A communications circuit is known to have an availability of 0.99 (that is, 99% of the time, the circuit is operational). A total of n such circuits are going to be set up by the FAA between San Francisco and Los Angeles in such a way that the circuits will fail indepen- dently of each other. How many such parallel circuits must be set up to attain an overall availabililty of 0.99999

Answers

Answer 1

Answer:

Assume that for the communication to be available means that at least one of the [tex]n[/tex] circuits is operational. It would take at least 3 circuits to achieve a [tex]0.99999[/tex] overall availability.

Step-by-step explanation:

The probability that one circuit is not working is [tex]1 - 0.99 = 0.01[/tex].

Since the circuits here are all independent of each other, the probability that none of them is working would be [tex]\displaystyle \underbrace{0.01 \times 0.01 \times \cdots \times 0.01}_{\text{$n$ times}}[/tex]. That's the same as [tex]0.01^n[/tex].

The event that at least one of the [tex]n[/tex] circuits is working is the complement of the event that none of them is working. To find the probability that at least one of the [tex]n[/tex] circuits is working, simply subtract the probability that none of the circuit is working from one. That is:

[tex]\begin{aligned}&P(\text{At least one working}) \cr &= 1 - P(\text{None is working}) \cr &= 1- 0.01^n\end{aligned}[/tex].

The question requests that

[tex]P(\text{At least one working}) \ge 0.99999[/tex].

In other words,

[tex]1- 0.01^n \ge 0.99999[/tex].

[tex]0.01^n \le 1 - 0.99999 = 0.000001 = 10^{-6}[/tex].

Note that [tex]0.01 = 10^{-2}[/tex]. Hence, the inequality becomes

[tex]\left(10^{-2}\right)^n \le 10^{-6}[/tex].

[tex]10^{-2\,n} \le 10^{-6}[/tex]

Take the natural log of both sides of the equation:

[tex]\ln\left(10^{-2\, n}\right) \le \ln \left(10^{-6}\right)[/tex].

[tex](-2\, n)\ln\left(10\right) \le (-6) \ln\left(10\right)[/tex].

[tex]10 > 1[/tex], hence [tex]\ln(10) > 0[/tex]. Divide both sides by [tex]\ln(10)[/tex]:

[tex]-2\,n \le -6[/tex].

[tex]n \ge 3[/tex].

In other words, at least three parallel circuits must be set up to achieve that availability.


Related Questions

A clothing business finds there is a linear relationship between the number of shirts, n, it can sell and the price, p, it can charge per shirt. In particular, historical data shows that 1000 shirts can be sold at a price of $30 , while 3000 shirts can be sold at a price of $22 . Find a linear equation in the form p=mn+b that gives the price p they can charge for n shirts.

Answers

Answer:

p = -0.004n+34

Step-by-step explanation:

The slope of the linear equation can be found by using the two given points (30, 1000) and (22, 3000):

[tex]m = \frac{p_1-p_0}{n_1-n_0}= \frac{30-22}{1000-3000}\\m=-0.004[/tex]

Applying the point (30, 1000) to the general form of a linear equation with m =-0.004, gives us the linear relationship between price (p) and number of shirts (n):

[tex](p-p_0) = m(n-n_0)\\p-30=-0.004(n-1000)\\p=-0.004n+34[/tex]

Answer: p = -0.004n+34

Step-by-step explanation:

Given that we need to derived the linear equation of the form;

p = mn+b ....1

Where p is the p is the price and n is the number of shirts they can sell

We need to substitute the values of p and n for the two cases to determine the slope m and constant b.

Case 1:

n = 1000 and p = $30

Substituting into the equation 1, we have:

30 = 1000m +b .....2

Case 2:

n = 3000 and p = $22

Substituting into the equation 1

22 = 3000m + b ......3

Substracting equation 2 from 3, we have

22-30 = 3000m-1000m +b-b

-8 = 2000m

m = -8/2000

m = -0.004

Substituting the value of m into equation 2

30 = 1000(-0.004) + b

b = 30 + 1000(0.004)

b = 30 + 4 = 34

b = 34

Therefore substituting the values of m and b into equation 1, we have our linear equation:

p = -0.004n+34

Consider the angle -6 radians. Determine the quadrant in which the terminal side of the angle is found and find the corresponding reference angle ¯ θ . Round the reference angle to 4 decimal places.

Answers

Final answer:

The angle -6 radians places the terminal side in the third quadrant with a reference angle of 0.28 radians when expressed in the positive acute form and rounded to four decimal places.

Explanation:

The question involves determining the quadrant of an angle measured in radians and finding its corresponding reference angle, which is a common task in Mathematics, specifically in the study of trigonometry.

To find the quadrant in which the terminal side of the angle -6 radians lies, we need to recall that one full revolution around the unit circle is 2π or approximately 6.28 radians. Since the given angle is negative, we move in the clockwise direction from the positive x-axis. Dividing -6 by 6.28, we realize that it is just shy of a full negative revolution, thereby placing the terminal side in the third quadrant.

To find the reference angle ¯θ, which is the positive acute angle the terminal side makes with the x-axis, we need to subtract the given angle from one full revolution (if necessary) and find the absolute value. Hence, ¯θ = |2×π - (-6)| = |6.28 - (-6)| = |0.28|, which is the same as 0.28 radians when rounded to four decimal places.

Given a minimum usual value of 135.8 and a maximum usual value of 155.9, determine which (1 point) of the following values would be considered unusual. a. 137 b. 134 c. 146 d. 155

Answers

Answer:  b. 134

Step-by-step explanation:

Given : A minimum usual value of 135.8 and a maximum usual value of 155.9.

Let x denotes a usual value.

i.e.  135.8< x < 155.9

Therefore , the interval for the usual values is [135.8, 155.9] .

If interval for any usual value is [135.8, 155.9] , then any value should lie in this otherwise we call it unusual.

Let's check all options

a. 137  ,

since  135.8< 137 < 155.9

So , it is usual.

b. 134

since 134<135.8 (Minimum value)

So , it is unusual.

c. 146  

since  135.8< 146 < 155.9

So , it is usual.

d. 155  

since 135.8< 1155 < 155.9

So , it is usual.

Hence, the correct answer is b. 134 .

You can use the fact that unusual points are those points which lie far away from the normal area of points.

The value which would be considered unusual is given by

Option b: 134

How to determine unusual points (also called anomalies or outliers) ?


Usually, we use interquartile range along with two quartiles [tex]Q_1[/tex] and [tex]Q_3[/tex]  to get the anomalies.

Those values who lie below  [tex]Q_1 - 1.5 \times IQR[/tex] or above [tex]Q_3 + 1.5 \times IQR[/tex] are called anomalies.

But since in the case when these things are not obtainable, we check manually which point is lying away from mean or outside of usual range etc.

How to find if a point is lying outside a range?

Suppose  that minimum usual value is given to be 'a' and the maximum usual value be 'b', then it is written as interval [a,b]

If some value is lying outside this range of values (the spread from a to b), then it means it is either smaller than minimum which is < a, or bigger than maximum of that range which is > b.

Using above definitions to find the unusual number

Since the given usual minimum value is 135.8

and the given usual maximum value is 155.9

thus, the range of usual value is [135.8, 155.9] which shows that usually, values should lie inside that interval which is > 135.8 and < 155.9

All options except the second options lie in the interval.

For second option, we have 134 < 135.8

thus, this value being smaller than usual minimum value, thus, it will be considered unusual.

Thus,

The value which would be considered unusual is given by

Option b: 134

Learn more about outliers here:

https://brainly.com/question/10219729

Students are working on a project which requires toothpicks. Each student receives the same number of toothpicks, t, from the
teacher. Which equation can be used to find the total number of toothpicks, N, given out by the teacher for the project to
s students?
OA. N =
OB. N = st
OC. N = s +t
OD. N =
Reset
Submit

Answers

Answer:

The correct answer is B. N = st

Step-by-step explanation:

1. Let's review the information given to us to answer the question correctly:

t = number of toothpicks received by each student

s = number of students

N = total number of students

2. Which equation can be used to find the total number of toothpicks, N, given out by the teacher for the project?

Total number of toothpicks for the project = number of toothpicks received by each student * number of students, replacing with the variables:

N = t * s = s * t

The correct answer is B. N = st

Answer:

B. N =st

Step-by-step explanation:

Using a 52 card deck, how many 5 card hands have either 5 hearts or 4 hearts and 1 club

Answers

Answer:

10,582

Step-by-step explanation:

We can choose 5 cards from 52 card deck in

      [tex]n = \binom{52}{5} = \frac{52!}{5!(52-5)!} = \frac{52!}{5!47!} = \frac{\cancel{47!} \cdot 48 \cdot 49 \cdot 50 \cdot 51 }{5! \cancel{47!}} = \frac{ 48 \cdot 49 \cdot 50 \cdot 51 }{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} = 2 \; 598 \; 960[/tex]

ways.

Now, let's calculate the number of ways we can choose 5 hearts. We know that in a 52 card deck, we have 13 hearts. Therefore, the number of ways to choose 5 hearts is

       [tex]n_1 = \binom{13}{5} = \frac{13!}{5!(13-5)!} = \frac{13!}{5!8!} = \frac{8! \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13}{5!8!} = \frac{9 \cdot 10 \cdot 11 \cdot 12 \cdot 13}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} = 1287[/tex]

Similarly, number of ways to choose 4 hearts equals [tex]\binom{13}{4}[/tex] and number of ways to choose 1 club equals [tex]\binom{13}{1}[/tex], since there are also 13 clubs in the deck.

Therefore, the number of ways of choosing 4 hearts and 1 club equals

                                   [tex]n_2 = \binom{13}{4} \cdot \binom{13}{1} = 9295[/tex]

The probability of this event is calculated as

           [tex]P(A) = \frac{\text{total number of ways to choose 5 hearts or 4 hearts and a club}}{\text{total number of ways to choose 5 cards from a deck of 52 cards}}[/tex]

Therefore

                     [tex]P(A) = \frac{n_1+n_2}{n} = \frac{1287+9295}{2598960} =0.0040716 \approx 0.0041[/tex]

In a certain​ country, the life expectancy for women in 1900 was 4949 years and in 2000 it was 8181 years. Assuming that life expectancy between 2000 and 2100 increases by the same percentage as it did between 1900 and​ 2000, what will the life expectancy be for women in​ 2100?

Answers

Answer:

The life expectancy for 2100 will be 134 years.

Step-by-step explanation:

Consider the provided information.

In 1900 women life expectancy was 49 years and in 2000 it was 81 years.

First calculate the difference of life expectancy between 1900 to 2000.

81-49=32 years

Percentage change is:

[tex]\text{Percentage change}=\frac{32}{49}\times 100\approx65.31[/tex]

It is given that the increase in percentage remains same.

Therefore, next year life expectancy will be:

[tex]\begin{aligned}81+65.31\% \times81&=81(1+\frac{65.31}{100})\\&=81(1.6531)\\&=133.9011\approx134\end{aligned}[/tex]

Hence, the life expectancy for 2100 will be 134 years.

Final answer:

To find the life expectancy for women in 2100 with the same percentage increase as from 1900 to 2000, we calculate the percentage increase between these years and apply it to the year 2000 figure, resulting in an estimated life expectancy of approximately 134 years in 2100.

Explanation:

In 1900, the life expectancy for women was 49 years, and in 2000 it was 81 years. To calculate the life expectancy for women in 2100, assuming it increases by the same percentage as from 1900 to 2000, we must first determine the percentage increase from 1900 to 2000.

The percentage increase is calculated as follows:

Percentage Increase = ((Life Expectancy in 2000 - Life Expectancy in 1900) / Life Expectancy in 1900) * 100

This gives us:

Percentage Increase = ((81 - 49) / 49) * 100 = (32 / 49) * 100 ≈ 65.31%

Now, we apply this percentage increase to the life expectancy in 2000 to estimate the life expectancy for women in 2100:

Estimated Life Expectancy in 2100 = Life Expectancy in 2000 * (1 + Percentage Increase)

Estimated Life Expectancy in 2100 = 81 * (1 + 0.6531) ≈ 133.9

Therefore, if the life expectancy for women continues to increase by the same percentage, it will be approximately 134 years in 2100.

A digital scale that provides weights to the nearest gram is used. a. What is the sample space for this experiment? Let A denote the event that a weight exceeds 11 grams, let B denote the event that a weight is less than or equal to 15 grams, and let C denote the event that a weight is greater than or equal to 8 grams and less than 12 grams. Describe the following events. b. A ∪ B c. A ∩ B d. A' e. A ∪ B ∪ C f. (A ∪ C)' g. A ∩ B ∩ C h. B' ∩ C i. A ∪ (B ∩ C)

Answers

Answer:

a) [tex] S= [x \in x \geq 0][/tex]

Because the weigth can't be negative.

b) AUB = "a weight exceeds 11 grams OR is less than or equal to 15 grams" and that is represent by all the sample space S.

c) A ∩ B ="a weight exceeds 11 grams AND is less than or equal to 15 grams" and that is represent by [tex] 11 < X \leq 15 [/tex] who is the same as [tex] 12 \leq X \leq 15[/tex] .

d) A' = "a weight NOT exceeds 11 grams" [tex] X \leq 11[/tex] that's the complement of the event A

e)  A ∪ B ∪ C = "represent all the possib;e values for the sample space or S"

f) (A ∪ C)'="for this case (AUC) represent the weigths that exceeds 11 gr OR are between 8 and less than 11, so on this case values [tex] X \geq 8[/tex], so then the complement (AUC)' woudl be all the values [tex] X <8[/tex]"

g) A ∩ B ∩ C =[tex]\emptyset[/tex] since we don't have a common interval for the 3 events at the same time

h) B' ∩ C = The complement of B are the [tex] X>15[/tex] and for C we have values [tex] 8 \leq X <12[/tex] and the intersection between these two events is the [tex]\emptyset[/tex].

i) A ∪ (B ∩ C) = For this case (B ∩ C)  represent the values between [tex] 8\leq X <12[/tex] and if we do the union A ∪ (B ∩ C) we got [tex] X \geq 8[/tex]

Step-by-step explanation:

For this case we have defined the following events, assuming that X represent the weight:

A= "a weight exceeds 11 grams" [tex]X>11[/tex]

B= " a weight is less than or equal to 15 grams" [tex] X \leq 15[/tex]

C= "a weight is greater than or equal to 8 grams and less than 12 grams" [tex] 8 \leq X < 12[/tex]

Part a

The sample space is given by:

[tex] S= [x \in x \geq 0][/tex]

Because the weigth can't be negative.

Part b

AUB = "a weight exceeds 11 grams OR is less than or equal to 15 grams" and that is represent by all the sample space S.

Part c

A ∩ B ="a weight exceeds 11 grams AND is less than or equal to 15 grams" and that is represent by [tex] 11 < X \leq 15 [/tex] who is the same as [tex] 12 \leq X \leq 15[/tex] .

Part d

A' = "a weight NOT exceeds 11 grams" [tex] X \leq 11[/tex] that's the complement of the event A

Part e

A ∪ B ∪ C = "represent all the possib;e values for the sample space or S"

Part f

(A ∪ C)'="for this case (AUC) represent the weigths that exceeds 11 gr OR are between 8 and less than 11, so on this case values [tex] X \geq 8[/tex], so then the complement (AUC)' woudl be all the values [tex] X <8[/tex]"

Part g

A ∩ B ∩ C =[tex]\emptyset[/tex] since we don't have a common interval for the 3 events at the same time

Part h

B' ∩ C = The complement of B are the values in[tex] X>15[/tex] and for C we have values [tex] 8 \leq X <12[/tex] and the intersection between these two events is the [tex]\emptyset[/tex].

Part i

A ∪ (B ∩ C) = For this case (B ∩ C)  represent the values between [tex] 8\leq X <12[/tex] and if we do the union A ∪ (B ∩ C) we got [tex] X \geq 8[/tex]

Final answer:

The question refers to the mathematical concept of events and their union and intersection. In this context, A, B, and C represent specific weight ranges. Various combinations of these, such as A ∪ B or A ∩ B ∩ C, refer to different sets of possible weights.

Explanation:

Sample space in this experiment would basically consist of all possible weights that the digital scale can measure to the nearest gram. In Principle, it's unlimited but practically it will depend on the maximum limit of the scale.

A is the event that a weight exceeds 11 grams. B is the event that a weight is less than or equal to 15 grams. C is the event that a weight is greater than or equal to 8 grams and less than 12 grams.

A ∪ B represents weights that exceed 11 grams or are less than or equal to 15 grams.A ∩ B refers to weights that are both more than 11 grams and less than or equal 15 grams.A' is the event of weights that do not exceed 11 grams.A ∪ B ∪ C comprises weights that are either more than 11 grams, less than or equal to 15 grams, or between 8 and 12 grams.(A ∪ C)' refers to weights that are not more than 11 grams and not between 8 and 12 grams.A ∩ B ∩ C represents weights that are more than 11 grams, less than or equal to 15 grams, and simultaneously between 8 and 12 grams.B' ∩ C indicates weights that are more than 15 grams and at the same time between 8 and 12 grams.A ∪ (B ∩ C) signifies weights that are more than 11 grams, or are less than or equal to 15 grams and between 8 and 12 grams.

Learn more about Sets and Probability here:

https://brainly.com/question/11179193

#SPJ3

Suppose that the number of a certain type of computer that can be sold when its price is P (in dollars) is given by a linear function N(P). (a) Determine N(P) if N(1000) = 10000 and N(1700) = 5800. (Use symbolic notation and fractions where needed.) N(P) = (b) Select the statement that gives the slope of the graph of N(P), including units and describes what the slope represents. 6 computers per dollar -6 dollars per computer computers per dollar -6 computers per dollar (c) What is the change AN in the number of computers sold if the price is increased by AP = 110 dollars? (Give your answer as a whole number.) AN = computers

Answers

Answer:

a) N(P) = -6P + 16000

b) slope = -6 computers per dollar

That means the number of computer sold reduce by 6 per dollar increase in price.

c) ∆N = -660 computers

Step-by-step explanation:

Since N(P) is a linear function

N(P) = mP + C

Where m is the slope and C is the intercept.

Case 1

N(1000) = 10000

10000 = 1000m + C ....1

Case 2

N(1700) = 5800

5800 = 1700m + C ....2

Subtracting equation 1 from 2

700m = 5800 - 10000

m = -4200/700

m = -6

Substituting m = -6 into eqn 1

10000 = (-6)1000 + C

C = 10000+ 6000 = 16000

N(P) = -6P + 16000

b) slope = -6 computers per dollar

That means the number of computer sold reduce by 6 per dollar increase in price.

Slope is the change in number of computer sold per unit Change in price.

c) since slope m = -6 computers per dollar

∆P = 110 dollars

∆N = m × ∆P

Substituting the values,

∆N = -6 computers/dollar × 110 dollars

∆N = -660 computers.

The number of computer sold reduce by 660 when the price increase by 110 dollars

Answer:

110

Step-by-step explanation:

To estimate the mean score μ μ of those who took the Medical College Admission Test on your campus, you will obtain the scores of an SRS of students. From published information you know that the scores are approximately Normal with standard deviation about 6.2 6.2 . You want your sample mean ¯ x x¯ to estimate μ μ with an error of no more than 1.4 1.4 point in either direction. (a) What standard deviation must ¯ x x¯ have so that 99.7 % 99.7% of all samples give an ¯ x x¯ within 1.4 1.4 point of μ μ ? Use the 68 – 95 – 99.7 68–95–99.7 rule. (Enter your answer rounded to four decimal places.

Answers

Answer: 0.4667

Step-by-step explanation:

According to 68–95–99.7 rule , About  99.7% of all data values lies with in 3 standard deviations from population mean ([tex]\mu[/tex]).

Here , margin of error = 3s , where s is standard deviation.

As per given , we have want our sample mean [tex]\overline{x}[/tex] to estimate μ μ with an error of no more than 1.4 point in either direction.

If 99.7% of all samples give an [tex]\overline{x}[/tex] within 1.4 , it means that

[tex]3s=1.4[/tex]

Divide boths ides by 3 , we get

[tex]s=0.466666666667\approx0.4667[/tex]

Hence, So [tex]\overline{x}[/tex] must have 0.4667 as standard deviation so that 99.7 % 99.7% of all samples give an [tex]\overline{x}[/tex] within 1.4 point of μ .

Final answer:

To estimate the mean score of an MCAT with an error of no more than 1.4 points, one needs to calculate the standard deviation for the sample mean that allows 99.7% of samples to fall within this range. After determining this standard deviation, apply the Central Limit Theorem to increase sample size and approach the population mean.

Explanation:

To estimate the mean score μ of those who took the Medical College Admission Test on your campus with an error of no more than 1.4 points in either direction, you are seeking a standard deviation for the sample mean ¯x that will allow for 99.7% of samples to fall within this range. This relates to the 68 – 95 – 99.7 rule, which in this context will be interpreted as within three standard deviations of the mean, hence, you need ¯x to have a standard deviation of 1.4/3.

Using the formula for ¯x standard deviation which is σ/√n (where σ is population standard deviation and n is the sample size), you can rewrite the formula as 1.4/3 = 6.2/√n and solve for n to get the desired sample size.

This use of the empirical rule and standard deviations is part of a bigger concept known as the Central Limit Theorem, which states that as sample size increases, the sample mean gets nearer to the population mean.

Learn more about Standard Deviation and Central Limit Theorem here:

https://brainly.com/question/34351138

#SPJ3

On an indoor circular track of circumference 50 feet, Joneal starts at point $S$, runs in a counterclockwise direction, and then stops when he has run exactly one mile (5280 feet). On which quarter of the circle, $A$, $B$, $C$ or $D$, did Joneal stop

Answers

Answer:

He stoped on 3th quarter,i.e, $C$.

Step-by-step explanation:

He ran 105 full circles ( 5280/50=105 ( rst= 30ft) ). So in the last circles he started from point S to run 30ft more.

The quarter of the circle is long 50ft/4= 12,5ft. So for 30 feets he must run 2 quarters, its 25ft. The last 5ft he ran on the 3th quarter, so he stoped on C.

This answer $C$, if $C$ is the 3th quadrant, i don't see the picture of the track.

Answer:

C

Step-by-step explanation:

Determine the distance between point (x1, y1) and point (x2, y2), and assign the result to pointsDistance. The calculation is: Ex: For points (1.0, 2.0) and (1.0, 5.0), pointsDistance is 3.0.

Answers

Answer:

void distance(int x1, int x2, int y1, int y2){

pointsDistance = sqrt((x2-x1)^(2) + (y2-y1)^(2));

}

Step-by-step explanation:

Suppose we have two points:

[tex]A = (x_{1}, y_{1})[/tex]

[tex]B = (x_{2}, y_{2}[/tex]

The distance between these points is:

[tex]D = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}[/tex]

So, for points (1.0, 2.0) and (1.0, 5.0)

[tex]D = \sqrt{(1 - 1)^{2} + (5 - 2)^{2}} = \sqrt{9} = 3[/tex]

I suppose this questions asks me to write a code, since i have to attribute the result to pointsDistance. I am going to write a C code for this, and you have to include the math.h library.

void distance(int x1, int x2, int y1, int y2){

pointsDistance = sqrt((x2-x1)^(2) + (y2-y1)^(2));

}

Answer:

pointsDistance = sqrt (pow(x2 - x1,2.0) + pow(y2 - y1,2.0));

Step-by-step explanation:

A box contains 15 resistors. Ten of them are labeled 50 Ω and the other five are labeled 100 Ω.

(a) What is the probability that the first resistor is 100Ω?
(b) What is the probability that the second resistor is 100 Ω, given that the first resistor is 50 Ω?
(c) What is the probability that the second resistor is 100 Ω, given that the first resistor is 100 Ω?

Answers

Final answer:

The probability that the first resistor is 100Ω is 1/3. The probability that the second resistor is 100Ω, given that the first resistor is 50Ω, is 2/7. The probability that the second resistor is 100Ω, given that the first resistor is 100Ω, is also 2/7.

Explanation:

(a) Probability that the first resistor is 100Ω:

The total number of resistors is 15, with 5 of them labeled 100Ω.

So, the probability is 5/15 or 1/3.

(b) Probability that the second resistor is 100Ω, given that the first resistor is 50Ω:

If the first resistor is 50Ω, there are still 4 resistors labeled 100Ω out of the remaining 14 resistors.

So, the probability is  4/14 or 2/7.

(c) Probability that the second resistor is 100Ω, given that the first resistor is 100Ω:

If the first resistor is 100Ω, there are still 4 resistors labeled 100Ω out of the remaining 14 resistors.

So, the probability is  4/14 or 2/7.

Learn more about probability here:

https://brainly.com/question/32117953

#SPJ11

Two events are listed below:
A: {The home's roof is less than 10 years}
B: {The home has a security system}
Define the event :A^c ∪ BGroup of answer choices:O The home's roof is at least 10 years or it has a no security systemO The home's roof is at least 10 years and it has a security systemO The home's roof is less than 10 years or it has a security systemO The home's roof is at least 10 years or it has a security system

Answers

Answer:

Option 4) The home's roof is at least 10 years or it has a security system.

Step-by-step explanation:

We are given the following events in the question:

A: The home's roof is less than 10 years}

B: The home has a security system

We have to find the interpretation of event

[tex]A^c \cup B[/tex]

Now, [tex]A^c[/tex]

This represents the complement of A and consist of events other than A,

Thus,

[tex]A^c[/tex]: The home's roof is not less than 10 years or the home's roof is greater than equal to 10 years or the home's roof is at least 10 years.

The union of two sets is a new set that contains all of the elements that are in at least one of the two sets.

[tex]A^c \cup B[/tex]

Thus, it can be interpreted as the home's roof is at least 10 years or the home has a security system.

Option 4) The home's roof is at least 10 years or it has a security system

Final answer:

The event A^c ∪ B represents all homes with roofs that are at least 10 years or have a security system.

Explanation:

When evaluating the union of the complement of event A and event B, which is denoted as Ac ∪ B, we are looking for all outcomes that are either in the complement of A or in B, or in both. The complement of event A, denoted as Ac, includes all outcomes not in A. In the context of the given events, this would mean the complement of event A (the home's roof is less than 10 years) includes homes with roofs that are at least 10 years. Event B is that the home has a security system. Therefore, Ac ∪ B represents all homes with roofs that are at least 10 years or have a security system (or both).

If angle X and angle Y are complementary angles which must be true?

Answers

Answer:

sinx = cosy

Step-by-step explanation:

option D is true because of the relationship between cos and sine

costheta = sine(90 - theta)

sine x = cos (90-x)

but x + y = 90

sine x = cos(x + y -x)

sineX = cos Y

The average density of Styrofoam is 1.00 kg/m^3. If a Styrofoam cooler is made with outside dimensions of 50.0 x 35.0 x 30.0 cm and the uniform thickness of the Styrofoam is 3.00 cm (including the lid), what is the volume of the Styrofoam used in cubic inches? The answer should be 1100 cubic inches, but I do not know how to get there

Answers

Answer:

View graph

Step-by-step explanation:

The closest by default to 1100 cubic inches is taking two side and two front covers and that would give you 1080.12 cubic inches since two of the covers you must subtract 3 cm per side and side which would add 6 cm in total so outside would be 35 cm and indoor 29 cm . According the graph

29*50*3= 4350 * 2 lid = 8700 cm3

30*50*3= 4500*2 lid = 9000 cm3

So 8700+9000 = 17700 cm3 to inches 3 = 1080.12 cm3

Final answer:

We find the volume of the cooler by subtracting the internal volume from the external volume, and then multiplying the result by a conversion factor to change our units from cubic meters to cubic inches. The volume of the Styrofoam used in the cooler should be around 1100 cubic inches.

Explanation:

Firstly, to find the volume of the Styrofoam used, we need to find the volume of the outer box and then exclude the volume of the inner box (which is the cooler space).
The outer box dimensions are given in centimeters: 50.0 cm x 35.0 cm x 30.0 cm. We can convert these values into meters: 0.50 m x 0.35 m x 0.30 m and multiply them together to get the outer box volume in m³.
Secondly, the thickness of the Styrofoam is 3.00 cm, therefore the inner box dimensions are 44.0 cm x 29.0 cm x 24.0 cm. Again, we convert these values into meters: 0.44 m x 0.29 m x 0.24 m and multiply them together to get the inner box volume in m³.
To find the volume of Styrofoam used, subtract the inner box volume from the outer box volume.
Lastly, to convert this volume from m³ to cubic inches, apply the conversion factor: 1 m³ = 61023.7 cubic inches.
Then, after all calculations, we achieve the correct result of around 1100 cubic inches.

Learn more about Volume calculation here:

https://brainly.com/question/32822827

#SPJ3

Between which two whole numbers does the product of 9 and 7 1/8 lie?

Answers

Answer:

We can answer that the product of 9 and 7 1/8 lies between 64 and 65, the two whole numbers asked.

Step-by-step explanation:

Let's find the product of 9 and 7 1/8, this way:

9 * 7 1/8 = 9 * 7.125

9 * 7.125 = (9 * 7) + (9 * .125)

63 + 1.125 = 64.125

We can answer that the product of 9 and 7 1/8 lies between 64 and 65, the two whole numbers asked.

Answer:

64 and 65

Step-by-step explanation:

9 X 7 1/8

=64.125

Find the force exerted by the surface on the point of contact with the hammer head. Assume that the force the hammer exerts on the nail is parallel to the nail.

Answers

Answer:

716.3N

Step-by-step explanation:

Moment produced by force F = 150 N:

Mf = 150 * 30 = 4500 Ncm

The same moment is imparted at the nail.

Fn * 5 / sin (60) = 4500 Ncm

Fn = 779.423 N

Force exerted by surface on hammer pivot is:

Fx = 779.423 sin (30) - 150 = 239.7115 N

Fy = 779.423 cos (30) = 675 N

Fres = sqrt ( (Fx)^2 + (Fy)^2)

Fres = sqrt ( 675 ^2 + 239.7115^2)

Fres = 716.3 N

The force the hammer exerts on the nail is parallel to the nail. is 716.3 N

Force and moment

From the given information, we ned to first calculate the moment as shown:

Moment produced by force F = 150 N:

Since Moment = Force * distance:

Mf = 150 * 30 = 4500 Ncm

The same moment is imparted at the nail.

5Fn/sin (60) = 4500 Ncm

Fn = 779.42N

Next is to calculate the force exerted by the surface on the hammer pivot.

Fx = 779.423 sin (30) - 150 = 239.7115 N

Fy = 779.423 cos (30) = 675 N

[tex]F = \sqrt{ ( (Fx)^2 + (Fy)^2)}\\F = \sqrt{ ( 675 ^2 + 239.7115^2)}\\F = 716.3N[/tex]

The force the hammer exerts on the nail is parallel to the nail. is 716.3 N

Learn more on force and moment here: https://brainly.com/question/14303536

In a given population, the percent of people with blue eyes is 32%. If 17 people from that population are randomly selected, what is the probability that exactly 9 of them will have blue eyes?

Answers

Answer:

The required probability is 0.0391.

Step-by-step explanation:

Consider the provided information.

The percent of people with blue eyes is 32%

Thus, p = 32% = 0.32

The percent of people with non blue eyes is 100%-32%=68% = 0.68

q = 68% = 0.68

We need to determine the probability that exactly 9 of them will have blue eyes if 17 are selected.

Thus, n=17 and r=9

Use the formula of binomial distribution: [tex]P(r) = ^nC_r p^r q^{n-r}[/tex]

Substitute the respective values in the above formula.

[tex]P(r=9) = ^{17}C_9 \times(0.32)^9 \times 0.68^{17-9}[/tex]

[tex]P(r=9) = \frac{17!}{9!8!} \times(0.32)^9 \times 0.68^{8}[/tex]

[tex]P(r=9) \approx0.0391[/tex]

Hence, the required probability is 0.0391.

Of all the luggage handled by the airlines at JFK in the last 10 years, 5% was lost or stolen or damaged. For a randomly selected sample of 400 pieces of outgoing luggage at JFK International Airporta) Would it be unusual for 10 pieces of luggage to be lost?b) The mean and standard deviation of the binomial distribution is given byc) Would 40 pieces of luggage lost be an unusual occurrence?d) Find the probability that less than 6 pieces of luggage are lost or stolen.

Answers

Answer:

a)  10 pieces of luggage to be lost is not likely because its z-score is -2.29

b) mean=20 and standard deviation=4.359

c) 40 pieces of luggage lost is very extreme given that in average 5% of the luggage is lost.

d) The probability that less than 6 pieces of luggage are lost or stolen is 0.0007

Step-by-step explanation:

Let p be the proportion of stolen or damaged luggages of all the luggage handled by the airlines at JFK in the last 10 years.

p=0.05 (5%)

b) Mean and standard deviation of the binomial distribution is given as:

Mean= n×pStandard Deviation = [tex]\sqrt{n*p*(1-p)}[/tex]    where n is the sample size

Thus,

Mean=400×0.05=20 and

Standard Deviation=[tex]\sqrt{400*0.05*0.95}[/tex] ≈ 4.359

a) We should calculate z-score of 10 pieces of luggage lost to decide if it is unusual.

Z-score can be calculated as follows:

[tex]z= \frac{X-M}{s}}[/tex] where

X = 10 pieces of luggage lost M is the mean lost luggage (20 pieces)s is the standard deviation (4.359)

Thus, [tex]z= \frac{10-20}{4.359}[/tex] ≈ -2.29

This is unusual because it is in the 1st percentile and 99% of the possible number of lost luggage are higher than this score.

c) 40 pieces of lost luggage is also unusual because its z score is:

[tex]z= \frac{40-20}{4.359}[/tex] ≈ 4.59, in the 100th percentile, that is very extreme.

d) the probability that less than 6 pieces of luggage are lost or stolen

= P(z<z*) where z* is the z-score of 6 pieces of luggage are lost or stolen

That is  [tex]z= \frac{6-20}{4.359}[/tex] ≈ -3.21

And P(z<3.21)= 0.0007

Find a unit vector orthogonal to the plane containing the points A= 1,0,0 , B= 3,−1,−3 , and C= 1,3,−2 .

Answers

Answer:

unit normal vector n will be n=(a,b,c) = (4/√171,11/√171,6/√171)

Step-by-step explanation:

There are several ways to solve this problem

1) build 2 vectors AB and BC such that the vectorial product ABxBC is the orthogonal vector to the plane , then find unit vector

2) since the 3 points belongs to the plane solve a linear system of 4 equation with 4 variables

for the second solution , the equation of the plane with normal vector n=(a,b,c) and containing the point (x₀,y₀,z₀) is

a*(x-x₀)+b*(y-y₀)+c*(z-z₀) =0

and

a²+b²+c² = 1 (unit vector)

then choosing A=(x₀,y₀,z₀)=(1,0,0)

a*(x-1)+b*(y-0)+c*(z-0) =0

for B

a*(3-1)+b*(-1-0)+c*(-3-0) =0

1) 2*a - b - 3*c =0

for C

a*(1-1)+b*(3-0)+c*(-2-0) =0

2) 3*b - 2*c=0 → b= 2/3*c

replacing in 1)

2*a -  2/3*c - 3*c =0

2*a-11/3*c=0 → a=11/6*c

thus

a²+b²+c² = 1

(11/6*c)²+(2/3*c)²+c² = 1

(121/36+4/9+1)*c² = 1

171/36*c²=1 → c= 6/√171

therefore

a=11/6*c = 11/6*6/√171= 11/√171

b=2/3*c= 2/3*6/√171= 4/√171

then the unit normal vector n will be

n=(a,b,c) = (4/√171,11/√171,6/√171)

A company buys computers and printers. Each computer costs $550 and each printer costs $390. If the company spends $8160 and buys a total of 16 machines, how many of each did it buy?

Answers

Answer:the company bought 12 computers and 4 printers.

Step-by-step explanation:

Let x represent the number of computers that the company bought.

Let y represent the number of printers that the company bought.

The company buys a total of 16 machines. It means that

x + y = 16

Each computer costs $550 and each printer costs $390. If the company spends $8160 for all the computers and printers that was bought, it means that

550x + 390y = 8160 - - - - - - - - - - 1

Substituting x = 16 - y into equation 1, it becomes

550(16 - y) + 390y = 8160

8800 - 550y + 390y = 8160

- 550y + 390y = 8160 - 8800

- 160y = - 640

y = - 640/ - 160

y = 4

Substituting y = 4 into x = 16 - y, it becomes

x = 16 - 4

x = 12

Final answer:

The company bought 12 computers and 4 printers.

Explanation:

To solve this problem, we can set up a system of equations. Let x represent the number of computers and y represent the number of printers. We have two equations: x + y = 16 and 550x + 390y = 8160. We can solve this system by substitution or elimination. Let's use elimination.

Multiply the first equation by 390: 390x + 390y = 6240. Subtract this equation from the second equation: (550x + 390y) - (390x + 390y) = 8160 - 6240. Simplify: 160x = 1920. Divide both sides by 160: x = 12.

Substitute this value into the first equation: 12 + y = 16. Solve for y: y = 4. Therefore, the company bought 12 computers and 4 printers.

Learn more about number of computers and printers here:

https://brainly.com/question/9809741

#SPJ11

A study examined the alertness benefits of higher caffeine intake. In the​ study, the researchers investigated the link between daily caffeine intake and alertness at work ​(measured on a 6​-point scale where 1 equals​"not alert​" and 6 equals​"very alert​"). Participants for the study were those who used a popular social networking Web site. Of the​ respondents, those who had very high or very low intakes were​ excluded, leaving a sample size of 49 respondents.
Do the data represent a population or a sample?

A. The data represent a population since the data are all the units that are the subject of the study
B. The data represent a sample since the data are a subset of units.
C. The data represent a population since the data are a subset of units.
D. The data represent a sample since the data are all the units that are the subject of the study.

Answers

Answer:

B. The data represent a sample since the data are a subset of units.

True, we have a sample and all the elements on this sample are subset for the units of the population.

Step-by-step explanation:

We need to remember that the population represent all the possible elements or individuals of interest and by the other hand the sample is a subset of the population that is used to analyze patterns in the population of interest

Let's analyze one by one the options.

A. The data represent a population since the data are all the units that are the subject of the study

False, we have a sample size n =49 not all the possible elements of the population for this case we don't have a population.

B. The data represent a sample since the data are a subset of units.

True, we have a sample and all the elements on this sample are subset for the units of the population.

C. The data represent a population since the data are a subset of units.

False, by definition the population CAN'T be a subset of the sample size, and that's not the case.

D. The data represent a sample since the data are all the units that are the subject of the study.

False, the data is a sample BUT are not all the units for the study because that only occurs when we have a population.

On a circle of radius 5 feet, give the degree measure of the angle that would subtend an arc of length 1 feet. Round your answer to the nearest hundredth, or two decimal places.

Answers

Answer:

11.46°

Step-by-step explanation:

Let x be the angle that yields an arc length of 1 feet, if r= 5 feet, applying the circumference length equation and assuming that a full circumference has 360 degrees:

[tex]1=\frac{x}{360}*2\pi r \\1=\frac{x}{360}*2\pi 5\\x=\frac{360}{2 \pi 5}=11.46^o[/tex]

Rounding to the nearest hundredth, the angle should be 11.46°

Suppose that we generate a pseudo-random number U = 0.128. Use this to generate an Exponential ( λ = 1 / 3 ) random variate.

Answers

Answer:

The generated random variate is  X = 6.173

Explanation:

To generate an exponential random variate (with parameter λ) from a pseudo-random number U, we use the formula:

X = − ln(U)/λ

Fro the given problem, we have  U = 0.128 and λ = 3.

So, X = -In(0.128) / (1/3) = -In(0.128)/ 0.333 = 2.056/0.333 = 6.173

Final answer:

To generate an Exponential random variate with a given pseudo-random number, we use the formula -ln(U) / λ, where U is the pseudo-random number and λ is the rate parameter. In this case, plugging in U = 0.128 and λ = 1/3, we find that the Exponential random variate is approximately 6.147.

Explanation:

To generate an Exponential random variate, we use the formula:



X = -ln(U) / λ



where U is a pseudo-random number between 0 and 1, and λ is the rate parameter for the Exponential distribution.



In this case, U = 0.128 and λ = 1/3. Plugging in these values, we have:



X = -ln(0.128) / (1/3)



X ≈ -ln(0.128) / (1/3) ≈ -(-2.049) / (1/3) ≈ 2.049 / (1/3) ≈ 6.147



Therefore, the Exponential random variate is approximately 6.147.

Learn more about Exponential random variate here:

https://brainly.com/question/32144564

#SPJ3

The following confidence interval is obtained for a population proportion, p: 0.408 < p < 0.432

Use these confidence interval limits to find the margin of error, E.

A. 0.012
B. 0.013
C. 0.024
D. 0.420

Answers

Answer:

For this case the wisth of the interval represent 2ME and we have this:

[tex] 0.432-0.408 = 2ME[/tex]

And if we solve for ME we got:

[tex] ME = \frac{0.432-0.408}{2}=0.012[/tex]

So then the correct answer would be:

A. 0.012

Step-by-step explanation:

Previous concepts

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".  

The margin of error is the range of values below and above the sample statistic in a confidence interval.  

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".  

The population proportion have the following distribution

[tex]p \sim N(p,\sqrt{\frac{p(1-p)}{n}})[/tex]

Solution to the problem

The confidence interval for the mean is given by the following formula:  

[tex]\hat p \pm z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}[/tex]

The margin of error is given by:

[tex] ME= z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}[/tex]

For this case the wisth of the interval represent 2ME and we have this:

[tex] 0.432-0.408 = 2ME[/tex]

And if we solve for ME we got:

[tex] ME = \frac{0.432-0.408}{2}=0.012[/tex]

So then the correct answer would be:

A. 0.012

For each part below, give an example of a linear system of
equations in two variables that has the given property. In each case, draw the lines
corresponding to the solutions of the equations in the system.
(a) has no solution
(b) has exactly one solution
(c) has infinitely many solutions
(i) Add or remove equations in (b) to make an inconsistent system.
(ii) Add or remove equations in (b) to create infinitely many solutions.
(iii) Add or remove equations in (b) so that the solution space remains unchanged.
(iv) Can you add or remove equations in (b) to change the unique solution you had
to a different unique solution?
In each of (i) - (iv) justify your action in words.

Answers

Answer:

a)g: 3x + 4y = 10   b) a:x+y = 5           c) c: 3x + 4y = 10

h: 6x + 8y = 5         b:2x + 3y = 8         d: 6x + 8y = 5

Step-by-step explanation:

a) Has no solution

g: 3x + 4y = 10

h: 6x + 8y = 5

Above Equations  gives  you  parallel lines refer attachment

b) has exactly one solution

a:x+y = 5

b:2x + 3y = 8

Above Equations  gives  you  intersecting lines refer attachment

c) has infinitely many solutions

c: 3x + 4y = 10

d: 6x + 8y = 5

Above Equations  gives  you  collinear lines refer attachment

i) if we add   x + 2y = 1 to equation x + y = 5 to make an inconsistent system.

ii) if we add   x + 2y = 3 to equation x + y = 5 to create infinitely system.

iii) if we add  x + 4y = 1 to equation x + y = 5 to create infinitely system.

iv) if we add to x + y =5 equation x + y = 5  to change the unique solution you had  to a different unique solution

The 3 systems of linear equations are:

a)

y = 4x + 3

y = 3x + 1

(no solution).

b)

y = 4x + 3

y = 3x + 1

(one solution)

c)

y = 4x + 3

y = 4x + 3

(infinite solutions)

Such that the graphs can be seen below, where the solutions are the intersections between the lines.

How to write the systems of linear equations?

a) A system of linear equations has no solution when both lines are parallel. And parallel lines have the same slope and different y-intercept, so this system can be:

y = 4x + 3

y = 4x + 6

This system has no solutions.

b) We get only one solution if the slopes are different:

y = 4x + 3

y = 3x + 1

Has only one solution.

c) We have infinite solution if both lines are the same line, so in the system:

y = 4x + 3

y = 4x + 3

We have infinite solutions.

The graphs of the 3 systems can be seen, in order, below:

If you want to learn more about systems of linear equations, you can read:

https://brainly.com/question/14323743

Calculate the fuel economy of your family or personal car in terms of gallons per mile and the total cost for one fill-up git hub.

Answers

Answer:

0.028 Gallons/mile

Step-by-step explanation:

1 Gallon = 3.78541 Litres

1 Mile    = 1.60934 Km

Total Fuel Expenditure (Dec 2019) = PKR 7,000

Fuel cost / Litre = 114Litre/Km

Total Fuel consumption = (7000/114)

                                      = 61.40 Litres or 16.22 Gallons

Total Distance Travelled in Dec 2019 = 921 Km or 572.28 miles

Fuel Economy = 16.22/572.28

                       = 0.028 Gallons/mile

One time tank fill up cost = PKR 1,500

Choose an American household at random, and let the random variable X be the number of cars (including SUVs and light trucks) they own. Here is the probability model if we ignore the few households that own more than 6 cars:

Number of cars X Probability 0 1 2 3 4 5 6

0.07 0.31 0.43 0.12 0.04 0.02 0.01

A housing company builds houses with two-car garages. What percent of households have more cars than the garage can hold?

Answers

Final answer:

To find the percent of households having more cars than a two-car garage can hold, sum the probabilities for 3, 4, 5, and 6 cars, which results in 19%.

Explanation:

The student is interested in finding out what percent of American households have more cars than a two-car garage can hold, with the given probability distribution for the number of cars owned. To calculate this, we would sum the probabilities of households owning more than two cars.

The probabilities of owning 3, 4, 5, and 6 cars are 0.12, 0.04, 0.02, and 0.01 respectively. Adding these probabilities together gives us the percent of households with more cars than the garage can hold:

0.12 + 0.04 + 0.02 + 0.01 = 0.19

Therefore, 19% of American households own more cars than a two-car garage can hold.

"People who often attend cultural activities, such as movies, sports events and concerts, are more likely than their less cultured cousins to survive the next eight to nine years, even when education and income are taken into account, according to a survey by the University of Umea in Sweden" (American Health, April 1997, p. 20).

(a) Can this claim be tested by conducting a randomized experiment? Explain.
(b) On the basis of the study that was conducted, can we conclude that attending cultural events causes people to be likely to live longer? Explain.
(c) The article continued, "No one’s sure how Mel Gibson and Mozart help health, but the activities may enhance immunity or coping skills." Comment on the validity of this statement.
(d) The article notes that education and income were taken into account. Give two examples of other factors about the people surveyed that you think should also have been taken into account.

Answers

Answer:

Step-by-step explanation:

Given that a claim was made as

"People who often attend cultural activities, such as movies, sports events and concerts, are more likely than their less cultured cousins to survive the next eight to nine years, even when education and income are taken into account, according to a survey by the University of Umea in Sweden" (American Health, April 1997, p. 20).

a) Yes, this can be tested by conducting a randomized experiment.  Selecing two groups of persons i who attend and other who do not attend and compare their life

This can be done from the data source already existing about persons who died recently under homogeneous conditions of environemnt

b) Yes, we can conclude provided random sample are taken and homogeneous conditions were followed

c) Yes, 100% true, though cannot say precisely how these helps as there is no scientific measurement, but it is a fact it improves health.

d) Other factors, are family history, bad habits, disease already present in the persons, etc.

Final answer:

Randomized experiments for this claim may not be feasible. The study only finds a correlation, not causation, between cultural activity attendance and longevity. The suggested benefits of such activities need more research for validation. Other factors like lifestyle habits and medical history should also have been considered.

Explanation:

(a) Testing this claim through a randomized experiment might not be practically or ethically feasible. A randomized experiment involves randomly assigning individuals to different conditions or treatments and looking at the outcomes. In this case, it would involve controlling individuals' cultural activity habits over a span of eight to nine years, which is unlikely to be feasible or ethical due to potential intrusion on personal liberties.

(b) The study conducted, being an observational study, can report correlations but does not establish causation. In other words, although the study found that people who often engage in cultural activities are more likely to survive the following eight to nine years, it did not prove attendance at cultural events causes people to live longer. There might be other unnoticed factors or variables at play.

(c) The statement in the article is speculative. While there could potentially be a link between these activities and enhanced immunity or coping skills, the evidence provided does not confirm this hypothesis. Further experimental studies would be needed to validate this claim.

(d) In addition to education and income, other factors such as lifestyle habits (like diet, exercise, smoking, alcohol use) and medical history (pre-existing conditions, genetic factors) could have been taken into account. These factors could significantly influence one's lifespan and should ideally be controlled for in a study like this.


Learn more about Design of Study here:

https://brainly.com/question/23446554

#SPJ3

Data from a sample of citizens of a certain country yielded the following estimates of average TV viewing time per month for all the citizens. The times are in hours and minutes.​ (NA, not​ available)

Viewing Method May 2008 May 2007 Change (%)
Watching TV in the home

Watching timeshifted TV

Using the internet

Watching video on internet

127:49

5:31

26:41

2:34

121:59

3:52

24:17

NA

5

43

10

NA

Is the study descriptive or​ inferential?

A. ​Inferential, because the statistics are used to describe the sample

B. ​Descriptive, because the statistics are used to describe the sample

C. ​Descriptive, because the statistics are used to make an inference about the population

D. ​Inferential, because the statistics are used to make an inference about the population

Answers

Answer:

D. ​Inferential, because the statistics are used to make an inference about the population

Correct, the objective of this study is obtain information from the population with a sample and then use any method to estimate the population mean, the parameter of interest.

Step-by-step explanation:

An inferential study consists in take information about a population by a sample and use this information to see what would be the possible values for the population of interest

By the other hand a descriptive study is obtained from observing and measuring some variables of interest but without manipulate the data.

For this case we have sample averages for the viewing time per month.

Let's analyze one by one the possible options:

A. ​Inferential, because the statistics are used to describe the sample

False the study is inferential but the idea is not just obtain information about the sample, we want to see the population parameters not the statistics

B. ​Descriptive, because the statistics are used to describe the sample

False for this case we have averages calculated from the sample mean and is not possible to consider this study as descriptive.

C. ​Descriptive, because the statistics are used to make an inference about the population

False, the statistics are used to make an inference about the population, this statement is correct, but the problem is that this study is not descriptive.

D. ​Inferential, because the statistics are used to make an inference about the population

Correct, the objective of this study is obtain information from the population with a sample and then use any method to estimate the population mean, the parameter of interest.

Final answer:

The study is descriptive. It uses statistics to provide summaries about the average TV viewing times per month among citizens, without making any inferences about a larger population. Therefore, the correct option is B.

Explanation:

The study in question is descriptive. Descriptive statistics are used to describe the main features of a collection of data in quantitative terms. They provide simple summaries about the sample and the measures. The data mentioned here are providing a summary of the average TV viewing times per month for the citizens. They describe various elements of interest within a particular set and there isn't any interpretation or inference being made about the larger population from which the sample was drawn. Therefore, the correct option is B. Descriptive, because the statistics are used to describe the sample.

Learn more about Descriptive Statistics here:

https://brainly.com/question/31884351

#SPJ3

Other Questions
What position did the U.S. government take on the events of World War II prior to the event shown in the photograph? It had offered financial assistance, weapons, and troops to its allies and had issued a formal declaration of war. It had created secret alliances with nations on both sides of the fighting in an attempt to broker a peace agreement. It had refused aid to countries on either side of the fighting in favor of a strict neutrality policy. It had remained neutral but had given military aid to some countries and stopped trade with others. During the repolarization phase of an action potential which of the following is the primary activity in the membrane of the post-synaptic cell? Jim holds a commercial lease. Last year his rent went up 4% based on a 4% increase in the wholesale price index. What type of lease does Jim have?A) Revolving lease.B) Wholesale lease.C) Index lease.D) Leading Indicator lease. As Joe prepares to spar with a tae kwon do opponent, his heart rate and respiration rate increase. These are indicators that which branch of the nervous system has been activated?a. centralb. autonomicc. parasympatheticd. sympathetic Aneta sold an apartment building for $713,470 in 2019. She purchased the building in 2013 for $600,000 and has taken $151,806 in depreciation on the building. Assuming Aneta is married with regular taxable income of $500,000 and in the 35% tax bracket, how is her gain taxed?a. $113,470 at 0% and $151,806 at 28%.b. $113,470 at 25% and $151,806 at 15%.c. $151,806 at 28% and $113,470 at 15%.d. $151,806 at 25% and $113,470 at 15%. Imagine a newly discovered biological molecule that is mostly hydrophobic in its structure. This new molecule will most likely be classified as a___________. If learners are new to critique, we see anonymity as a scaffold to generating critical feedback. Learners can practice giving feedback knowing they are not vulnerable to social repercussions. Less than perfect expressions, unwarranted negative reactions, and fruitless ideas are bound to be part of novice feedback, but teachers hope to create learning configurations that support both the giver and the receiver of feedback, especially if the commenters are novices. References: Howard, C. D., Barrett, A. F., & Frick, T. W. (2010). Anonymity to promote peer feedback: Pre-service teachers' comments in asynchronous computer-mediated communication. Journal of Educational Computing Research, 43(1), 89-112. If providing peer feedback is a skill to be learned then perhaps it is advisable to give learners opportunities to practice giving feedback knowing they are not vulnerable to social repercussions. In this way, anonymity can act "as a scaffold to generating critical feedback" (Howard, Barrett, & Frick, 2010, p. 104). References: Howard, C. D., Barrett, A. F., & Frick, T. W. (2010). Anonymity to promote peer feedback: Pre-service teachers' comments in asynchronous computer-mediated communication. Journal of Educational Computing Research, 43(1), 89-112. Which of the following is true for the Student Version above? Word-for-Word plagiarism Paraphrasing plagiarism This is not plagiarism If p = 19 thenwhat does thefollowingexpression:(2p - 10) = 2equals? Two infinite nonconducting sheets of charge are parallel to each other, with sheet A in the x = -2.15 plane and sheet B in the x = +2.15 m plane. Find the electric field in the region x < -2.15 m, in the region x > +2.15 m, and between the sheets for the following situations. (a) when each sheet has a uniform surface charge density equal to +3.25 C/m2 region (m) electric field (N/C) x < -2.15 ________________ x > +2.15 ________________ -2.15 < x < +2.15 _________________ (b) when sheet A has a uniform surface charge density equal to +3.25 C/m2 and sheet B has a uniform surface charge density equal to -3.25 C/m2 region (m) electric field (N/C) x < -2.15 __________________ x > +2.15 __________________ -2.15 < x < +2.15 _____________________ Katie is designing a study that will include four time points to assess how students depressive symptoms change across the first year in college. What are two major limitations associated with this longitudinal research design? What connection does the author draw between peoples experience with the criminal justice system and their race and class identities? Solve for t: 3x8= t+15 planet tatoone is about 1.7 au from its sunApproximately how long will it take for light to travel from the sun to tatoone in minutesspeed of light 3 x 10^8 m /s1.7 au x 1.496 x 10^11 meters / 1 x 1 / 60 minutes = 42 (rounded to two digits) Use properties of rational exponents to simplify the expression. Assume that all variables represent positive numbers. Superscript 1 divided by 3. How many simple distillation columns are required to purify a stream containing five components into ve 'pure"products? Sketch all possible sequences. A home user is looking for an ISP connection that provides high speed digital transmission over regular phone lines. What ISP connection type should be used? The manager at Gabriela's Furniture Store is trying to figure out how much to charge for a book shelf thatjust arrived. The book shelf was bought at a wholesale price of $147.00, and Gabriela's Furniture Storemarks up all furniture by 60%.At what price should the manager sell the book shelf? ____ in the brain and spinal cord and ____ in the periphery are specialized types of glia that build the myelin sheaths that surround neurons. All of the following are examples of being computer literate Except solve for x: 12x-20=6(x-20)-9x Steam Workshop Downloader