Answer: Depending on the state of change it can be a physical change. Example: Evaporation is the physical change of a liquid turned into a gas.
That said, I'm pretty sure the answer is (True)
Note: Hope this is correct and it helps. Good luck :)
Based on its location on the periodic table, how many electrons does oxygen have in its outer energy level?
03
04
05
06
Answer:
The number of electrons in the outer energy level of oxygen is 6.
Explanation:
Oxygen is present in the group 16 of the periodic table. The electronic configuration of group 16 element is [tex]ns^{2}np^{4}[/tex]. The number of electrons in outer energy level of group 16 element is always found to be 6.
The addition of the number of the electrons present in the valence shell orbitals of oxygen will give the total number of electrons present in the outer energy level.
The number of electron in the outer energy level of oxygen is (2 + 4) = 6.
Which is not a Lewis acid-base reaction?
I believe it would be the last one. It just amplified the acid, which is (2. Al)(2.Cl3)-> Al2Cl6
Hope it helps!
A neutralization reaction, such as between hydrochloric acid and sodium hydroxide, is not considered a Lewis acid-base reaction as it does not involve the transfer of electron pairs.
Explanation:A Lewis acid-base reaction refers to a reaction involving the transfer of an electron pair. The Lewis acid accepts the electron pair, while the Lewis base donates it. An example that does not fit the definition of a Lewis acid-base reaction would be the neutralization reaction between hydrochloric acid (HCl) and sodium hydroxide (NaOH), which produces water (H2O) and salt (NaCl). This reaction does not involve the transfer of electron pairs, and hence, is not a Lewis acid-base reaction.
Learn more about Lewis acid-base reaction here:https://brainly.com/question/34236440
#SPJ3
How do you find the formula for the ionic compound of sodium chromate?
Pls show all working out ty;)
Answer:
Explanation:
Sodium chromate has the chemical formula Na2CrO4, and a molar mass of 161.97 g/mol. It is a salt made of two sodium cations (Na+) and the chromate anion (CrO4-) in which the chromium atom is attached to four oxygen atoms.
Ben and Sam were conducting experiments on physical and chemical changes in science class. First they added some salt to water and stirred it up until the salt dissolved. "That's a physical change" Ben said. "And that's a solution which is a mixture", added Sam. Next they added an anti-acid tablet to some water. The water began to fizz and bubble. The beaker got cooler. "That's a physical change too," Ben noted. "No, it's not," responded Sam. Who is correct and where should the contents of the beaker be placed in the Venn diagram?
A) Sam is correct. It is not a physical change and it should be placed in A
B) Sam is correct. It is a chemical change and the contents should be in D. for compound.
C) Ben is correct. It is a physical change and it is a solution, placing it in B. as a mixture.
D) They are both correct. It is a mixture and a compound and the contents should be placed in C.
Answer:
b
Explanation:
hi from 2022
Ben and Sam were conducting experiments on physical and chemical changes in science class. Sam is correct. It is a chemical change and the contents should be in D. for compound. Therefore, option B is correct.
What is meant by chemical and physical change ?In a physical change the visual aspect or form of the matter changes but the kind of matter in the substance does not. However, in a chemical change, the kind of matter changes and at least one new matter with new properties is produced.
Some of the processes that makes physical changes include cutting, bending, dissolving, freezing, boiling, and melting.
Examples of chemical changes are baking soda and vinegar creating carbon dioxide, iron rusting, and wood burning.
Thus, Sam is correct. It is a chemical change and the contents should be in D. for compound, option B is correct.
To learn more about the chemical and physical change, follow the link;
https://brainly.com/question/11321843
#SPJ6
Water vapor condenses into a glass of water. The water is then placed in a freezer and changes into ice. What remains consistent as the water changes states? (A) its chemical properties (B) its physical properties (C) its appearance (D) its temperature
Water's chemical properties remain the same as it changes states from vapor to liquid to ice because it retains its molecular structure of two hydrogen atoms bonded to an oxygen atom (H₂O) throughout the transformations.
Explanation:As water changes states from water vapor to liquid water, and then to ice, what remains consistent is (A) its chemical properties. This is because, in each state, water is still composed of Hydrogen and Oxygen atoms in a 2:1 ratio, represented as H₂O. Even though its physical properties like density, temperature, and appearance change, the fundamental molecular structure remains the same.
For instance, consider liquid water freezing into ice. Though the physical arrangement of the water molecules changes (which accounts for ice's unique property of being less dense than the liquid water), the water molecules themselves remain unchanged. Each water molecule is still composed of two hydrogen atoms bonded to an oxygen atom.
Learn more about Chemical Properties here:https://brainly.com/question/33423328
#SPJ2
Where and why does Celiac Disease Occur?
Answer:
Celiac disease occurs in the intestines as an allergic response to Gluten in certain cereal grains.
Explanation:
Answer:
Celiac disease is genetic and if one person of the family has it you might have it too. Also if one of the parents have a certain gene and is passed on to the child the risk of celiac disease is high.
Explanation:
Hope it Helps
How many grams of Ag will be produced from 5.00g of Cu and 1.00g of AgNO3
Answer:
0.635 grams
Explanation:
Equation for the reaction
[tex]Cu + 2 AgNO_3 -----> Ag^{2+} + CuNO_3[/tex]
mass of Cu = 5.00 g
molar mass = 63.5 g/mol
number of moles = [tex]\frac{mass}{molar mss}[/tex]
number of moles of Cu = [tex]\frac{5.00g}{63.5g/mol}[/tex]
number of moles of Cu = 0.0787 moles
To determine the moles of Ag formed; we have:
0.00588 moles of AgNO₃ × [tex]\frac{2 moles of Ag}{2 moles of AgNO_3}[/tex]
= 0.00588 moles of Ag are produced
Molar mass of Ag = 108 g/mol
Then mass of Ag that will be produced = number of moles of Ag × molar mass of Ag
= 0.00588 moles × 108 g/mol
= 0.635 grams of Ag are produced.
Answer:
0.635 g of Ag
Explanation:
Below are attachments containing the solution
3 Ag2S + 2 Al + 3 H2O --> 6 Ag + Al2O3 + 3 H2S
How many grams of H2O are used if 75 grams of Al are used?
Answer: really hard
Explanation: I wish I knew how to help you
How do scientists use sonar to study Earth’s oceans?
A to map the ocean floor
B to map ocean currents
C to measure underwater earthquakes
D to measure water density
There is a 30 g sample of Be-11. It has a half-life of about 14 seconds.How much will be left after 28 seconds?A.3.75 gB.7.5 gC.15 gD.30 g
Answer:
After 28 sec 7.5 grams of Be will be left
Explanation:
Given data:
Total amount of Be = 30 g
Half life of Be = 14 sec
Mass left after 28 sec = ?
Solution:
First of all we will calculate the number of half lives in 28 sec.
Number of half lives = T elapsed / half life
Number of half lives = 28 sec / 14 sec
Number of half lives = 2
AT time zero = 30 g
At first half life = 30 g/2 = 15 g
At second half life = 15 g/ 2 = 7.5 g
So after 28 sec 7.5 grams of Be will be left.
Calculate the volume of 817.5g of CH4 at STP.
Answer:
The volume is 1143,78 L
Explanation:
We use the formula PV=nRT. The conditions STP are 1 atm of pressure and 273K of temperature. We calculate the weight of 1 mol of CH4.
Weight 1 mol CH4= weight C+ (weight H)x4= 12 g + 1 g x4= 16 g/mol
16 g----1 mol CH4
817,5g--x=(817,5gx1 mol CH4)/16g= 51, 1 mol CH4
PV=nRT V=(nRT)/P
V= (51,1 mol x 0,082 l atm/K mol x 273 K)/1 atm
V= 1143,78 liters
once formed how do fossils get back to the surface for us to find them?
Answer:
Explanation:
After fossils are buried, how do they get to the surface to be discovered? That's right, the only way for those sediments to reach the surface is for them to be pushed up during the process of mountain making and then worn away by the forces of erosion.
Fossils form in sedimentary layers or rock layers from specific periods when favorable conditions permit preservation of bones, teeth, and sometimes impressions of the organism. Geological activities, such as erosion and plate tectonics, along with climate change, can eventually bring these fossils back to the surface.
Explanation:Fossils, which provide solid evidence of organisms from the past, are typically found in sedimentary layers located next to bodies of water or in rock layers dating back to periods such as the Permian period. Upon death, an organism's body decomposes, leaving mostly teeth and bones, which under specific conditions can become fossilized through processes involving materials like volcanic ash, limestone, and mineralized groundwater.
Geological activity, such as erosion, weathering surface layers, and plate tectonics can eventually bring these fossils back to the surface. Climate change can also expose fossils, as seen when perennial snow covering Greenland melted to reveal geologic evidence of ancient life. These methods allow us to discover fossils of organisms ranging from bivalves and trilobites to early vertebrate bones.
The study and categorization of these fossils from all over the world allows scientists to determine when these organisms lived relative to each other, creating a fossil record that narrates the story of life's evolution on our planet.
Learn more about Fossil Formation and Discovery here:https://brainly.com/question/32645821
#SPJ2
In the past all living things were classified as
Answer:
Modern scientists base their classifications mainly on molecular similarities. They group together organisms that have similar proteins and DNA. Molecular similarities show that organisms are related. In other words, they are descendants of a common ancestor in the past.
Explanation:
As we move across the periodic table, from potassium, K, to krypton, Kr, we see the following changes. All BUT ONE is
correct
A) Elements change from solids to gases.
B) Elements change from metals to metalloids to nonmetals.
C) Valence electrons increase beginning with one and ending with eight.
D) The charge of ions changes: negative to the left and positive to the right
Answer: D is wrong
Explanation: The charges go from positive in the left to negative to the right.
1. Which of the following particles are free to drift in metals?
O neutrons
O cations
O electrons
O protons
Answer:
electrons
Explanation:
metals do what is called metallic bond
An electron is the particles are free to drift in metals.
What is metals?The elements having tendency to lose electron and having properties like lustrous, malleable, ductile, opaque, denser and good conductor of heat and electricity is called metals
To learn more about drift in metals here.
https://brainly.com/question/1194720
#SPJ3
What happens when an amorphous solid breaks?
O
A. The solid breaks at predictable places.
O
B. The solid breaks at random places.
O
C. The break follows a crystal pattern.
O
D. The solid shears in flakes or planes.
Answer:
IT BREAKS AT RANDOM PLACES!!!!
An amorphous soild breaks at the random places
Which is an amorphous solid?
Amorphous solid, any noncrystalline solid in which the atoms and molecules are not organized in a definite lattice pattern. Such solids include glass, plastic, and gel.
Which of the following is a property of the amorphous solid?These solids are stabilized by the regular pattern of their atoms. Their characteristic properties include distinct melting and boiling points, regular geometric shapes, and flat faces when cleaved or sheared.
Learn more about Amorphous Solid here
https://brainly.com/question/8583409
#SPJ2
SC.7.L.17.2
1. Eagles are predators, meaning they hunt animals for food. Vultures are scavengers, meaning they eat they
remains of animals. Which of the following statements correctly describes how predators and scavengers affect
their environments?
a. Both scavengers and predators remove energy from the environment.
b. Both scavengers and predators transfer energy within the environment. *
C. Scavengers transfer energy, while predators remove energy from the environment.
d. Predators gain energy from their prey, and scavengers lose energy lose energy by feeding on remains.
Answer:
B
Explanation:
Answer:
B
Explanation:
The solubility constant of MnS is 2.3 ×10−13 at 25°C. What is the concentration of sulfide
ions in a saturated solution of MnS at equilibrium?
[A] + [B] ⇌ [C] + [D]
MnS ⇌ Mg + S
Ksp = [C][D]
Ksp = (Mn)(S)
2.3*10^-13 = (x)(x)
2.3*10^-13 = x^2
x = 4.8*10^-7
Concentration of sulfide is x.
Today, my son asked "Can I have a book, Mark?" and I burst into tears. 11 years old and he still doesn't know my name is Brian.
Task Card #1
A science fair volcano bubbles and fizzes.
What is taking place?
À Solid formation
B. Gas formation
C. Color change
Answer:
B. Gas formation
Explanation:
When you combine baking soda and vinegar - which I'm assuming happened to create this reaction - it forms carbon dioxide, a gas.
The bubbling and fizzing in a science fair volcano is a result of gas formation due to the chemical reaction between baking soda and vinegar which produces carbon dioxide gas.
Explanation:When a science fair volcano bubbles and fizzes, a chemical reaction takes place, specifically a gas formation. In a typical science fair volcano, baking soda (a base) and vinegar (an acid) are combined. This results in the formation of carbon dioxide gas which is what causes the 'bubbling' and 'fizzing' effect. It's a common demonstration of how some chemical reactions result in the production of gas. The gas then escapes the liquid in the form of bubbles causing the eruption we see.
Learn more about Gas Formation:https://brainly.com/question/4052989
#SPJ2
Which is a process that causes an organism’s poorly suited characteristics to disappear?
death rate
adaptation
natural selection
A 10 gram sample of water is heated to 105 ℃ and is mixed with a 25 gram sample of water cooled to 25℃ . What is the final temperature of the water mixture?
Answer:
The final temperature of the water mixture is 47.85°C
Explanation :
Given,
For Warm Water
mass = 10grams
Temperature = 105°C
For Cold Water
mass = 25grams
Temperature = 25°C
When a sample of warm water is mixed with a sample of cool water,
The energy amount going out of the warm water is equal to the energy amount going into the cool water. This means:
Qlost = QgainHowever,
Q = (mass) (ΔT) (Cp)
Cp = Specific heat of water = 4.184 J/Kg°C
So,
(mass) (ΔT) (Cp) = (mass) (ΔT) (Cp)
We start by calling the final, ending temperature 'x.' Keep in mind that BOTH water samples will wind up at the temperature we are calling 'x.' Also, make sure you understand that the 'x' we are using is FINAL temperature. This is what we are solving for.
The warmer water goes down from to 105°C to x, so this means its Δt equals 105°C − x. The colder water goes up in temperature, so its Δt equals x − 25℃
Substituting the values,
(10)( 105°C − x)(4.184) = (25)(x − 25℃)(4.184)
Solving for x, we get
x = 47.85°C
Therefore, The final temperature of the water mixture is 47.85°C.
Determine the concentration of a solution that started out as 0.1 L of a 0.1 M solution and ended with a final volume of 0.5 L.
Answer:
C₂ = 0.02 M
Explanation:
Given data:
Initial volume of solution = 0.1 L
Initial molarity = 0.1 M
Final volume = 0.5 L
Final concentration = ?
Solution:
Formula:
C₁V₁ = C₂V₂
C₁ = Initial volume of solution
V₁ = Initial molarity / concentration
C₂ = Final concentration
V₂ = Final volume
Now we will put the values in formula.
C₁V₁ = C₂V₂
0.1 M × 0.1 L = C₂ × 0.5 L
0.01 M.L = C₂ × 0.5 L
C₂ = 0.01 M.L / 0.5 L
C₂ = 0.02 M
Final answer:
Using the dilution formula M1V1 = M2V2, we determined that the final concentration of the solution that was initially 0.1 M and dilutes from 0.1 L to 0.5 L is 0.02 M.
Explanation:
To determine the concentration of a solution that started out as 0.1 L of a 0.1 M solution and ended with a final volume of 0.5 L, we use the concept of dilution, which is expressed with the formula M1V1 = M2V2, where M1 and V1 are the concentration and volume of the initial solution, respectively, and M2 and V2 are the concentration and volume of the final solution, respectively.
In this case, we plug our known values into the formula:
M1 = 0.1 M (initial concentration)
V1 = 0.1 L (initial volume)
V2 = 0.5 L (final volume)
We want to solve for M2, the final concentration.
Substituting in:
0.1 M * 0.1 L = M2 * 0.5 L
We isolate M2 by dividing both sides of the equation by 0.5 L:
M2 = (0.1 M * 0.1 L) / 0.5 L = 0.02 M
Therefore, the final concentration of the solution is 0.02 M.
How do i balance this
Na + Cl² =NaCl
Explanation:
Balancing equation
Explanation:
In the given reaction, sodium is reacting with chlorine to produce sodium chloride
The chemical equation involved is
Na+Cl_2\rightarrow NaClNa+Cl2→NaCl
When the number of atoms for the reactant side is calculated it gives:
Na = 1
Cl = 2
When the number of atoms for the product side is calculated it gives:
Na = 1
Cl = 1
The obtained result indicates that the Chlorine atom is not equal on both sides. Thus the reaction is not balanced.
The balanced reaction has the number of atoms involved in reaction in reactants as well as the product is equal.
To make both side equal some changes must be made as shown in the balanced equation is
2Na+Cl_2\rightarrow 2NaCl2Na+Cl2→2NaCl
For the above equation, the number of atoms in the reactants is:
Na= 2
Cl = 2
The number of atoms in products is:
Na = 2
Cl = 2
As the number of atoms in the reactants side is equal to the number of atoms in the product side, the reaction is balanced.
Classify the following bonds as ionic, polar
covalent, or nonpolar covalent, and explain:
(a) the CaO bond in CaO, (b) the CC bond in C13CCC13,
(c) the CCl bond in C13CCC13,
(d) the SeCl bond
in SeCl2.
Final answer:
The CaO bond in CaO is ionic, the CC bond in C13CCC13 is nonpolar covalent, the CCl bond in C13CCC13 is polar covalent, and the SeCl bond in SeCl2 is polar covalent.
Explanation:
The classification of bonds as ionic, polar covalent, or nonpolar covalent is based on the electronegativity difference between the bonded atoms. The greater the electronegativity difference, the more ionic the bond is.
(a) The CaO bond in CaO is an ionic bond. Calcium (Ca) is a metal and has a low electronegativity, while oxygen (O) is a nonmetal with a high electronegativity. The difference in electronegativity is large, resulting in an ionic bond.
(b) The CC bond in C13CCC13 is a nonpolar covalent bond. Both carbon (C) atoms have the same electronegativity, resulting in a nonpolar bond.
(c) The CCl bond in C13CCC13 is a polar covalent bond. Chlorine (Cl) has a higher electronegativity than carbon (C), resulting in a polar bond.
(d) The SeCl bond in SeCl2 is a polar covalent bond. Selenium (Se) and chlorine (Cl) have different electronegativities, resulting in a polar bond.
How many moles of aluminum hydroxide are needed to react with 25 grams of sulfuric acid?
0.16 moles of Aluminum hydroxide are needed to react with 25 grams of sulfuric acid.
Explanation:
In order to find the number of moles we first need to write down the balanced equation as,
[tex]3 H_{2} S O_{4}+2 A l(O H)_{3} \stackrel{\text { yiek }}{\longrightarrow} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{H}_{2} \mathrm{O}[/tex]
Now as mentioned above,For 3 moles of sulfuric acid , we need 2 moles of Aluminum hydroxide to balance the equation,
Thus we can balance it as,
[tex]\begin{aligned}25 \mathrm{g} \text { of } \mathrm{H}_{2} \mathrm{SO}_{4} & \times \frac{1 \mathrm{mol} \text { of } \mathrm{H}_{2} \mathrm{SO}_{4}}{98.079 \frac{\mathrm{g}}{\mathrm{mol}}} \times \frac{2 \mathrm{mol} \mathrm{Al}(\mathrm{OH})_{3}}{3 \mathrm{mol} \mathrm{H}_{2} \mathrm{SO}_{4}} \\\\&=0.16 \mathrm{mol} \mathrm{Al}(\mathrm{OH})_{3}\end{aligned}[/tex]
Thus it is now clearly known that 0.16 moles of Aluminum hydroxide are needed to react with 25 grams of sulfuric acid.
Many of the stars we see in the night sky are called blue giants. They put out more energy and burn millions of times brighter than the Sun. Why does the Sun appear much larger and brighter from Earth than blue giant stars?
Answer:
Because it is closer to earth than the other blue giant stars.
Explanation:
The sun is closer to earth than any other big star which means we see it bigger.
What is the total number of Joules of heat absorbed by 65.0 grams of water when the temperature of the water is raised from 25°C to 40°C?
To find the total heat absorbed by 65.0 grams of water when its temperature increases from 25°C to 40°C, use the formula: Q = mcΔT.
Explanation:The total number of Joules of heat absorbed by 65.0 grams of water can be calculated using the formula:
Q = mcΔT, where m is the mass of water, c is the specific heat capacity of water, and ΔT is the temperature change.
In this case, you can use the specific heat capacity of water (4.184 J/g°C) to find the heat absorbed.
Define: 1. acids, 2. strong acids, 3. weak acids.
Final answer:
An acid is a compound that releases hydrogen ions in water. Strong acids fully ionize, releasing all their hydrogen ions, whereas weak acids only partially ionize. Examples are hydrochloric acid (strong) and acetic acid (weak).
Explanation:
Definitions of Acids, Strong Acids, and Weak Acids:
Acids can be described as molecular compounds that release hydrogen ions (H+) when dissolved in water, which are responsible for the characteristic properties of acids in aqueous solutions. These properties include the ability of the solution to conduct electricity, due to the presence of ions.
Strong acids are those that completely ionize in solution, releasing all of their hydrogen ions into the water. An example of a strong acid is hydrochloric acid (HCl), which dissociates into hydrogen and chloride ions as follows:
HCl → H+ + Cl¯
On the other hand, weak acids only partially ionize in water, which means not all of their hydrogen ions are released into the solution. Acetic acid, found in vinegar, is a common example of a weak acid. Its ionization is represented by the following chemical equation:
CH3COOH → CH3COO¯ + H+
The strength of an acid can be quantitatively represented by its acid ionization constant (Ka), which is higher for strong acids and lower for weak acids.
Will mark brainliest! Pls help
Answer:
3. I don’t have a chart, but this is the
most salt per volume. It is all I have.
Explanation:
4. The type of society that has the greatest energy needs is the __
A hunting society
B agricultural society
C industrial society
D gathering society