A Carnot engine receives 250 kJ·s−1 of heat from a heat-source reservoir at 525°C and rejects heat to a heat-sink reservoir at 50°C. What are the power developed and the heat rejected?

Answers

Answer 1

a. The quantity of heat rejected by the Carnot engine is equal to -101.2 kJ/s.

b. The power developed by the Carnot engine is equal to 148.8 kJ/s.

Given the following data:

Quantity of heat received = 250 kJ/sTemperature of heat-source = 525°CTemperature of heat rejected = 50°C

Conversion:

Temperature of heat-source = 525°C to Kelvin = 525 + 273 = 798K

Temperature of heat rejected = 50°C to Kelvin = 50 + 273 = 323K

To find the power developed and the heat rejected, we would use Carnot's equation:

[tex]-\frac{Q_R}{T_R} = \frac{Q_S}{T_S}[/tex]

Where:

[tex]Q_R[/tex] is the quantity of heat rejected.[tex]T_R[/tex] is the heat-sink temperature.[tex]T_S[/tex] is the heat-source temperature.[tex]Q_S[/tex] is the quantity of heat received.

Making [tex]Q_R[/tex] the subject of formula, we have:

[tex]Q_R = -( \frac{Q_S}{T_S})T_R[/tex]

Substituting the given parameters into the formula, we have;

[tex]Q_R = -( \frac{250}{798}) \times 323\\\\Q_R = -( \frac{80750}{798})[/tex]

Quantity of heat rejected = -101.2 kJ/s

Now, we can determine the power developed by the Carnot engine:

[tex]P = -Q_S - Q_R\\\\P = -250 - (-101.2)\\\\P = -250 + 101.2[/tex]

Power, P = 148.8 kJ/s.

Read more: https://brainly.com/question/13144439?referrer=searchResults

Answer 2

The power developed by the Carnot engine is approximately 148.8 kilowatts. The heat rejected by the Carnot engine is approximately 101.2 kilowatts.

The Carnot efficiency (η) of a heat engine is given by the formula:

η = 1 - (T₁ ÷ T₂)

Heat received (Q(in)) = 250,000 J/s

Temperature of the heat-source reservoir (T(Hot)) = 798.15 K

Temperature of the heat-sink reservoir (T(Cold) = 323.15 K

The Carnot efficiency:

η = 1 - (T₁ ÷ T₂)

η = 1 - (323.15  ÷ 798.15 )

η = 0.5952

Therefore, The Carnot efficiency is 0.5952, which means the engine converts 59.52% of the heat received into useful work.

Power Developed:

P = η × Q(in)

P = 0.5952 × 250,000

P =  148,800 = 148.8 kW

Therefore, The power developed by the Carnot engine is approximately 148.8 kilowatts.

Heat Rejected:

Q(out) = Q(in) - P

Q(out) = 250,000- 148,800 = 101,200 J/s

Q(out) = 101.2 kW

Therefore, The heat rejected by the Carnot engine is approximately 101.2 kilowatts.

To know more about the Carnot engine:

https://brainly.com/question/21126569

#SPJ3


Related Questions

A supply plane needs to drop a package of food to scientists working on a glacier in Greenland. The plane flies 110 m above the glacier at a speed of 150 m/s . You may want to review (Page) . For help with math skills, you may want to review:

Answers

Answer:

The distance is 709.5 m.

Explanation:

Given that,

Speed = 150 m/s

Distance = 110 m

Suppose, How far short of the target should it drop the package?

We need to calculate the time

Using equation of motion

[tex]s=ut+\dfrac{1}{2}gt^2[/tex]

[tex]t^2=\dfrac{2s}{g}[/tex]

Where, g = acceleration due to gravity

t = time

Put the value into the formula

[tex]t=\sqrt{\dfrac{2\times110}{9.8}}[/tex]

[tex]t=4.73\ sec[/tex]

We need to calculate the distance

Using formula of distance

[tex]d= vt[/tex]

Put the value into the formula

[tex]d=150\times4.73[/tex]

[tex]d=709.5\ m[/tex]

Hence, The distance is 709.5 m.

A straight wire carries a current of 238 mA from right to left. What is the magnetic field at a point 10.0 cm directly below the wire? Give the magnitude here, but make sure you can find the direction too

Answers

Answer:

B = (4.76 × 10⁻⁷) T

Explanation:

From Biot Savart's law, the magnetic field formula is given as

B = (μ₀I)/(2πr)

B = magnetic field = ?

I = current = 238 mA = 0.238 A

μ₀ = magnetic constant = (4π × 10⁻⁷) H/m

r = 10 cm = 0.1 m

B = [4π × 10⁻⁷ × 0.238)/(2π×0.1)]

B = (4.76 × 10⁻⁷) T

The direction of the magnetic field is in the clockwise direction wrapped around the current-carrying wire.

Hope this Helps!!!

The Young’s modulus of nickel is Y = 2 × 1011 N/m2 . Its molar mass is Mmolar = 0.059 kg and its density is rho = 8900 kg/m3 . Given a bar of nickel of length 13 m, what time does it take for sound waves to propagate from one end to the other? Avogadro’s number is NA = 6.02 × 1023 atoms. Answer in units of s.

Answers

Answer:

Atomic Size and Mass:

convert given density to kg/m^3 = 8900kg/m^3 2) convert to moles/m^3 (kg/m^3 * mol/kg) = 150847 mol/m^3 (not rounding in my actual calculations) 3) convert to atoms/m^3 (6.022^23 atoms/mol) = 9.084e28 atoms/m^3 4) take the cube root to get the number of atoms per meter, = 4495309334 atoms/m 5) take the reciprocal to get the diameter of an atom, = 2.2245e-10 m/atom 6) find the mass of one atom (kg/mol * mol/atoms) = 9.7974e-26 kg/atom Young's Modulus: Y=(F/A)/(dL/L) 1) F=mg = (45kg)(9.8N/kg) = 441 N 2) A = (0.0018m)^2 = 3.5344e-6 m^2 3) dL = 0.0016m 4) L = 2.44m 5) Y = 1.834e11 N/m^2 Interatomic Spring Stiffness: Ks,i = dY 1) From above, diameter of one atom = 2.2245e-10 m 2) From above, Y = 1.834e11 N/m^2 3) Ks,i = 40.799 N/m (not rounding in my actual calculations) Speed of Sound: v = ωd 1) ω = √(Ks,i / m,a) 2) From above, Ks,i = 40.799 N/m 3) From above, m,a = 9.7974e-26 kg 4) ω=2.0406e13 N/m*kg 5) From above, d=2.2245e-10 m 6) v=ωd = 4539 m/s (not rounding in actual calculations) Time Elapsed: 1) length sound traveled = L+dL = 2.44166 m 2) From above, speed of sound = 4539 m/s 3) T = (L+dL)/v = 0.000537505 s

The place you get your hair cut has two nearly parallel mirrors 6.50 m apart. As you sit in the chair, your head is 3.00 m from the nearer mirror. Looking toward this mirror, you first see your face and then, farther away, the back of your head. (The mirrors need to be slightly nonparallel for you to be able to see the back of your head, but you can treat them as parallel in this problem.) How far away does the back of your head appear to be?

Answers

Answer:

[tex]k=13\ m[/tex]

Explanation:

Given:

distance between two nearly parallel mirrors, [tex]d=6.5\ m[/tex]distance between the face and the nearer mirror, [tex]x=3\ m[/tex]So, the distance between the back-head and the mirror, [tex]y=6.5-3=3.5\ m[/tex]

From the given information by the laws of reflection we can deduce the distance of the first reflection of the back of the head of person in the rear mirror.

Distance of the first reflection of the back of the head in the rear mirror from the object head:

[tex]y'=2\times y[/tex]

[tex]y'=7\ m[/tex] is the distance of the image from the object back head.

Now the total distance of this image from the front mirror:

[tex]z=y'+x[/tex]

[tex]z=7+3[/tex]

[tex]z=10\ m[/tex]

Now the second reflection of this image will be 10 meters inside in the front mirror.

So, the total distance of the image of the back of the head in the front mirror from the person will be:

[tex]k=x+z[/tex]

[tex]k=3+10[/tex]

[tex]k=13\ m[/tex]

Final answer:

The back of the head appears to be 16.00 meters away due to multiple reflections between two parallel mirrors 6.50 meters apart, when your head is positioned 3.00 meters from the nearer mirror.

Explanation:

The question revolves around a flat mirror problem in physics where multiple reflections between two parallel mirrors are considered. When a person looks into a flat mirror, the image of any object (like the back of the head) appears to be the same distance behind the mirror as the object is in front of it. So if your head is 3.00 meters away from the nearer mirror, the first image of the back of your head will appear 3.00 meters behind that mirror.

However, since there are two mirrors, this first image will then act as an object for the second, farther mirror, creating a new image. The additional distance to this second image will be twice the distance between the two mirrors. So, the total apparent distance will be the distance to the first image plus 6.50 meters times 2, which is 16.00 meters (3.00+6.50+6.50 = 16.00 meters). Therefore, the back of your head appears to be 16.00 meters away.

A solid metal sphere with radius 0.430 m carries a net charge of 0.270 nC . Part A Find the magnitude of the electric field at a point 0.106 m outside the surface of the sphere. Express your answer using three significant figures. E

Answers

Answer:

8.46 N/C

Explanation:

Using Gauss law

[tex]E=\frac {kQ}{r^{2}}[/tex]

Gauss's Law states that the electric flux through a surface is proportional to the net charge in the surface, and that the electric field E of a point charge Q at a distance r from the charge

Here, K is Coulomb's constant whose value is [tex]9\times 10^{9} Nm^{2}/C^{2}[/tex]

r = 0.43 + 0.106 = 0.536 m

[tex]E=\frac {9\times 10^{9}\times 0.270\times 10^{-9}}{0.536^{2}}=8.4581755402094007\approx 8.46 N/C[/tex]

Final answer:

The magnitude of the electric field at a point 0.106 m outside a solid metal sphere with a radius of 0.430 m and a net charge of 0.270 nC is approximately 892 N/C, to three significant figures.

Explanation:

The subject of your question is Physics, specifically focussing on electrostatics and the calculation of the electric field outside a charged sphere. The formula for the electric field (E) due to a point charge is given by Coulomb's Law, which is E = kQ/r^2, where 'Q' is the charge, 'r' is the distance from the charge, and 'k' is Coulomb's constant, approximately 8.99 x 10^9 N.m^2/C^2. Since the electric field due to a uniformly distributed spherical charge behaves as if all the charge is concentrated at the center, you can use this formula for the magnitude of the electric field outside the sphere.

Substituting the provided values (converted to appropriate units), we find E = (8.99 x 10^9 N.m^2/C^2 x 0.270 x 10^-9 C)/(0.536 m)^2, which gives E approximately equal to 892 N/C to three significant figures.

Learn more about Electric Field here:

https://brainly.com/question/33547143

#SPJ3

iron β is a solid phase of iron still unknown to science. The only difference between it and ordinary iron is that Iron β forms a crystal with an fcc unit cell and a lattice constant a=0.352 nm. Calculate the density of Iron β Round your answer to 3 significant digits. cm

Answers

Answer:

8.60 g/cm³

Explanation:

In the lattice structure of iron, there are two atoms per unit cell. So:

[tex]\frac{2}{a^{3} } = \frac{N_{A} }{V_{molar} }[/tex] where [tex]V_{molar} = \frac{A}{\rho }[/tex] an and A is the atomic mass of iron.

Therefore:

[tex]\frac{2}{a^{3} } = \frac{N_{A} * p }{A}[/tex]

This implies that:

[tex]A = (\frac{2A}{N_{A} * p)^{\frac{1}{3} } }[/tex]

  = [tex]\frac{4}{\sqrt{3} }r[/tex]

Assuming that there is no phase change gives:

[tex]\rho = \frac{4A}{N_{A}(2\sqrt{2r})^{3} }[/tex]

  = 8.60 g/m³

. A proton, which moves perpendicular to a magnetic field of 1.2 T in a circular path of radius 0.080 m, has what speed? (qp = 1.6 · 10-19 C and mp = 1.67 · 10-27 kg)

Answers

Answer:

[tex]9.198\times 10^6 m/s[/tex]

Explanation:

We are given that

Magnetic field, B=1.2 T

Radius of circular path, r=0.080 m

[tex]q_p=1.6\times 10^{-19} C[/tex]

[tex]m_p=1.67\times 10^{-27} kg[/tex]

[tex]\theta=90^{\circ}[/tex]

We have to find the speed of proton.

We know that

Magnetic force, F=[tex]qvBsin\theta[/tex]

According to question

Magnetic force=Centripetal force

[tex]q_pvBsin90^{\circ}=\frac{m_pv^2}{r}[/tex]

[tex]1.6\times 10^{-19}\times 1.2=\frac{1.67\times 10^{-27}v}{0.08}[/tex]

[tex]v=\frac{1.6\times 10^{-19}\times 1.2\times 0.08}{1.67\times 10^{-27}}[/tex]

[tex]v=9.198\times 10^6 m/s[/tex]

You have a battery marked " 6.00 V 6.00 V ." When you draw a current of 0.207 A 0.207 A from it, the potential difference between its terminals is 5.03 V 5.03 V . What is the potential difference when you draw 0.523 A 0.523 A ?

Answers

Answer:

V= 3.55 V

Explanation:

As the potential difference between the battery terminals, is less than the rated value of the battery, this means that there is some loss in the internal resistance of the battery. We can calculate this loss, applying Ohm's law to the internal resistance, as follows:

         [tex]V_{rint} = I* r_{int}[/tex]

The value of the potential difference between the terminals of the battery, is just the voltage of the battery, minus the loss in the internal resistance, as follows:

        [tex]V = V_{b} - V_{rint} = 6.00 V - 0.207A* r_{int}[/tex]

We can solve for rint, as follows:

        [tex]r_{int} = \frac{V_{b} - V}{I} = \frac{6.00 V - 5.03V}{0.207A} = 4.7 \Omega[/tex]

When the circuit draws from battery a current I of 0.523A, we can find the potential difference between the terminals of the battery, as follows:

         [tex]V = V_{b} - V_{rint} = 6.00 V - 0.523A* 4.7 \Omega = 3.55 V[/tex]

As the current draw is larger, the loss in the internal resistance will be larger too, so the potential difference between the terminals of the battery will be lower.  

You're driving a vehicle of mass 1350 kg and you need to make a turn on a flat road. The radius of curvature of the turn is 71 m. The maximum horizontal component of the force that the road can exert on the tires is only 0.23 times the vertical component of the force of the road on the tires (in this case the vertical component of the force of the road on the tires is mg, the weight of the car, where as usual g = +9.8 N/kg, the magnitude of the gravitational field near the surface of the Earth). The factor 0.23 is called the "coefficient of friction" (usually written "", Greek "mu") and is large for surfaces with high friction, small for surfaces with low friction.

(a) What is the fastest speed you can drive and still make it around the turn? Invent symbols for the various quantities and solve algebraically before plugging in numbers.
maximum speed =_______________ m/s

Answers

Answer:

[tex]v=12.65\ m.s^{-1}[/tex]

Explanation:

Given:

mass of vehicle, [tex]m=1350\ kg[/tex]radius of curvature, [tex]r=71\ m[/tex]coefficient of friction, [tex]\mu=0.23[/tex]

During the turn to prevent the skidding of the vehicle its centripetal force must be equal to the opposite balancing frictional force:

[tex]m.\frac{v^2}{r} =\mu.N[/tex]

where:

[tex]\mu=[/tex] coefficient of friction

[tex]N=[/tex] normal reaction force due to weight of the car

[tex]v=[/tex] velocity of the car

[tex]1350\times \frac{v^2}{71} =0.23\times (1350\times 9.8)[/tex]

[tex]v=12.65\ m.s^{-1}[/tex] is the maximum velocity at which the vehicle can turn without skidding.

Final answer:

The maximum speed at which a car can safely make a turn on a flat road, given the mass of the car, the turn's radius of curvature, and the coefficient of friction, is approximately 25 m/s. This calculation demonstrates that the car's load does not influence its ability to negotiate the turn safely on a flat surface.

Explanation:

The student is asking how to calculate the maximum speed at which a car can safely make a turn on a flat road, given the car's mass, the turn's radius of curvature, and the coefficient of friction between the tires and the road. First, let's denote the mass of the car as m, gravitational acceleration as g, the radius of curvature as R, and the coefficient of friction as μ. To find the maximum speed v, we use the fact that the centripetal force needed to make the turn must be less than or equal to the maximum static friction force, which is μmg. This gives the condition mv²/R ≤ μmg. Solving for v, we find v = √(μgR).

By plugging in the numbers: m = 1350 kg, R = 71 m, g = 9.8 m/s², and μ = 0.23, we get v = √(0.23 * 9.8 * 71) which calculates to be approximately 25 m/s. Note, because coefficients of friction are approximate, the answer is given to only two digits.

This result is quite significant as it shows that the maximum safe speed is independent of the car's mass due to the proportional relationship between friction and normal force, which in turn is proportional to mass. This implies that how heavily loaded the car is does not affect its ability to negotiate the turn, assuming a flat surface.

You’ve made the finals of the science Olympics. As one of your tasks you’re given 1.0 g of copper and asked to make a cylindrical wire, using all the metal, with a resistance of 1.3 Ω. How long will your wire be? What will be its diameter? The resistivity of copper is 1.7 x 10-8 Ωm. The mass density of copper is 8.96 g/cm3.

Answers

Answer:

Length = 2.92 m

Diameter = 0.11 mm

Explanation:

We have [tex]m = dl D \ \ \& \ \ \ R = \frac{\rho l}{A}[/tex] , where:

[tex]l[/tex] is the length

[tex]m = 1.0 g = 1 \times 10^{-3} \ kg\\R = 1.3 \ \Omega\\\rho = 1.7 \times 10^{-8} \Omega m\\d = 8.96 \ g/cm^3 = 8960 kg/m^3[/tex]

We divide the first equation by the second equation to get:

[tex]\frac{m}{R} = \frac{d A^2}{\rho}[/tex]

[tex]A^2 = \frac{m \rho}{dR} \\\\A^2 = \frac { 1 \times 10^{-3} \times 1.7 \times 10^{-8}}{8960 \times 1.3}\\\\A^2 = 1.5 \times 10^{-15}\\\\ A= 3.8 \times 10^{-8} \ m^2[/tex]

Using this Area, we find the diameter of the wire:

[tex]D = \sqrt{\frac{4A}{\pi}}[/tex]

[tex]D = \sqrt{\frac{4 \times 3.8 \times 10^{-8} }{\pi}}[/tex]

[tex]D = 0.00011 \ m = 1.1 \times 10^ {-4} = 0.11 \ mm[/tex]

To find the length, we multiply the two equations stated initially:

[tex]mR = d\rho l^2\\\\l^2 = \frac{mR}{d\rho} \\\l^2 = \frac {1.0 \times 10^{-3} \times 1.3}{8960 \times 1.7\times 10^{-8}}[/tex]

[tex]l^2 = 8.534\\l = 2.92 \ m[/tex]

Two insulated current-carrying straight wires of equal length are arranged in the lab so that Wire A carries a current northward and Wire B carries a current eastward, the wires crossing at their midpoints separated only by their insulation. Which of the statements below is true?

a. There are no forces in this situation.
b. The net force on Wire B is southward.
c. There are forces, but the net force on each wire is zero.
d. The net force on Wire A is westward.

Answers

Since there is a meeting of the cables at their midpoints, it is therefore understood that the force on them is the same but in the opposite direction, this to maintain the static balance between the two.

This can also be corroborated by applying the right hand rule for the force, at which depends of the magnetic field. The net force is zero because the cable segment to the left of the vertical cable feels an opposite force in the direction of the cable segment to the right.

Then the forces cancel.

Therefore the correct answer is C. Therefore the net force on each wire is zero

While sliding a couch across a floor, Andrea and Jennifer exert forces FA and F on the couch. Andrea's force is due north with a magnitude of 140.0 N and Jennifer's force is 260 east of north with a magnitude of 220.0 N (a) Find the net force (in N) in component form. net : (b) Find the magnitude (in N) and direction (in degrees counterclockwise from the east axis) of the net force magnitude direction X o counterclockwise from the east axis (c) If Andrea and Jennifer's housemates, David and Stephanie, disagree with the move and want to prevent its relocation, with what combined force Fos (in N) should they push so that the couch does not move? (Express your answer in vector form.) Fos

Answers

Answer:

See the answers and the explanation below.

Explanation:

To solve this problem we must make a free body diagram with the forces applied as well as the direction. In the attached images we can see the nomenclature of the direction of the forces and the free body diagram.

a)

Sum of forces in y-axis

Fy = 140 - (220*sin(10))

Fy = 101.8 [N]

Sum of forces in x-axis

Fx = - (220*cos(10))

Fx = - 216.65 [N]

b)

For the above result, for there to be balance we realize that we need one equal to the resulting y-axis but in the opposite direction and another opposite force in direction but equal in magnitude on the x-axis.

Fy = - 101.8 [N]

Fx =   216.65 [N]

c )

Now we need to use the Pythagorean theorem to find the result of these forces.

[tex]F = \sqrt{(101.8)^{2} +(216.65)^{2} } \\F=239.4[N][/tex]

And the direction will be as follows.

α = tan^(-1) (101.8 / 216.65)

α = 25.16° (south to the east)

F = 216.65 i - 101.8 j [N]

A concave mirror with a radius of curvature of 10 cm is used in a flashlight to produce a beam of near-parallel light rays.
The distance between the light bulb and the mirror is most nearly _____.

Answers

Answer: 5cm

Explanation: Since the radius of curvature is 10cm, the focal length of the mirror (f) is

f = r/2

Where r is the radius of curvature.

Since r = 10cm, f = 10/2 = 5cm.

To produce a parallel light rays of a flash light, it means the the image will be at infinity this making the image distance to be infinite.

From the mirror formulae

1/u + 1/v = 1/f

Where u = object distance =?, v = image distance = infinity and f = focal length = 5cm.

Let us substitute the parameters, we have that

1/u + 1/∞ = 1/5

1/∞ = 0

Hence 1/u = 1/5

u = 5cm.

Hence the object needs to be placed nearly 5cm to the mirror

Final answer:

The light bulb should be placed at the focal length of the concave mirror, which is 5 cm, to produce near-parallel light rays in a flashlight.

Explanation:

The distance between the light bulb and a concave mirror to produce a beam of near-parallel light rays in a flashlight is most nearly the focal length of the mirror. Since the mirror's radius of curvature (R) is 10 cm, using the formula R = 2f, we can calculate the focal length (f). Dividing the radius of curvature by 2, we get f = R/2 = 10 cm / 2 = 5 cm. Therefore, the light bulb should be placed approximately 5 cm from the mirror to achieve near-parallel rays.

A horizontal spring with stiffness 0.5 N/m has a relaxed length of 19 cm (0.19 m). A mass of 22 grams (0.022 kg) is attached and you stretch the spring to a total length of 26 cm (0.26 m). The mass is then released from rest. What is the speed of the mass at the moment when the spring returns to its relaxed length of 19 cm (0.19 m)?

Answers

Answer:

 v = 0.0147 m / s

Explanation:

For this exercise let's use energy conservation

Starting point. Fully stretched spring

            Em₀ = Ke = ½ k (x-x₀)²

Final point. Unstretched position

          Emf = K = ½ m v²

          Emo = Emf

         ½ k (x- x₀)² = ½ m v²

           v = √m/k    (x-x₀)

Let's calculate

            v = √(0.022 / 0.5)      (0.26-0.19)

            v = 0.0147 m / s

The speed of the mass at the mean position is 0.333 m/s

Conservation of energy:

The potential energy stored in a fully stretched spring

PE = ½ kx²

where x is the stretch of the spring  = 26 -19 = 7 cm = 0.07 m

At the mean position, where x = 0, the PE stored in sprig is zero,

So according to the law of conservation of energy total energy must remain conserved so all the energy is converted into kinetic energy KE of the mass

KE = ½ mv²

where m is the mass and v is the velocity

½ kx² = ½ mv²

where k is the spring constant = 0.5 N/m

and m is the mass = 0.022 kg

[tex]v=\sqrt{\frac{k}{m} } x[/tex]

[tex]v=\sqrt{\frac{0.5}{0.022} } 0.07[/tex]

v = 0.333 m/s

Learn more about conservation of energy:

https://brainly.com/question/18645704?referrer=searchResults

           

If the electric field has a magnitude of 460 N/C and the magnetic field has a magnitude of 0.16 T, what speed must the particles have to pass through the selector undeflected?

Answers

The speed of the particle to pass through the Selector is 2875 m/s

Explanation:

Given -

Electric field,(We can represent as E) = 460 N/C

Magnetic field, (We can represent as B) = 0.16 T

Speed,(We can represent as  v) = ?

We know that the formula for finding the velocity ,

[tex]v = \frac{E}{B} \\\\v = \frac{460}{0.16} \\\\v = 2875m/s[/tex]

Therefore, speed of the particle to pass through the Selector is 2875 m/s

An electromagnetic wave is propagating towards the west in free space. At a certain moment the direction of the magnetic field vector associated with this wave points vertically upward.
What is the direction of the electric field vector?

A. vertical and pointing down.
B. vertical and pointing up.
C. horizontal and pointing north.
D. horizontal and pointing south.
E. horizontal and pointing east.

Answers

Answer:

The direction of the electric field vector is horizontal and pointing north.

Option (C) is correct option.

Explanation:

Given :

The direction of wave propagation is toward the west.

The direction of magnetic field vector is vertically upward.

According to the theory of electromagnetic wave propagation, the electric field and magnetic field is perpendicular to each other and the direction of propagation is also perpendicular to both electric and magnetic field vector.

⇒   [tex]\vec{E} + \vec{B} = \vec {k}[/tex]

From right hand rule, the fingers goes towards horizontal and pointing north and curl the finger goes towards  vertically upward and thumb will give you the direction of wave propagation toward west.

Hence, the direction of electric field vector is horizontal and pointing north.

Final answer:

The correct direction of the electric field vector in an electromagnetic wave propagating to the west with an upward magnetic field is horizontal and pointing north, following the right-hand rule for perpendicularity and direction of electromagnetic waves.

Explanation:

The subject of this question is the direction of the electric field vector in an electromagnetic wave that is propagating towards the west, with a magnetic field vector that points vertically upward. According to the properties of electromagnetic waves, the electric field (E) and magnetic field (B) are perpendicular to each other and to the direction of wave propagation. Therefore, if the magnetic field is pointing upward and the wave is moving west, the electric field must be pointing horizontally. Since the right-hand rule dictates that E x B gives the direction of wave propagation, and the wave is moving west, the electric field cannot be pointing east or west as it would not satisfy the right-hand rule. Thus, the electric field is either pointing north or south. To determine the correct direction between north and south, we rely on the right-hand rule: the fingers of the right hand point in the direction of E, the curled fingers point towards B, and the thumb points in the direction of the wave propagation (west in this case). If the magnetic field points up, and propagation is to the west, the electric field must be directed to the north. Therefore, the correct answer is C. horizontal and pointing north.

A bumper car with mass m1 = 109 kg is moving to the right with a velocity of v1 = 4.9 m/s. A second bumper car with mass m2-83 kg is moving to the left with a velocity of v2 =-3.6 m/s. The two cars have an elastic collision. Assume the surface is frictionless.

1) What is the velocity of the center of mass of the system?
2) What is the initial velocity of car 1 in the center-of-mass reference frame?
3) What is the final velocity of car 1 in the center-of-mass reference frame?
4) What is the final velocity of car 1 in the ground (original) reference frame? -
5) What is the final velocity of car 2 in the ground (original) reference frame?

Answers

Answer:

(1)

The velocity of the center of mas of the system is= 0.801 m/s

(2)

Initial velocity of car 1 in the center of mass reference frame is =4.099 m/s

(3)

The final velocity of car 1 in the center of mass reference frame is

 - 4.099 m/s

(4)

The final velocity of car 1 in the ground (original ) reference frame is = -3.298 m/s

(5)

The final velocity of car 2 in the ground (original) reference frame is = 7.166  m/s

Explanation:

Given

m₁ = 109 kg

v₁= 4.9 m/s

m₂= 83 kg

v₂= -3.6 m/s

The two cars have an elastic collision.

(1)

The velocity of the center of mas of the system is

[tex]V_{cm}=\frac{m_1v_1+m_2v_2}{m_1+m_2}[/tex]

       [tex]= \frac{109.4.9+83(-3.4)}{109+83}[/tex] m/s

      = 0.801 m/s

(2)

Initial velocity of car 1 in the center of mass reference frame is

[tex]V_{1,i}[/tex] = initial velocity - [tex]V_{cm}[/tex]

    = (4.9 - 0.801) m/s

    =4.099 m/s

(3)

Since the collision is elastic, the car 1 will bounce of opposite direction.

The final velocity of car 1 in the center of mass reference frame is

 [tex]V_{1,f}[/tex] = - 4.099 m/s

(4)

The final velocity of car 1 in the ground (original ) reference frame

[tex]V'_{1,f}[/tex]  =  [tex]V_{cm}+V_{1,f}[/tex]

      =(0.801- 4.099) m/s

      = - 3.298 m/s

(5)

The momentum is conserved,

[tex]m_1v_1+m_2v_2=m_1v'_1+m_2v'_2[/tex]

[tex]\Rightarrow v'_2=\frac{m_1}{m_2}(v_1-v'_1) +v_2[/tex]  

Here [tex]v'_1= V'_{1,f}[/tex] =  - 3.298 m/s

[tex]\Rightarrow v'_2=\frac{109}{83}[4.9-(-3.298)]+(-3.6)[/tex]

      =7.166 m/s

The final velocity of car 2 in the ground (original) reference frame is = 7.166  m/s

Final answer:

The velocity of the center of mass of the bumper car system is 1.225 m/s. Car 1 has an initial velocity of 3.675 m/s in the center-of-mass reference frame. After the elastic collision, car 1's final velocity is -2.45 m/s, and car 2's final velocity is 4.825 m/s in the ground reference frame.

Explanation:

Velocity of the Center of Mass, Velocities in Reference Frames, and Final Velocities After an Elastic Collision

The velocity of the center of mass (V cm) of a system in one dimension is given by the formula:

V cm = (m1 * v1 + m2 * v2) / (m1 + m2)

In this case, we have m1 = 109 kg moving at v1 = 4.9 m/s and m2 = 83 kg moving at v2 = -3.6 m/s. The velocity of the center of mass is therefore:

V cm = (109 kg * 4.9 m/s + 83 kg * (-3.6 m/s)) / (109 kg + 83 kg)

Calculating this we get:

V cm = (534.1 kg*m/s - 298.8 kg*m/s) / 192 kg = 235.3 kg*m/s / 192 kg = 1.225 m/s (rounded to three significant figures)

The initial velocity of car 1 in the center-of-mass reference frame is given by:

u1 = v1 - V cm

Substituting the known values:

u1 = 4.9 m/s - 1.225 m/s = 3.675 m/s

In an elastic collision, velocities in the center-of-mass reference frame are mirrored. Thus, the final velocity of car 1 in the center-of-mass reference frame remains the same but in the opposite direction:

u1' = -u1 = -3.675 m/s

To find the final velocity of car 1 in the ground reference frame, we add the velocity of the center of mass:

v1' = u1' + V cm = -3.675 m/s + 1.225 m/s = -2.45 m/s

For car 2, the same principle applies. The final velocity in the center-of-mass reference frame will be the opposite of the initial, and thus:

v2' = -v2 + V cm = 3.6 m/s + 1.225 m/s = 4.825 m/s

One wire possesses a solid core of copper, with a circular cross-section of radius 3.78 mm. The other wire is composed of 19 strands of thin copper wire bundled together. Each strand has a circular cross-section of radius 0.756 mm. The current density J in each wire is the same, J=2950 A/m².
1. How much current does each wire carry?
2. The resistivity of copper is 1.69 x 10⁻⁸ ohm m. What is the resistance of a 1.00 m length of each wire?

Answers

Answer:

a) Current in wire 1 = 0.132 A

Current in wire 2 = 0.101 A

b) Resistance of wire 1 = R₁ = 0.000376 Ω = (3.76 × 10⁻⁴) Ω = 0.376 mΩ

Resistance of wire 2 = R₂ = 0.000495 Ω = (4.95 × 10⁻⁴) Ω = 0.495 mΩ

Explanation:

Current density, J = (current) × (cross sectional area)

Current density for both wires = J = 2950 A/m²

For wire 1,

Cross sectional Area = πr² = π(0.00378²)

A₁ = 0.00004491 m²

For wire 2,

With the assumption that the strands are well banded together with no spaces in btw.

Cross sectional Area = 19 × πr² = π(0.000756)²

A₂ = 0.00003413 m²

Current in wire 1 = I₁ = J × A₁ = 2950 × 0.00004491 = 0.132 A

Current in wire 2 = I₂ = J × A₂ = 2950 × 0.00003413 = 0.101 A

b) Resistance = ρL/A

ρ = resistivity for both wires = (1.69 x 10⁻⁸) Ω.m

L = length of wire = 1.00 m for each of the two wires

A₁ = 0.00004491 m²

A₂ = 0.00003413 m²

R₁ = ρL/A₁ = (1.69 x 10⁻⁸ × 1)/0.00004491

R₁ = 0.000376 Ω = (3.76 × 10⁻⁴) Ω = 0.376 mΩ

R₂ = ρL/A₂ = (1.69 x 10⁻⁸ × 1)/0.00003413

R₂ = 0.000495 Ω = (4.95 × 10⁻⁴) Ω = 0.495 mΩ

Hope this helps!!

A volley ball is hit directly toward the ceiling in a gymnasium with a ceiling height of L 0 m. If the initial vertical velocity is 13 m/s and the release height is 1.8 m will the ball hit the ceiling?

Answers

Complete Question:

A volley ball is hit directly toward the ceiling in a gymnasium with a ceiling height of 10 m. If the initial vertical velocity is 13 m/s and the release height is 1.8 m will the ball hit the ceiling?

Answer:

The ball will hit the ceiling

Explanation:

Given;

Initial vertical Velocity U = 13 m/s

Height of the ceiling = 10 m

Released height of the volley ball = 1.8 m

Height traveled by the volley ball, is calculated as follows;

[tex]V^2 =U^2 -2gH[/tex]

where;

V is final vertical velocity

[tex]2gH =U^2\\\\H = \frac{U^2}{2g} = \frac{(13)^2}{2(9.8)} = 8.62 m[/tex]

Remember this ball was released from 1.8 m height and it traveled 8.62 m.

Total distance traveled = 1.8 + 8.62 = 10.42 m

Therefore, the ball will hit the ceiling

In some recent studies it has been shown that women are men when competing in similar sports (most notably in soccer and basketball). Select the statement that explains why this disparity might exist. a. The cross-sectional area of the ACL is typically larger in men, and therefore experiences less strain for the sam tensile force and Young's modulus. b. The Young's modulus of women's ACLS is typically smaller than that of men's, resulting in more stress for the same amount of strain. c. The cross-sectional area of the ACL is typically smaller in women, and therefore experiences less stress for the same tensile force. d. The ACL of women is more elastic than the ACL of men.

Answers

Answer: The correct option is B (The Young's modulus of women's ACLS is typically smaller than that of men's, resulting in more stress for the same amount of strain)

Explanation:

Anterior cruciate ligament (ACL) is one of the important ligaments found at the knee joint which helps to stabilise the joint. It connects the femur to the tibia bone at the knee joint.

Anterior cruciate ligament tear is one of the common knee joint injury which is seen in individuals( especially females) involved in sports( example soccer and basketball which involves sudden change in direction causing the knee to rotate inwards)

ACL tear occurs through both contact and non contact mechanisms. The contact mechanism of ACL injury occurs when force is directly applied at the lateral part of the knee while in non contact mechanism,tear occurs when the tibia is externally rotated on the planted foot.

Research has proven that women are prone to have ACL tear than men when competing in similar sports. This disparity exists due to structural differences that pose as risk factors. These includes

- the female ACL size is smaller than the male.

- the ACL of female has a lower modulus if elasticity( that is, less stiff) than in males leading to greater joint mobility than in the male.. therefore the option, (The Young's modulus of women's ACLS is typically smaller than that of men's, resulting in more stress for the same amount of strain) is correct.

Suppose you have a coffee mug with a circular cross section and vertical sides (uniform radius). What is its inside radius if it holds 375 g of coffee when filled to a depth of 7.50 cm

Answers

Answer:

0.0399 m

Explanation:

We are given that

Mass of coffee=375g=[tex]\frac{375}{1000}=0.375 kg[/tex]

1kg=1000g

Depth=h=7.5 cm=[tex]7.5\times 10^{-2} m[/tex]

[tex]1 cm=10^{-2} m[/tex]

Density of coffee=[tex]\rho=1000kg/m^3[/tex]

We have to find the inside radius  of coffee mug.

We know that

[tex]\rho=\frac{m}{V}[/tex]

Substitute the values

[tex]1000=\frac{0.375}{\pi r^2h}[/tex]

[tex]r^2=\frac{0.375}{1000\times 7.5\times 10^{-2}\times 3.14}[/tex]

By using [tex]\pi=3.14[/tex]

[tex]r=\sqrt{\frac{0.375}{1000\times 7.5\times 10^{-2}\times 3.14}}[/tex]

[tex]r=0.0399 m[/tex]

Hence, the inside radius=0.0399 m

According to the Can Manufacturers Institute, the energy used to make an aluminum can from recycled aluminum is 5% of the energy used to make an aluminum can from virgin ore. In a typical year, 1.7 billion pounds of aluminum cans are recycled.

Part A

How much energy is thermally transferred to get this mass of aluminum from 20 ∘C to its melting point, 660 ∘C?

Answers

4.45 * 10¹⁴ J is transferred to get this mass of aluminum from 20°C to its melting point, 660⁰C.

The quantity of heat required to change the temperature of a substance is given by:

Q = mcΔT

Where Q is the heat, m is the mass of the substance, ΔT is the temperature change = final temperature - initial temperature. c is the specific heat capacity

m = 1.7 billion pounds = 77 * 10⁷ kg, ΔT = 660 - 20 = 640°C, c = 903 J/kg•K

Hence:

Q = 77 * 10⁷ kg *  903 J/kg•K * 640°C

Q = 4.45 * 10¹⁴ J

4.45 * 10¹⁴ J is transferred to get this mass of aluminum from 20°C to its melting point, 660⁰C.

Find out more at: https://brainly.com/question/18989562

Final answer:

The energy required to heat 1.7 billion pounds of aluminum from 20 degrees Celsius to 660 degrees Celsius is approximately 4.398 × 10^17 Joules.

Explanation:

The thermal energy transferred, or heat, to raise the temperature of a substance is given by the formula q=mcΔT where 'm' is the mass, 'c' is the specific heat capacity, and 'ΔT' is the change in temperature. For aluminum, the specific heat capacity is 0.897 Joules per gram per degree Celsius (J/g°C).

First, we need to convert 1.7 billion pounds of aluminum into grams since the specific heat value is in grams. There are about 453,592.37 grams in a pound, so this gives us about 7.711 × 10^14 grams of aluminum.

The change in temperature (ΔT) is the final temperature minus the initial temperature, or 660 degrees Celsius - 20 degrees Celsius, which equals 640 degrees Celsius.

So, to find the total energy required, we use the formula and substitute the known values: q=(7.711 × 10^14 g)*(0.897 J/g°C)*(640°C), which equals approximately 4.398 × 10^17 Joules.

Learn more about Thermal Energy Transfer here:

https://brainly.com/question/24200572

#SPJ11

A 100 kg box as showsn above is being pulled along the x axis by a student. the box slides across a rough surface, and its position x varies with time t according to the equation x=.5t^3 +2t where x is in meters and t is in seconds.

(a) Determine the speed of the box at time t=0
(b) determine the following as functions of time t.

Answers

Answer:

a) 2 m/s

b) i) [tex]K.E = 50 (1.5t^2 + 2) ^2\\[/tex]

ii) [tex]F = 3tm[/tex]

Explanation:

The function for distance is [tex]x = 0.5t ^3 + 2t[/tex]

We know that:

Velocity = [tex]v= \frac{d}{dt} x[/tex]

Acceleration = [tex]a= \frac{d}{dt}v[/tex]

To find speed at time t = 0, we derivate the distance function:

[tex]x = 0.5 t^3 + 2t\\v= x' = 1.5t^2 + 2[/tex]

Substitute t = 0 in velocity function:

[tex]v = 1.5t^2 + 2\\v(0) = 1.5 (0) + 2\\v(0) = 2[/tex]

Velocity at t = 0 will be 2 m/s.

To find the function for Kinetic Energy of the box at any time, t.

[tex]Kinetic \ Energy = \frac{1}{2} mv^2\\\\K.E = \frac{1}{2} \times 100 \times (1.5t^2 + 2) ^2\\\\K.E = 50 (1.5t^2 + 2) ^2\\[/tex]

We know that [tex]Force = mass \times acceleration[/tex]

[tex]a = v'(t) = 1.5t^2 + 2\\a = 3t[/tex]

[tex]F = m \times a\\F= m \times 3t\\F = 3tm[/tex]

Final answer:

The speed of the box at time t=0 is 0 m/s. The acceleration, displacement, and velocity functions of the box as a function of time are a(t) = 3t, x(t) = .5t^3 + 2t and v(t) = 1.5t^2 + 2 respectively.

Explanation:

For part (a), the speed of the box at time t=0 can be found by taking the derivative of the position function x(t), which gives us the velocity function v(t). Therefore, v(t) = 1.5t^2 + 2 and v(0) = 0. Thus, the speed of the box at t=0 is 0 m/s.

For part (b), the box's acceleration at any time t can be found by taking the derivative of the velocity function v(t), which gives us the acceleration function a(t). Therefore, a(t) = 3t, the displacement function as a function of time is the original function x(t) = .5t^3 + 2t and the velocity function is as mentioned above, v(t) = 1.5t^2 + 2.

Learn more about Physics of motion here:

https://brainly.com/question/33851452

#SPJ3

Car A is accelerating in the direction of its motion at the rate of 3 ft /sec2. Car B is rounding a curve of 440-ft radius at a constant speed of 30 mi /hr. Determine the velocity and acceleration which car B appears to have to an observer in car A if car A has reached a speed of 45 mi /hr for the positions represented.

Answers

Answer:

Incomplete question

Check attachment for the diagram of the problem.

Explanation:

The acceleration of the car A is given as

a=3ft/s²

Car B is rounding a curve of radius

r=440ft

Car B is moving at constant speed of Vb=30mi/hr.

Car A reach a speed of 45mi/hr

Note, 1 mile = 5280ft

And 1 hour= 3600s

Then

Va=45mi/hr=45×5280/3600

Va=66ft/s

Also,

Vb=30mi/hour=30×5280/3600

Vb=44ft/s

Now,

a. Let write the relative velocity of car B, relative to car A

Vb = Va + Vb/a

Then,

Using triangle rule, because vectors cannot be added automatically

Vb/a²= Vb²+Va²-2Va•VbCosθ

From the given graphical question the angle between Va and Vb is 60°.

Vb/a²=44²+66² - 2•44•66Cos60

Vb/a²=1936+ 4356 - 5808Cos60

Vb/a² = 3388

Vb/a = √3388

Vb/a = 58.21 ft/s

The direction is given as

Using Sine Rule

a/SinA = b/SinB = c/SinC

i.e.

Va/SinA = Vb/SinB = (Vb/a)/SinC

66/SinA = 44/SinB = 58.21/Sin60

Then, to get B

44/SinB = 58.21/Sin60

44Sin60/58.21  = SinB

0.6546 = SinB

B=arcsin(0.6546)

B=40.89°

b. The acceleration of Car B due to Car A.

Let write the relative acceleration  of car B, relative to car A.

Let Aa be acceleration of car A

Ab be the acceleration of car B.

Ab = Aa + Ab/a

Given the acceleration of car A

Aa=3ft/s²

Then to get the acceleration of car B, using the tangential acceleration formular

a = v²/r

Ab = Vb²/r

Ab = 44²/440

Ab = 4.4ft/s²

Using cosine rule again as above

Ab/a²= Aa²+Ab² - 2•Aa•Ab•Cosθ

Ab/a²= 3²+4.4²- 2•3•4.4•Cos30

Ab/a²= 9+19.36 - 22.863

Ab/a² = 5.497

Ab/a = √5.497

Ab/a = 2.34ft/s²

To get the direction using Sine rule again, as done above

Using Sine Rule

a/SinA = b/SinB = c/SinC

i.e.

Aa/SinA = Ab/SinB = (Ab/a)/SinC

3/SinA = 4.4/SinB = 2.34/Sin30

Then, to get B

4.4/SinB = 2.34/Sin30

4.4Sin30/2.34 = SinB

0.9402 = SinB

B=arcsin(0.9402)

B=70.1°

Since B is obtuse, the other solution for Sine is given as

B= nπ - θ.   , when n=1

B=180-70.1

B=109.92°

Final answer:

To determine the velocity and acceleration which car B appears to have to an observer in car A, we need to consider the relative motion between the two cars. The velocity of car B as observed by the observer in car A is approximately 29955/176 ft/sec. The acceleration of car B as observed by the observer in car A is approximately 1/23966164627200 mi^2/s^2.

Explanation:

To determine the velocity and acceleration which car B appears to have to an observer in car A, we need to consider the relative motion between the two cars. Car B is rounding a curve at a constant speed, so its velocity remains constant. However, the observer in car A will perceive car B as having a different velocity and acceleration. The velocity of car B to the observer in car A will depend on the relative motion between the two cars, while the acceleration of car B to the observer in car A will depend on the change in direction of car B's motion.

Let's calculate the velocity and acceleration of car B as observed by an observer in car A:

Velocity: Since car B is rounding a curve with a radius of 440 ft and a constant speed of 30 mi/hr, we can use the formula v = rω to find the angular velocity ω. The angular velocity ω is equal to the speed divided by the radius, so ω = (30 mi/hr) / (440 ft) = (30 mi/hr) / (5280 ft/mi) / (440 ft) = 1/1760 rad/sec. The observer in car A will perceive car B's velocity as the vector sum of its actual velocity in the curve (tangent to the curve) and the observer's velocity in the direction of the curve (opposite to the centripetal force). Since car A has reached a speed of 45 mi/hr, its velocity can be converted to ft/sec as (45 mi/hr) / (5280 ft/mi) = 15/176 ft/sec. Therefore, the velocity of car B as observed by the observer in car A will be (30 mi/hr) + (15/176 ft/sec) = (660/22 ft/sec) + (15/176 ft/sec) = (660/22 + 15/176) ft/sec = (29955/176) ft/sec.

Acceleration: Since car B is rounding a curve at a constant speed, its acceleration is directed towards the center of the curve and has a magnitude of v^2 / r, where v is the velocity and r is the radius. Substituting the values, we get the acceleration as (30 mi/hr)^2 / (440 ft) = ((30 mi/hr)^2) / ((5280 ft/mi) / (440 ft)) = (900 mi^2/hr^2) / (5280 ft/mi) * (440 ft) = (900 mi^2 * ft^2) / (5280 hr^2) * (440) ft = (900 * 5280 * 440) ft^2 / hr^2 = (2119680000/5280) ft^2 / hr^2 = (400800 ft^2/hr^2) = (400800 ft^2/hr^2) * (1/3600 hr^2/s^2) * (1 mi^2 / (5280 ft)^2) = (400800 / 3600) * (1/5280)^2 mi^2/s^2 = (111/9900) * (1/5280)^2 mi^2/s^2 = (11/990) * (1/5280)^2 mi^2/s^2 = (11/990) * (1/5280)^2 mi^2/s^2 = (1/266611200) mi^2/s^2 = (1/266611200) * (5280 ft/mi)^2 = (1/266611200) * 5280^2 ft^2/s^2 = (1/266611200) * 13939200 ft^2/s^2 = (1/266611200) * 13939200 ft^2/s^2 = (1/19) ft^2/s^2 = (1/19) * (1/5280)^2 mi^2/s^2 = (1/19) * (1/13939200) mi^2/s^2 = (1/19) * (1/13939200) mi^2/s^2 = (1/26268580800) mi^2/s^2 = (1/26268580800) * (5280 ft/mi)^2 = (1/26268580800) * 5280^2 ft^2/s^2 = (1/26268580800) * 13939200 ft^2/s^2 = (1/26268580800) * 13939200 ft^2/s^2 = (1/237896) ft^2/s^2 = (1/237896) * (1/5280)^2 mi^2/s^2 = (1/237896) * (1/13939200) mi^2/s^2 = (1/237896) * (1/13939200) mi^2/s^2 = (1/23966164627200) mi^2/s^2.

Learn more about Relative motion here:

https://brainly.com/question/36197552

#SPJ12

A speeder tries to explain to the police that the yellow warning lights she was approaching on the side of the road looked green to her because of the Doppler shift. How fast would she have been traveling if yellow light of wavelength 575.9 nm had been shifted to green with a wavelength of 564.2 nm

Answers

Answer:

The speed of the speeder is [tex]8.348x10^6m/s[/tex].

Explanation:

Spectral lines will be shifted to the blue part of the spectrum if the source of the observed light is moving toward the observer, or to the red part of the spectrum when is moving away from the observer (that is known as the Doppler effect).

That shift can be used to find the velocity of the object (in this case the speeder) by means of the Doppler velocity.

[tex]v = c\frac{\Delta \lambda}{\lambda_{0}}[/tex]   (1)

Where [tex]\Delta \lambda[/tex] is the wavelength shift, [tex]\lambda_{0}[/tex] is the wavelength at rest, v is the velocity of the source and c is the speed of light.

[tex]v = c(\frac{\lambda_{0}-\lambda_{measured}}{\lambda_{0}})[/tex]

For this case [tex]\lambda_{measured}[/tex] is equal to 564.2 nm and [tex]\lambda_{0}[/tex] is equal to 575.9 nm.

[tex]v = (3x10^8m/s)(\frac{575.9 nm - 564.2 nm}{564.2 nm)})[/tex]

   

[tex]v = 8.348x10^6m/s[/tex]

Hence, the speed of the speeder is [tex]8.348x10^6m/s[/tex].

Final answer:

The question involves calculating the speed of a car based on the Doppler shift of light from yellow to green. The formula for Doppler shift of light is utilized to determine the relative velocity, but the practicality of such an effect for a moving car is negligible.

Explanation:

The question relates to the concept of the Doppler Effect for light, where the observed wavelength of light emitted by a source changes due to relative motion between the source and the observer. In this case, to calculate how fast the speeder would have to be traveling for the Doppler shift to change the color of a yellow light (575.9 nm) to green (564.2 nm), we can use the Doppler shift formula for light:

f' = f (c + v) / (c - v), where:

f' is the observed frequency,f is the emitted frequency,c is the speed of light,v is the velocity of the source relative to the observer.

Since frequency is inversely proportional to wavelength (f = c / λ), the formula can be rearranged in terms of wavelength. Solving for v when the source is moving towards the observer gives us the expression:

v = c (λ0 - λ) / λ, where λ0 is the original wavelength and λ is the observed wavelength.

The speed of the car can thus be calculated accordingly. However, the effect of Doppler shift at such speeds is so small that it would not account for the perceptual change from yellow to green in a real-world scenario.

You are given a copper bar of dimensions 3 cm × 5 cm × 8 cm and asked to attach leads to it in order to make a resistor. If you want to achieve the smallest possible resistance, you should attach the leads to the opposite faces that measure.

A) 3 cm × 5 cm.

B) 3 cm × 8 cm.

C) 5 cm × 8 cm.

D) Any pair of faces produces the same resistance.

Answers

Answer:

[tex]c. 5cm \times 8cm[/tex]

Explanation:

The dimensions [tex]5cm\times 8cm[/tex] have the highest cross-sectional area combination of [tex]40cm^2[/tex].

-Resistance reduces with an increase in cross sectional area.

-[tex]Reason-[/tex]Electrons have alarger area to flow through.

Thin Layer Chromatography consists of three parts: The analyte, the stationary phase, and mobile phase. Match each of these terms to what it was in our experiment. Stationary Phase ____ a) The solvent

Mobile Phase ____ b) Silica

Analyte ____ c) One of the analgesiscs

Answers

Answer:

Analyte⇒ one of analgesics

stationery phase⇒ silica

mobile phase⇒ solvent

Explanation:

during the thin layer chromatography non volatile mixtures are separated.The technique is performed on the plastic or aluminum foil that is coated with a thin layer.

3/122 The collar has a mass of 2 kg and is attached to the light spring, which has a stiffness of 30 N/m and an unstretched length of 1.5 m. The collar is released from rest at A and slides up the smooth rod under the action of the constant 50‐N force. Calculate the velocity v of the collar as it passes position B.

Answers

Explanation:

According to the law of conservation of energy, work done by the force is as follows.

        [tex]W_{F} = F Cos (30^{o}) \times 1.5[/tex]

                   = 64.95 J

Now, gain in potential energy is as follows.

                P.E = mgh

                      = [tex]2 \times 9.8 \times 1.5[/tex]

                      = 29.4 J

Gain in potential energy will be as follows.

           = [tex]\frac{1}{2}kx^{2}_{2} - \frac{1}{2}kx^{2}_{1}[/tex]

           = [tex]\frac{1}{2} \times 30 N/m \times [(2.5 - 1.5)^{2} - (2 - 1.5)^{2}][/tex]

           = 11.25

As,

          [tex]W_{f} = u_{1} + u_{2} + \frac{1}{2}mv^{2}[/tex]

          [tex]\frac{1}{2}mv^{2} = W_{f} - u_{1} - u_{2}[/tex]  

                   = 64.95 J - 29.4 - 11.25

                   = 24.3

              [tex]v^{2} = \frac{24.3 \times 2}{2}[/tex]

                  v = 4.92 m/s

Therefore, we can conclude that relative velocity at point B is 4.92 m/s.  

Final answer:

To calculate the velocity of the collar as it passes position B, we need to consider the forces acting on the collar and use Newton's second law of motion. The collar is attached to a light spring, so the force exerted by the spring can be calculated using Hooke's law. The net force acting on the collar is the sum of the force exerted by the spring and the constant 50-N force.

Explanation:

To calculate the velocity of the collar as it passes position B, we need to consider the forces acting on the collar and use Newton's second law of motion. The collar is attached to a light spring, so the force exerted by the spring can be calculated using Hooke's law. The net force acting on the collar is the sum of the force exerted by the spring and the constant 50-N force. We can equate this net force to the mass of the collar times its acceleration. Solving for the acceleration gives us the magnitude of the velocity as it passes position B.

Using Hooke's law, the force exerted by the spring can be calculated as:

F = k * x

where F is the force, k is the stiffness of the spring, and x is the displacement of the collar from its equilibrium position. Since the collar is attached to a light spring, we can assume that the displacement of the spring is negligible. Therefore, the force exerted by the spring is zero.

The net force is then equal to the constant 50-N force:

Net force = 50 N

Applying Newton's second law, we have:

Net force = mass * acceleration

Solving for acceleration gives us:

Acceleration = Net force / mass = 50 N / 2 kg = 25 m/s^2

Since velocity is the derivative of displacement, we can integrate the acceleration with respect to time to find the velocity:

v = a * t

where v is the velocity, a is the acceleration, and t is the time.

Since the collar is released from rest at position A, the time taken to reach position B can be determined using the equation of motion:

s = u*t + (1/2)*a*t^2

where s is the displacement, u is the initial velocity, a is the acceleration, and t is the time.

Since the collar starts from rest, the initial velocity is zero. Solving for t gives us:

t = sqrt((2*s) / a) = sqrt((2*1.5 m) / 25 m/s^2) = 0.7746 s

Finally, substituting the values of acceleration and time into the equation for velocity gives us:

v = a * t = 25 m/s^2 * 0.7746 s = 19.365 m/s

Learn more about Newton's second law of motion here:

https://brainly.com/question/13447525

#SPJ12

What is the speed of a point on the earth's surface located at 3/43/4 of the length of the arc between the equator and the pole, measured from equator

Answers

Answer:

[tex]v=177.95m/s[/tex]

Explanation:

First, determine circle's radius  between Earth's pole and the location. This can be calculated as:

[tex]r=R_e_a_r_t_hCos(90\frac{3}{4})\\R_e_a_r_t_h=6.37\times10^6m\\r=6.37\times10^6\times Cos67.5\textdegree\\r=2,437,693.46m\\[/tex]

The angular speed of earth is constant and is :

[tex]w=\frac{2\pi}{T}=\frac{2\pi}{24\times 3600}\\=7.3\times10^{-5}rad/s[/tex]

Velocity is:

[tex]v=wr\\=7.3\times10^{-5}\times 2,437,693.46\\v=177.95m/s[/tex]

The first dancer in the line is 10 m from the speaker playing the music; the last dancer in the line is 120 m from the speaker. Approximately how much time elapses between when the sound reaches the nearest dancer and when it reaches the farthest dancer

Answers

Answer: 0.321 seconds

Explanation:

Let assume that air has a temperature of 20 °C. Sound speed at given temperature is [tex]343 \frac{m}{s}[/tex]. As sound spreads at constant speed, time can be easily found by using this formula:

[tex]\Delta t = \Delta t_{far} - \Delta t_{near}[/tex]

[tex]\Delta t = \frac{x_{far}-x_{near}}{v_{sound,air}}[/tex]

[tex]\Delta{t} = \frac{120 m - 10 m}{343 \frac{m}{s} }\\\\\Delta {t} = 0.321 sec[/tex]

Other Questions
Suppose the diameter of a circle is \color{green}{6}6start color green, 6, end color green units. What is its circumference? SuperAmazona has ending inventory of $200,000, and cost of goods sold for the year just ended was $1,410,000. On average, how long does a unit of inventory sit on the shelf before it is sold? Portions of an MRNA strand that do not code for proteins areA. exons B. introns C. caps D. tails Revise the sentences by replacing the underlined phrases with those using strong, active verbsI was crossingthe blacktop toward the school as the buses were pulling inand I looked around for somewhere to hide, but there was nowhereI was embarrassedto go "Preston Electronics is an MNE with facilities located in Taiwan, Singapore, and Germany. Preston gives its local operations the authority to adapt value activities to prevailing local economic, political, legal, and cultural conditions. Preston is most likely using a(n) ________ strategy." Julin, Serena y Ronda ____ costarricenses A 0.453 kg pendulum bob passes through the lowest part of its path at a speed of 2.58 m/s. What is the tension in the pendulum cable at this point if the pendulum is 75.1 cm long? Submit Answer Tries 0/12 When the pendulum reaches its highest point, what angle does the cable make with the vertical? Submit Answer Tries 0/12 What is the tension in the pendulum cable when the pendulum reaches its highest point? The risk-free rate of return is 4%, and the market return is 10%. The betas of Stocks A, B, C, D, and E are 0.85, 0.75, 1.20, 1.35, and 0.5 respectively. The expected rates of return for Stocks A, B, C, D, and E are 7%, 9%, 9.5%, 12.1%, and 14% respectively. Which of the above stocks would an investor be indifferent towards buying or selling? How many grams of K2CO3 would you need to put on the spill to neutralize the acid according to the following equation? 2HBr(aq)+K2CO3(aq)2KBr(aq)+CO2(g)+H2O(l) What disaster of worldwide attention prompted the passage of a federal program subtitled the Emergency Planning and Community Right-to-Know Act of 1986 (EPCRA) which was mandated by SARA Title III?A. The burying of toxic materials at "Love Canal."B. The poisoning of drinking water at Woburn, Massachusetts made famous by the book "A Civil Action."C. The December 1984 toxic gas disaster in Bhopal, India.D. The spreading of PCB contaminated oil on the streets of Times Beach, Missoruri.E. None of the above. Everybody loves somebody sometime.One way to rewrite this sentence using passive voice is:A)Sometime somebody loves everybody.EliminateB)Somebody loves everybody at sometime.C)Somebody is loved by everybody sometime.D)Everybody feels love for somebody sometimes. Upgrading a certain software package requires installation of 68 new files. Files are installed consecutively. The installation time is random, but on the average, it takes 15 sec to install one file, with a variance of 11 sec2. (a) What is the probability that the whole package is upgraded in less than 12 minutes? It is China's political model that may be the mostsignificant obstacle to the country's economicmodernization. This would invert the belief that China'sdevelopmental dictatorship has catalyzed [broughtabout] its economic dynamism.What point does the author make in this excerpt fromthe article?China must become a dictatorship.China must modernize its industry.China must improve workers' wages.China must change its political system 1.!(1)!A!hiker!determines!the!length!of!a!lake!by!listening for!the!echo!of!her!shout!reflected!by!a! cliff!at!the!far!end of!the!lake.!She!hears!the!echo!2.0!s!after!shouting.!Estimate the!length!of!the! lake. It is hypothesized that there will be a significant difference in aggression scores after caffeine consumption as compared to before caffeine consumption. This hypothesis best illustrates what type of t test Paul has feminized body contours, small testes, and some verbal deficits. When he goes in for an infertility evaluation, which of the following conditions is he most likely to be diagnosed with?a. Klinefelter syndromeb. Turner syndromec. Triple X syndromed. Congenital Adrenal Hyperplasia A 25-year, $1,000 par value bond has an 8.5% annual payment coupon. The bond currently sells for $925. If the yield to maturity remains at its current rate, what will the price be 5 years from now? $884.19 $906.86 $930.11 $953.36 $977.20 Schrager Company has two production departments: Cutting and Assembly. July 1 inventories are Raw Materials $4,200, Work in ProcessCutting $2,900, Work in ProcessAssembly $10,600, and Finished Goods $31,000. During July, the following transactions occurred.1.Purchased $62,500 of raw materials on account.2.Incurred $60,000 of factory labor. (Credit Factory Wages Payable.)3.Incurred $70,000 of manufacturing overhead; $40,000 was paid and the remainder is unpaid.4.Requisitioned materials for Cutting $15,700 and Assembly $8,900.5.Used factory labor for Cutting $33,000 and Assembly $27,000.6.Applied overhead at the rate of $18 per machine hour. Machine hours were Cutting 1,680 and Assembly 1,720.7.Transferred goods costing $67,600 from the Cutting Department to the Assembly Department.8.Transferred goods costing $134,900 from Assembly to Finished Goods.9.Sold goods costing $150,000 for $200,000 on account.Journalize the transactions. (Credit account titles are automatically indented when amount is entered. Do not indent manually.) Western culture in the period 13001550 more: the Black Deaths emphasis on the afterlife (the hereafter) or the Renaissances emphasis on human achievement (the here and now)? Choose one of these and explain your perspective. Start with a statement identifying your choice; this is your thesis. Then, support your choice with specific examples from at least three of the following categories: significant individuals (e.g., political or religious leaders, innovators, explorers); characteristics of worldview (e.g., philosophy, religion); social institutions (e.g., social mores, practices, hierarchies); patronage (discuss the patrons, their motives, influence, and resulting products or artifacts); the economies (e.g., changes, different economic systems, impact); and politics (e.g., forms of governance, power distributions, contests). Twinte Cars, a California corporation, has internal corporate requirements that stipulate a three-year payroll document retention period. They enter into a contract with an international company that mandates a six-year payroll document retention requirement. How should Twinte Cars balance these requirements? (You may select more than one answer. Single click the box with the question mark to produce a check mark for a correct answer and double click the box with the question mark to empty the box for a wrong answer. Any boxes left with a question mark will be automatically graded as incorrect.)the shorter period is more cost effectivethe period for retention could be up to 8 years depending upon the circumstances.the benefits and records may be called to evidence