = 1 - 0.1111 = 0.889

P(x ≥ 2 ) = P(x = 2)+P(x = 3)+P(x = 4)+P(x = 5)+P(x =6)+P(x = 7)

Using a binomial probability calculator to save time :

P(x ≥ 2 ) = 0.17785

P(x ≥ 2 ) = 0.18 ( 2 decimal places)

Therefore, the probability of selecting atleast 2 defective speakers from 7 is 0.18

Learn more : https://brainly.com/question/12474772

You get 3% commission on all sales. This month, you made a sale of $45,050 and a sale of $6,785.25. What is your commission for the month?

Answers

Answer:

Your commission for the month is $1,553.35.

Step-by-step explanation:

You made 2 sales.

In each you got a commission of 3%. Your total commission is the sum of both commisions. So

Sale of $45,050:

You got 3% of the sale. So

0.03*45050 = $1,351.5

Sale of $6,728.25:

You got 3% of this sale. So

0.03*6728.25 = $201.85

Total commision for the month:

$1,351.5 + $201.85 = $1,553.35.

Your commission for the month is $1,553.35.

Answer:

1,553.35

The commission for the month is a total of 1,553.35

Wes and Tma are a married couple and provide financial assistance to several persons during the current yeaL For the siruations below, determine whether the individuals qualify as Wes and Tina's dependents.

Answers

Answer: Hello! Apparently, your question is incomplete since the rest of it is missing and we need the alternatives to work on. Fortunately, we were able to find the whole of it so we can help you! Here it goes:

Wes and Tina are a married couple and provide financial assistance to several persons during the current year. In all of the situations​ below, assume that any dependency tests not mentioned have been met.

Requirement

For each​ situation, determine whether the individuals qualify as Wes and​ Tina's dependents. ​(Select the best possible answer in each​ case.)

Requirement a. Brian is age 24 and Wes and​ Tina's son. He is a​ full-time student and lives in an apartment near campus. Wes and Tina provide over​ 50% of his support. Brian works as a waiter and earned​ $4,200.

Answer: He can't be considered a dependent because his income is higher than $4050. Also, he can't be considered a child since he is older than 23.

Requirement b. Same as Part a except that Brian is a​ part-time student.

Answer: The status of beig a student doesn't change the fact that he is over 23, so he is still not be claimed a dependent since he can't be considered a child.

Requirement c. Sherry is age 22 and Wes and​ Tina's daughter. She is a​ full-time student and lives in the college dormitory. Wes and Tina provide over​ 50% of her support. Sherry works​ part-time as a bookkeeper and earned​ $5,000.

Answer: She may be claimed as a dependent since she meets the four relationship requirements, age, abode and support. Also, being a student is not a strong influence in this case.

Requirement d. Same as Part c except that Sherry is a​ part-time student.

Answer: Under this condition, she can't be considered a dependent since she becomes an unqualified child. She's not a full-time student and over 18 years old.

Requirement e. ​Granny, age​ 82, is​ Tina's grandmother and lives with Wes and Tina. During the current​ year, Granny's only sources of income were her Social Security of​ $4,800 and interest on U.S. bonds of​ $4,500. Granny uses her income to pay for​ 40% of her total​ support, Wes and Tina provide the remainder of​ Granny's support.

Answer: Granny wouldn't be eligible, since her bonds are higher than $4050 , not considering her Social Security income.

Scores for a common standardized college aptitude test are normally distributed with a mean of 512 and a standard deviation of 106. Randomly selected men are given a Test Preparation Course before taking this test. Assume, for sake of argument, that the test has no effect

If 1 of the men is randomly selected, find the probability that his score is at least 559.5.
P(X > 559.5) =

If 18 of the men are randomly selected, find the probability that their mean score is at least 559.5.
P(M > 559.5) =

Answers

Final answer:

To find the probability of a man's score being at least 559.5 on the standardized college aptitude test, we can calculate the z-score and find the area under the normal distribution curve. The same process applies to finding the probability of the mean score of a sample of 18 men being at least 559.5.

Explanation:

To find the probability that a randomly selected man's score is at least 559.5, we need to calculate the z-score for this value and then find the area under the normal distribution curve to the right of that z-score.

To find the probability that the mean score of 18 randomly selected men is at least 559.5, we first need to find the mean and standard deviation of the sample mean. Then, we can calculate the z-score for the given mean score and find the area under the normal distribution curve to the right of that z-score.

P(X > 559.5) = 1 - P(X ≤ 559.5)

P(M > 559.5) = 1 - P(M ≤ 559.5)

Learn more about Probability here:

https://brainly.com/question/22962752

#SPJ12

Final answer:

The probabilities of a score being above 559.5 are as follows: for a single randomly selected individual, the probability is approximately 0.3271; for a group of 18 randomly selected individuals, the probability that their mean score is above 559.5 is approximately 0.0287.

Explanation:

This is a problem of statistics, more specifically Normal Distribution and Standard Deviation. In a Normal Distribution, the mean (average) is the center of the distribution and standard deviation measures how spread out the scores are from the mean. The Z-Score gives us a measure of how many standard deviations an element is from the mean.

Firstly, to find the probability that a randomly selected man scores at least 559.5, we find the Z-Score using the formula Z = (X - μ) / σ, where X is the score, μ is the mean, and σ is the standard deviation. Thus the Z-Score is Z = (559.5 - 512) / 106 = 0.448. From the Z-table or calculator, we find that P(Z > 0.448) ≈ 0.3271. Therefore, P(X > 559.5) = 0.3271.

Secondly, for a sample of 18 men, we use the formula for the standard deviation of a sample mean, σM = σ / sqrt(n), where σ is the standard deviation, and n is the size of the sample. The new standard deviation becomes σM = 106 / sqrt(18) = 25. This gives Z = (559.5 - 512) / 25 =1.90. From the Z-table or calculator, we find that P(Z > 1.90) ≈ 0.0287. Therefore, P(M > 559.5) = 0.0287.

Learn more about Normal Distribution here:

https://brainly.com/question/34741155

#SPJ11

This year, a small business had a total revenue of $ 62,100 . If this is 15 % more than their total revenue the previous year, what was their total revenue the previous year?

Answers

Answer:

Their total revenue the previous year was $54,000.

Step-by-step explanation:

This question can be solved by a simple rule of three.

This year revenue was $62,100. It was 15% more than last year, so 115% = 1.15 of last year. How much was the revenue last year, that is, 100% = 1?

62,100 - 1.15

x - 1

[tex]1.15x = 62100[/tex]

[tex]x = \frac{62100}{1.15}[/tex]

[tex]x = 54000[/tex]

Their total revenue the previous year was $54,000.

Suppose that if θ = 1, then y has a normal distribution with mean 1 and standard deviation σ, and if θ = 2, then y has a normal distribution with mean 2 and standard deviation σ. Also, suppose Pr(θ = 1) = 0.5 and Pr(θ = 2) = 0.5.

Answers

Step-by-step explanation:

We have two cases for Ф,

1.  Ф=1; it implies that Pr(Ф=1)=0.5, while y~N(1,α²)

2. Ф=2; it implies that Pr(Ф=2)=0.5, while y~N(2,α²)

Now,

For 1st case of α=2,

We have marginal probability density formula

p(y)=∑p(yIФ)p(Ф)

=p(yIФ=1)p(Ф=1)+p(yIФ=2)p(Ф=2)

=N(yI1,2²)(1/2)+N(yI2,2²)(1/2)

=(1/2)[N(yI1,2²)+N(yI2,2²)]

Now.

For Pr(Ф=1Iy=1) at α=2

We have,

=p(Ф=1Iy=1)

=[p(y=1,Ф=1)]/[p(y=1)]

=[p(y=1IФ=1)p(Ф=1)]/[p(y=1)]

={(1/[tex]\sqrt{2x-2}[/tex])exp[(-1/(2*2²))(1-1)²(1/2)]}/{(1/[tex]\sqrt{2x-2}[/tex])(1/2)[exp[(-1/(2*2²))(1-1)²]+exp[(-1/(2*2²))(1-2)²]}

=0.53 Answer

Now, to describe the changes in shape of Ф when α is increased and decreased:

The formula for posterioir density is p(ФIy)=p(yIФ)p(Ф)/p(y)

=exp[(-1/(2α²)(y-Ф)²]/{exp[(-1/(2α²)(y-1)²]+exp[(-1/(2α²))(y-2)²]}

Now at Ф=1 and solving the equation, we get

p(Ф=1Iy)=1 / {1+exp[(2y-3)/2α²]}

Similarly at Ф=1 and solving the equation, we get

p(Ф=2Iy)=1 / {1+exp[(2y-3)/2α²]}

Conclusion:

α² → ∞ ⇒p(ФIy) → p(Ф) = 1/2

α² → 0 ⇒ two cases

y > 3/2, α² → 0 ⇒p(Ф=2Iy) → 1

y < 3/2, α² → 0 ⇒p(Ф=1Iy) → 1

The value of θ determines the mean of the normal distribution for y, while σ remains constant. The probabilities of θ being 1 or 2 are both 0.5.

The given information states that if θ = 1, then y has a normal distribution with a mean of 1 and standard deviation σ, and if θ = 2, then y has a normal distribution with a mean of 2 and standard deviation σ.

The probabilities of θ being 1 or 2 are both 0.5.

This means that there is a 50% chance of θ being 1, and a 50% chance of θ being 2.

This information allows us to understand how the value of θ affects the distribution of y. When θ is 1, y follows a normal distribution with mean 1 and standard deviation σ.

When θ is 2, y follows a normal distribution with mean 2 and standard deviation σ. The probabilities of these scenarios happening are equal.

Learn more about normal distribution here:

https://brainly.com/question/34741155

#SPJ6

Suppose the tank is halfway full of water. The tank has a radius of 2 ft and is 4 ft long. Calculate the force (in lb) on one of the ends due to hydrostatic pressure.

(Assume a density of water rho = 62.4 lb/ft3.)

Answers

Answer:

The answer is 332.8 lb

Step-by-step explanation:

See attached picture for the solution

The force on one of the ends due to hydrostatic pressure is 332.8lb

Data;

Density = 62.4 lb/ft^3length = 4ftradius = 2ft

Force Due to Pressure

The force due to hydrostatic pressure can be calculated as

From the attached diagram;

[tex]F = pressure * area\\density = 62.4 lb/ft^3\\depth of water = 2 - y\\pressure = (2 - y)(62.4)\\pressure = 124.8 - 62.4y\\[/tex]

We can proceed as

[tex]x^2 + (y - 2)^2 = 2^2\\x^2 = 4 - (y - 2)^2\\x = +- \sqrt{4y - y^2}\\[/tex]

this implies that

[tex]2x = 2\sqrt{4y - y^2}[/tex]

The area is given as

[tex]\delta A = (2x)*\delta y\\\delta A = 2\sqrt{4y - y^2 \delta y}[/tex]

The force would be given by

[tex]\delta F = (2-y)(62.4)(2\sqrt{4y - y^2})\delta y[/tex]

The total force is given by

[tex]F = \int\limits^2_0 {(2-y)(62.4)(2\sqrt{4y - y^2}) } \, dy\\F = 124.8\int\limits^2_0 {(2-y)(\sqrt{4y - y^2}) } \, dy\\F = 124.8[-\frac{1}{3}y(y -4)(\sqrt{4y -y^2}]_0^2\\F = 124.8[-\frac{1}{3}(2)(2-4)\sqrt{4(2)-2^2}\\ F = 332.8lb[/tex]

The force on one of the ends due to hydrostatic pressure is 332.8lb

Learn more on hydrostatic pressure here;

https://brainly.com/question/13370981

Bespin Car Rental predicts that the annual probability of one of its cars being destroyed in a crash is 1 in 1,000,000. If destroyed, the value of the property damage to the car equals $45,000. Assume that there are no partial losses; the car is either destroyed in a crash or suffers no loss. A) Show the physical damage loss distribution for Bespin Car Rental’s automobiles and calculate the expected value of the physical damage loss. B) Show the calculations for the variance and the standard deviation.

Answers

Answer:

(A) The expected loss is $0.045.

(B) The variance and standard deviation of physical damage loss are $2,025 and $45 respectively.

Step-by-step explanation:

The annual probability of Bespin Car Rental's cars being destroyed is 1 in a million, i.e 0.000001.

It is assumed that the car is either destroyed or there was no loss suffered.

The loss amount in case the car is destroyed is, $45,000.

(A)

The distribution for physical damage loss is displayed in the table below.

The Expected value of physical damage loss is:

[tex]E(X)=\sum xP(X)=(45000\times0.000001)+(0\times0.999999)=0.045[/tex]

Thus, the expected loss is $0.045.

(B)

The variance of a random variable X is: Var (X) = E (X²) - [E (X)]².

The variance of physical damage loss is:

Compute the variance as follows:

[tex]Var(X)=E(X^{2})-[E(X)]^{2}\\=\sum x^{2}P(X)-[\sum xP(X)]^{2}\\=[(45000^{2}\times0.000001)+(0^{2}\times0.999999)]-(0.045)^{2}\\=2025-0.002025\\=2024.997975\\\approx2025[/tex]

The standard deviation of physical damage loss is:

[tex]SD=\sqrt{Var(X)}=\sqrt{2025}=45[/tex]

Thus, the variance and standard deviation of physical damage loss are $2,025 and $45 respectively.

Write a function rule for "The output is four more than the input." Let x represent the input and let y represent the output.

Answers

Final answer:

A function rule that states "The output is four more than the input" is expressed as y = x + 4, where x is the input and y is the output.

Explanation:

To write a function rule that describes "The output is four more than the input," we let x represent the input and y represent the output. According to the statement, for any given value of x, the value of y will always be 4 units larger. Therefore, the function rule can be written as y = x + 4.

This means that if you have an input value, simply add 4 to it to get the output value. For example, if the input, x, is 5, the output, y, would be 5 + 4, which equals 9.

In a survey of 859 homeowners with high-speed Internet, the average monthly cost of a high-speed Internet plan was $64.1 with standard deviation $12.62. Assume the plan costs to be approximately bell-shaped. Estimate the number of plans that cost between $51.48 and $76.72. Round to the nearest whole number.

Answers

Final answer:

To estimate the number of high-speed Internet plans that cost between $51.48 and $76.72, we can use the standard normal distribution and the z-score formula. The estimated number of plans is 587.

Explanation:

To estimate the number of plans that cost between $51.48 and $76.72, we can use the standard normal distribution and the z-score formula. First, we calculate the z-scores for both costs:

z1 = (51.48 - 64.1) / 12.62 = -1.003

z2 = (76.72 - 64.1) / 12.62 = 1.003

Next, we find the area under the standard normal curve between these two z-scores using a z-table or a calculator. Let's assume the area is approximately 0.6827.

Finally, we multiply this area by the total number of homeowners surveyed (859) to estimate the number of plans that fall within this cost range:

Number of plans = 0.6827 * 859 = 586.92

Rounding to the nearest whole number, the estimated number of plans is 587.

Learn more about Estimating the number of plans with given cost range here:

https://brainly.com/question/34119503

#SPJ3

The number of bats in a colony is growing exponentially. After 2 years, there were 180 bats. After 5 years, there were 1440 bats. If the colony continues to grow at the same rate, how many bats are expected to be in the colony after 9 years

Answers

Answer:

23040 bats

Step-by-step explanation:

Let N(t) be the number of bats at time t

We know that exponential function

[tex]y=ab^t[/tex]

According to question

[tex]N(t)=ab^t[/tex]

Where t (in years)

Substitute t=2 and N(2)=180

[tex]180=ab^2[/tex]...(1)

Substitute t=5 and N(5)=1440

[tex]1440=ab^5[/tex]...(2)

Equation (1) divided by equation (2)

[tex]\frac{180}{1440}=\frac{ab^2}{ab^5}=\frac{1}{b^{5-2}}[/tex]

By using the property [tex]a^x\div a^y=a^{x-y}[/tex]

[tex]\frac{1}{8}=\frac{1}{b^3}[/tex]

[tex]b^3=8=2\times 2\times 2=2^3[/tex]

[tex]b=2[/tex]

Substitute the values of b in equation (1)

[tex]180=a(2)^2=4a[/tex]

[tex]a=\frac{180}{4}=45[/tex]

Substitute t=9

[tex]N(9)=45(2)^9=23040 bats[/tex]

Hence, after 9 years the expected bats in the colony=23040 bats

Final answer:

To find the number of bats expected to be in the colony after 9 years, we can use the equation for exponential growth. By plugging in the given population values and solving for the growth rate, we can then calculate the population after 9 years.

Explanation:

To find the number of bats expected to be in the colony after 9 years, we need to determine the growth rate. Let's use the equation for exponential growth: N = P * e^(kt), where N is the final population, P is the initial population, e is the base of the natural logarithm, k is the growth rate, and t is the time.

We are given the population after 2 years (P = 180) and after 5 years (P = 1440). Plugging these values into the equation, we can solve for k:

180 = P * e^(2k) and 1440 = P * e^(5k).

Dividing the second equation by the first equation, we can eliminate P and solve for e^(3k): 8 = e^(3k).

Taking the natural logarithm of both sides, we get: ln(8) = 3k.

Finally, solving for k, we have: k = ln(8) / 3.

Now, we can use the calculated value of k to find the population after 9 years:

N = P * e^(9k).

Plugging in the value of P and k, we get: N = 180 * e^(9 * ln(8) / 3). Calculating this expression gives us the expected number of bats in the colony after 9 years.

Learn more about Exponential growth here:

https://brainly.com/question/12490064

#SPJ11

write a function that represents the sequence 7, 14, 21, 28, ...

Answers

Answer:

a ₙ = 7n

Step-by-step explanation:

This is an arithmetic sequence, the common difference between each term is 14-7 = 21-14 = 28-21 = 7

to the previous term in the sequence addition of 7 gives the next term.

Arithmetic Sequence:  

d  = 7

This is the formula of an arithmetic sequence.

a ₙ = a₁ + d(n − 1)  

Substitute in the values of  

a₁ = 7  and d = 7

a ₙ = 7 + 7(n − 1)  

a ₙ = 7 + 7n -7

a ₙ = 7 - 7 +7n = 7n

a ₙ = 7n

Answer:

Step-by-step explanation:

In an arithmetic sequence, consecutive terms differ by a common difference and it is always constant. Looking at the set of numbers,

14 - 7 = 21 - 14 = 28 - 21 = 7

Therefore, it is an arithmetic sequence with a common difference of 7.

The formula for determining the nth term of an arithmetic sequence is expressed as

Tn = a + (n - 1)d

Where

a represents the first term of the sequence.

d represents the common difference.

n represents the number of terms in the sequence.

From the information given,

a = 7

d = 7

The function that represents the sequence would be

Tn = 7 + (n - 1)7

Tn = 7 + 7n - 7

Tn = 7n

A manufacturer of skis produces two types: downhill and cross country. The times required for manufacturing and finishing each ski are: manufacturing time per ski, downhill 2.5 hours, cross country 1.5 hours. Finishing time per ski: downhill 0.5 hours, cross country 1.5 hours. The maximum total weekly hours available for manufacturing and finishing the skis are 90 hours and 42 hours. The profit per ski are $50 for downhill and $50 cross country. Determine how many of each kind of ski should be produced to achieve a maximum profit?

Answers

Answer:

So to maximize profit 24 downhill and 20 cross country shouldbe produced

Step-by-step explanation:

Let X be the number of downhill skis and Y the number of cross country skis.

Time required for manufacturing and finishing each ski are: manufacturing time per ski, downhill 2.5 hours, cross country 1.5 hours

Finishing time per ski: downhill 0.5 hours, cross country 1.5 hours.

Total manufacturing time taken = (2.5) x+ (1.5+) y = 2.5x+1.5y≤90

total finishing time taken = 0.5x+1.5 y≤42

Profit function

Z = 50x+50y

Objective is to maximize Z

Solving the two equations we get intersecting point is

(x,y) = (24,20)

In the feasible region corner points are (0.28) (36,0)

Profit for these points are

i) 2200 for (24,20)

ii) 1400 for (0,28)

iii) 1800 for (36,0)

So to maximize profit 24 downhill and 20 cross country shouldbe produced.

Final answer:

To determine the optimal production quantity for each type of ski to achieve maximum profit, set up a system of equations using manufacturing time, finishing time, and profit. Graph the equations and find the intersection point.

Explanation:

To determine how many of each kind of ski should be produced to achieve a maximum profit, we can set up a system of equations.

Let x be the number of downhill skis and y be the number of cross country skis.

The manufacturing time equation is 2.5x + 1.5y ≤ 90.

The finishing time equation is 0.5x + 1.5y ≤ 42.

The profit equation is 50x + 50y ≤ P, where P is the maximum profit.

We can graph these equations and find the intersection point, which represents the optimal production quantity for each type of ski.

Learn more about Optimal production and profit here:

https://brainly.com/question/33436071

#SPJ11

Solve the equation. StartFraction dy Over dx EndFraction equals5 x Superscript 4 Baseline (1 plus y squared )Superscript three halves An implicit solution in the form ​F(x,y)equalsC is nothingequals​C, where C is an arbitrary constant.

Answers

Answer:

Step-by-step explanation:

To solve the differential equation

dy/dx = 5x^4(1 + y²)^(3/2)

First, separate the variables

dy/(1 + y²)^(3/2) = 5x^4 dx

Now, integrate both sides

To integrate dy/(1 + y²)^(3/2), use the substitution y = tan(u)

dy = (1/cos²u)du

So,

dy/(1 + y²)^(3/2) = [(1/cos²u)/(1 + tan²u)^(3/2)]du

= (1/cos²u)/(1 + (sin²u/cos²u))^(3/2)

Because cos²u + sin²u = 1 (Trigonometric identity),

The equation becomes

[1/(1/cos²u)^(3/2) × 1/cos²u] du

= cos³u/cos²u

= cosu

Integral of cosu = sinu

But y = tanu

Therefore u = arctany

We then have

cos(arctany) = y/√(1 + y²)

Now, the integral of the equation

dy/(1 + y²)^(3/2) = 5x^4 dx

Is

y/√(1 + y²) = x^5 + C

So

y - (x^5 + C)√(1 + y²) = 0

is the required implicit solution

Kenneth Brown is the principal owner of Brown Oil, Inc. After quitting his university teaching job, Ken has been able to increase his annual salary by a factor of over 100. At the present time, Ken is forced to consider purchasing some more equipment for Brown Oil because of competition. His alternatives are shown in the following table:

FAVORABLE UNFAVORABLE
MARKET MARKET
EQUIPMENT ($) ($)
Sub 100 300,000

Answers

Answer:

Multiple Answers

Step-by-step explanation:

You forgot to put all the question, I attached it to the answer.

The questions we need to response are:

a)What type of decision is Ken facing?

There are three types of decision in probability. This are:

Risky that cover when the event is known and you know the chances of success.

Of uncertainty that cover for a known event but you dont know the  possibilities of success.

Of ignorance that cover a unknown event, with unknown possibilities of succes.

So the decision Kenneth is facing is of uncertainty.

(b)What decision criterion should he use?

The criterion decision he should take would be Maximax.

This states that you should select the option that have the maximum gain.

(c)What alternative is best? The best option should be sub 100 because of the decision criterion we decided to use. Sub 100 has the maximum gain.

Final answer:

Kenneth Brown faces a decision on purchasing equipment for his company, Brown Oil, Inc. Business management principles and financial implications play a key role in this decision-making process.

Explanation:

Kenneth Brown, the principal owner of Brown Oil, Inc., faces the decision to purchase equipment for the company due to competition. His alternatives are presented in the form of a table detailing the costs under favorable and unfavorable market conditions.

In this scenario, business management principles come into play as Ken evaluates the potential costs and benefits of investing in new equipment for Brown Oil, Inc. This decision-making process is crucial for the company's competitiveness and growth in the market.

Considering the financial implications and potential outcomes, Ken will need to assess the risks and rewards associated with each equipment option to make an informed decision that aligns with the company's goals and future success.

A disease is infecting a colony of 1000 penguins living on a remote island. Let P(t) be the number of sick penguins t days after the outbreak. Suppose that 50 penguins had the disease initially, and suppose that the disease is spreading at a rate proportional to the product of the time elapsed and the number of penguins who do not have the disease.

(a) Give the mathematical model(differential equation and initial condition) for P.

(b) Find the generalsolution of the differential equation in (a).

(c) Find the particular solution that satisfies the initial condition.

Answers

Answer:

a. [tex]P = 1000 - Ce^{-\frac{kt^2}{2} }[/tex]

b. [tex]C = 950[/tex]

c. [tex]P = 1000 - 950e^{-\frac{kt^2}{2} }[/tex]

Step-by-step explanation:

a. Let the number of penguins who have the disease t days after the outbreak be P

Initial number of penguins = 1000

Therefore, current number of penguins = 1000 - P

And the rate of spread of disease according to the statement is

[tex]\frac{dP}{dt}\alpha t(1000-P)\\\frac{dP}{dt}=kt(1000-P)[/tex]

where k is the constant of proportionality

[tex]\frac{dP}{1000-P}=kt.dt[/tex]

Integrating both sides

[tex]-ln(1000-P) = \frac{kt^2}{2}+c\\\frac{1}{(1000-P)} = Ce^{\frac{kt^2}{2} }\\ (1000-P) = Ce^{-\frac{kt^2}{2} }\\P = 1000 - Ce^{-\frac{kt^2}{2} }[/tex]

b. Seeing as 50 penguins had the disease initially,

t = 0

P = 50

The general solution of the differential solution becomes

50 = 1000 - C (anything raised to the power of 0 is 1, hence e is equal to 1)

[tex]C = 1000 - 50 = 950[/tex]

c. Therefore, the solution that satisfies the initial condition is

[tex]P = 1000 - 950e^{-\frac{kt^2}{2} }[/tex]

3 divided by (4x-15) divided by 5

Answers

Answer:

Step-by-step explanation:

3/(4x-15)/5

3÷(4x-15)/5

3 x 5/(4x-15) = 15/(4x-15)

Other Questions
A square park has a diagonal walkway from one corner to another. If the walkway is 120 meters long, what is the approximate length of each side of the park? Functional groups confer specific chemical properties to the molecules of which they are a part. In this activity, you will identify which compounds exhibit certain chemical properties as well as examples of those six different compounds. Many individuals envision a career path that will enable them to fulfill the American dream. This tendency has been described by Phyllis Moen as the ________. What were amusements parks called back in the early 1900s?DisneyRollercoaster ParksFun landsTrolley Parks _______________ have enormous consequences for the behavior of most people and influence a wide range of human activities, including how we speak, dress, walk, engage in courtship, and choose a career. Select one: a. Status sets b. Differentiation rituals c. Gender roles d. Rites of passage Which key on a laptop keyboard is often used to help pair a mobile device with another device for communication purposes?BluetoothCellularDual DisplayWireless "We believe in creating loyal customers by providing a superior experience at a great value. We are committed to direct relationships, providing the best products and services based on standards-based technology, and outperforming the competition with value and a superior customer experience." This statement is a part of Dell's: The original price of a toy boat was $50. The boat is marked up 15% before its sold. What is the selling price of the boat? DEF and XYZ are similar isosceles triangles. What is the measure of X?751056030 You are an evolutionary biologist studying a population of bats in the rain forest in Brazil. Most of the population possesses moderate length wings, although some individuals have long wings and some individuals have short wings. Over the course of time, you notice that the frequency of moderate-length wings increases. You conclude that the most likely cause of this development is: a. diversifying natural selection b. stabilizing natural selection. c. directional natural selection. d. co-evolution. Reese, a calendar-year taxpayer, uses the cash method of accounting for her sole proprietorship. In late December, she received a $31,000 bill from her accountant for consulting services related to her small business. Reese can pay the $31,000 bill anytime before January 30 of next year without penalty. Assume Reese's marginal tax rate is 32 percent this year and 35 percent next year, and that she can earn an after-tax rate of return of 11 percent on her investments. a. What is the after-tax cost if she pays the $31,000 bill in December?b. What is the after-tax cost if she pays the $31,000 bill in January? Describe how to scan a stack S containing to see if it contains a particular value x using only a queue Q and a constant number of reference variables. The stack contains n values and Q is initially empty. When the process finishes, the elements of S must be in their original order. [Preferred Language in C++] Do you think it is acceptable for the government to suspend the rights of citizens when in a state of panic or emergency A toy balloon filled with air has an internal pressure of 126.625 kPa and a volume of 2500 mL. If I take the balloon to the bottom of the ocean where the pressure is 95 atmospheres, what will the new volume of the balloon be in mL? How many moles of gas does the balloon hold? (Assume T=285K) Element X and element Y have a difference in electronegativity of 1:2 will the bond XY be covalent or ionic Although GDP is a reasonably good measure of a nation's output, it does not necessarily include all transactions and production for that nation. Which of the following scenarios are either not accounted for or measured inaccurately by either the income or the expenditure methods of calculating GDP for the United States? Check all that apply. The costs of overfishing and other overly intensive uses of resources Expenditures on federal highways The variety of goods available to consumers The value produced by doing your own laundry The residents of a downtown neighborhood designed a triangular-shaped park as part of a city beautification program. The park is bound by streets on all sides. The second angle of the triangle is 7 more than the first. The third angle is 7 less than seven times the first. Find the measures of the angles. A crude approximation of voice production is to consider the breathing passages and mouth to be a resonating tube closed at one end. What is the fundamental frequency if the tube is 0.203-m long, by taking air temperature to be 37.0C? GIVING BRAINLIEST Write a proportion that could be used to solve for each variable. Then solve. 16 walls in 40 hours 3 walls in h hours a. 16/40 = h/3; h = 1.2 c. 16/h = 3/40; h = 213.3 b. 16/40 = 3/h; h = 7.5 d. 16/40 = 3/h; h = 8.5 What part of the brain connects the brain and the eyes?OA. Brain stemOB. MidbrainOc. ThalamusOD. Hypothalamus