A 4.0 cm × 4.2 cm rectangle lies in the xy-plane. You may want to review (Pages 664 - 668) . Part A What is the electric flux through the rectangle if E⃗ =(150ı^−200k^)N/C? Φe = N⋅m2/C Previous AnswersRequest Answer Incorrect; Try Again; 5 attempts remaining Part BPart complete What is the electric flux through the rectangle if E⃗ =(150ı^−200ȷ^)N/C? Φe = 0 N⋅m2/C

Answers

Answer 1

Answer:

Explanation:

Area, A = 4 cm x 4.2 cm = 16.8 cm²

A).

[tex]\overrightarrow{E}=150\widehat{i}-200\widehat{k}[/tex]

Area is in x y plane so

[tex]\overrightarrow{A}=16.8\times 10^{-4}\widehat{k}[/tex]

Electric flux,

[tex]\phi =\overrightarrow{E}.\overrightarrow{A}[/tex]

[tex]\phi =\left ( 150\widehat{i}-200\widehat{k} \right ).\left (16.8\times 10^{-4}\widehat{k} \right )[/tex]

Ф = 0.336 Nm²/C

B).

[tex]\overrightarrow{E}=150\widehat{i}-200\widehat{j}[/tex]

[tex]\phi =\overrightarrow{E}.\overrightarrow{A}[/tex]

[tex]\phi =\left ( 150\widehat{i}-200\widehat{j} \right ).\left (16.8\times 10^{-4}\widehat{k} \right )[/tex]

Ф = 0 Nm²/C


Related Questions

A loop of wire in the shape of a rectangle rotates with a frequency of 284 rotation per minute in an applied magnetic field of magnitude 6 T. Assume the magnetic field is uniform. The area of the loop is A = 4 cm2 and the total resistance in the circuit is 9 Ω.(a) Find the maximum induced emf.(b) Find the maximum current through the bulb.

Answers

Answer:

a) Magnitude of maximum emf induced = 0.0714 V = 71.4 mv

b) Maximum current through the bulb = 0.00793 A = 7.93 mA

Explanation:

a) The induced emf from Faraday's law of electromagnetic induction is related to angular velocity through

E = NABw sin wt

The maximum emf occurs when (sin wt) = 1

Maximum Emf = NABw

N = 1

A = 4 cm² = 0.0004 m²

B = 6 T

w = (284/60) × 2π = 29.75 rad/s

E(max) = 1×0.0004×6×29.75 = 0.0714 V = 71.4 mV

Note that: since we're after only the magnitude of the induced emf, the minus sign that indicates that the induced emf is 8n the direction opposite to the change in magnetic flux, is ignored for this question.

b) Maximum current through the bulb

E(max) = I(max) × R

R = 9 ohms

E(max) = 0.0714 V

I(max) = ?

0.0714 = I(max) × 9

I(max) = (0.0714/9) = 0.00793 A = 7.93 mA

Hope this Helps!!

The height h (in feet) of an object shot into the air from a tall building is given by the function h(t) = 650 + 80t − 16t2, where t is the time elapsed in seconds. (a) Write a formula for the velocity of the object as a function of time t.

Answers

Answer:

80 - 32t

Explanation:

The height, h, in terms of time, t, is given as:

h(t) = 650 + 80t − 16t²

Velocity is the derivative of distance with respect to time:

v(t) = dh(t)/dt = 80 - 32t

Final answer:

The velocity of the object as a function of time is given by the derivative of the height function, which is v(t) = 80 - 32t.

Explanation:

The height h(t) of an object is given by the equation h(t) = 650 + 80t − 16t2. To find the velocity v(t), we need to take the derivative of h(t) with respect to time t. Using the power rule, we get:

v(t) = dh/dt = 0 + 80 - 32t.

So, the velocity of the object as a function of time t is v(t) = 80 - 32t.

Learn more about Velocity Function here:

https://brainly.com/question/33157131

#SPJ11

A satellite is in a circular orbit very close to the surface of a spherical planet. The period of the orbit is 2.17 hours. What is density of the planet

Answers

Explanation:

Lets consider

Circumference of orbit = T

as it is mentioned in the question that a satellite is in orbit that is very close to the surface of planet. so

circumference of orbit = circumference of planet

Time period = T

radius of planet = R

orbital velocity = V

gravitational constant = G

mass of planet = m

Solution:

Time period for a uniform circular motion of orbit is,

T = [tex]\frac{2\pi R}{V}[/tex]

[tex]T = \frac{2\pi R }{\sqrt{\frac{GM}{R} } }[/tex]

[tex]T= 2\pi \sqrt{(\frac{R^3}{GM} )}[/tex]

[tex]M = \frac{4}{3} \pi R^{3}p[/tex]

where p = density

[tex]T = 2\pi \sqrt{\frac{R^{3} }{G\frac{4}{3}\pi R^{3} p } }[/tex]

[tex]T = \sqrt{\frac{3\pi }{Gp} }[/tex]

T = 2.17 hours = 7812 sec

(7812)² = [( 3×3.14)/6.67×[tex]10^{-11}[/tex]×ρ)]

ρ = 6.28/6.67×[tex]10^{-11}[/tex]×6.10×[tex]10^{-7}[/tex]

ρ = 6.28/40.687×[tex]10^{-18}[/tex]

ρ = 0.1543×[tex]10^{18}[/tex]kg/m³

ρ = 15.43×[tex]10^{16}[/tex]kg/m³

Final answer:

Calculating a planet's density based on a satellite's orbital period involves physics concepts like gravitational laws and Kepler's third law, applying them to given data about the satellite's orbit. Direct calculation requires additional information that is not provided in the question.

Explanation:

One can use Kepler's third law in combination with the formula for gravitational force to find the planet's density based on the period of a satellite in a circular orbit close to the planet's surface.

The key relationship to use is T^2 = (4π^2/GM)r^3, where T is the period of the satellite, G is the gravitational constant, M is the mass of the planet, and r is the radius of the orbit, which is approximately the radius of the planet if the satellite is very close to the surface. However, to find the density (ρ) of the planet, we use the formula ρ = M/(4/3πr^3).

Given that we do not have the mass (M) or radius (r) of the planet explicitly, we cannot directly calculate the density without additional information such as the gravitational constant (G) and the exact radius of the planet's orbit.

The solution involves using the period (T) given to manipulate these equations to express mass in terms of the period and then apply it to the density formula. This complex physics problem requires an understanding of orbital mechanics and gravitational laws.

The potential difference between the cloud and ground in a typical lightning discharge may be up to 100 MV (million volts). What is the gain in kinetic energy of an electron accelerated through this potential difference? Give your answer in both electron-volts and joules.

Answers

Answer:

Gain in kinetic energy is [tex]1.6 \times 10^{-11} J[/tex]

or [tex]10^{8} eV[/tex]

Explanation:

The potential difference between the cloud and ground  is 100 MV (million volts)

Charge on the electron q = [tex]1.6 \times 10^{-19} C[/tex]

Kinetic energy of an electron accelerated through this potential difference is the work done to move the electron.

hence kinetic energy gained is

[tex]KE= \Delta V \times q\\KE= 100 \times 10^6 \times 1.6 \times 10^{-19}\\KE=1.6 \times 10^{-11} J[/tex]

In terms of electron volts, the conversion factor is 1 electron volt (eV) =

[tex]1.6 \times 10^{-19} J[/tex]

So,

[tex]\frac{1.6 \times 10^{-11} J}{1.6 \times 10^{-19} J} \\= 10^8 eV[/tex]

Whats the temperature -15°F in degrees Celsius?

Answers

Answer:

-26.1111

Explanation:

Hello!

The formula for converting Fahrenheit to Celsius can be written as follows:

C = [tex]\frac{(F-32)(5)}{9}[/tex]

Now let’s insert the value provided for Fahrenheit:

C = [tex]\frac{((-15)-32)(5)}{9}[/tex]

Now simplify the numerator:

C = [tex]\frac{(-235)}{9}[/tex]

Now divide:

C = -26.111

We have now proven that -15 degrees Fahrenheit is equal to -26.111 degrees Celsius.

I hope this helps!

A circular coil of 185 turns has a radius of 1.60 cm. (a) Calculate the current that results in a magnetic dipole moment of magnitude 1.79 A·m2. (b) Find the maximum magnitude of the torque that the coil, carrying this current, can experience in a uniform 47.7 mT magnetic field.

Answers

Answer:

(a) the current in the coil is 12.03 A

(b) the maximum magnitude of the torque is 0.0854 N.m

Explanation:

Given;

number of turns, N = 185

radius of the coil, r = 1.6 cm = 0.016 m

magnetic dipole moment, μ = 1.79 A·m²

Part (a) current in the coil

μ = NIA

Where;

I is the current in the coil

A is the of the coil = πr² = π(0.016)² = 0.000804 m²

I = μ / (NA)

I = 1.79 / (185 x 0.000804)

I = 1.79 / 0.14874

I = 12.03 A

Part (b) the maximum magnitude of the torque

τ = μB

Where;

τ is the maximum magnitude of the torque

B is the magnetic field strength = 47.7 mT

τ = 1.79 x 0.0477 = 0.0854 N.m

Given Information:

Number of turns = N = 185 turns

Radius of circular coil = r = 1.60 cm = 0.0160 m

Magnetic field = B =  47.7 mT

Magnetic dipole moment = µ =1.79 A.m

Required Information:

(a) Current = I = ?

(b) Maximum Torque = τ = ?

Answer:

(a) Current = 12.03 A

(b) Maximum Torque = 0.0853 N.m

Explanation:

(a) The magnetic dipole moment µ is given by

µ = NIAsin(θ)

I = µ/NAsin(θ)

Where µ is the magnetic dipole moment, N is the number of turns, I is the current flowing through the circular loop, A is the area of circular loop and is given by

A = πr²

A = π(0.0160)²

A = 0.000804 m²

I = 1.79/185*0.000804*sin(90)

I = 12.03 A

(b) The toque τ is given by

τ = NIABsin(θ)

The maximum torque occurs at θ = 90°

τ = 185*12.03*0.00804*0.0477*sin(90°)

τ = 0.0853 N.m

In preparing to shoot an arrow, an archer pulls a bow string back 0.424 m by exerting a force that increases uniformly from 0 to 223 N. What is the equivalent spring constant of the bow?

Answers

Answer:

525.94N/m

Explanation:

According to Hooke's law, the extension or compression of an elastic material is proportional to an applied force provided that the elastic limit of the material is not exceeded.

[tex]F=ke..................(1)[/tex]

where  F is the applied force or load, k is the elastic constant or stiffness of the material and e is the extension.

In this problem, the bow string is assumed to behave like an elastic material that is stretched not beyond the elastic limit.

Given;

F = 223N;

e = 0.424m

k = ?

We make substitutions into equation (1) and then solve for k.

[tex]223=k*0.424\\k=\frac{223N}{0.424m}\\k = 525.94N/m[/tex]

My Notes (a) A 41 Ω resistor is connected in series with a 6 µF capacitor and a battery. What is the maximum charge to which this capacitor can be charged when the battery voltage is 6 V? (When entering units, use micro for the metric system prefix µ.)

Answers

Explanation:

The give data is as follows.

             C = 6 [tex]\mu F[/tex] = [tex]6 \times 10^{-6} F[/tex]

             V = 6 V

Now, we know that the relation between charge, voltage and capacitor for series combination is as follows.

              Q = CV

                  = [tex]6 \times 10^{-6} F \times 6 V[/tex]

                  = [tex]36 \times 10^{-6} C[/tex]

or,               = 36 [tex]\mu C[/tex]

Thus, we can conclude that maximum charge of the given capacitor is 36 [tex]\mu C[/tex].

Answer:

Explanation:

capacitance, C = 6 μF

Voltage, V =  6 V

Let the maximum charge is Q.

Q = C x V

Q = 6 x 6 = 36 μC

You hear 2 beats per second when two sound sources, both at rest, play simultaneously. The beats disappear if source 2 moves toward you while source 1 remains at rest. The frequency of source 1 is 500 Hz. The frequency of source 2 is...


A) 498 Hz.

B) 496 Hz.

C) 502 Hz.

D) 500 Hz.

E) 504 Hz.

Answers

Answer:

Option A

498 Hz

Explanation:

Beat frequency is given by F1-F2 where F is the frequency of source while F2 is frequency that disappear as one moves towards the source. when a source moves towards observer the frequency increases

Substituting 500 for F1 and 2 for F2 then

Beat frequency is 500-2=498 Hz

Option A

The turd is launched at a speed of 72 m/s at an angle of 12 derees above the horizontal. at exactly what time after launch should the ground be covered in a portal to intercept the turd before it hits the ground?

Answers

Final answer:

The time the projectile (or 'turd') takes to hit the ground can be calculated using the formula (T = 2u*sin(θ)/g). This formula uses the initial velocity, the projection angle, and gravitational acceleration.

Explanation:

This question relates to the physics concept of projectile motion. Given the launch speed, in this case, 72 m/s, and the angle of projection, 12 degrees, you can calculate the time of flight, i.e., the time taken by the projectile (in this humorous context, a 'turd') to hit the ground.

The time of flight (T) for a projectile can be calculated using the formula: T = 2u*sin(θ)/g, where u is the initial velocity, θ is the projection angle, and g is the gravitational acceleration (approximately 9.81 m/s² on Earth). Substituting the given values, we get T = 2*72*sin(12)/9.81, which gives the time after which the ground should be covered by a hypothetical 'portal' to intercept the turd just before it hits the ground.

Learn more about Projectile Motion here:

https://brainly.com/question/20627626

#SPJ11

0.3-L glass of water at 20C is to be cooled with ice to 5C. Determine how much ice needs to be added to the water, in grams, if the ice is at (a) 0C and (b) –20C. Also (c) determine how much water would be needed if the cooling is to be done with cold water at 0C. The melting temperature and the heat of fusion of ice at atmospheric pressure are 0C and 333.7 kJ/kg, respectively, and the density of water is 1 kg/L.

Answers

Answer:

[tex]a. m_i_c_e=54.6g\\b. m_i_c_e=48.7g\\m_c_o_l_d_w_a_t_e_r=900g[/tex]

Explanation:

First we need to state our assumptions:

Thermal properties of ice and water are constant, heat transfer to the glass is negligible, Heat of ice [tex]h_i_f=333.7KJkg[/tex]

Mass of water,[tex]m_w=\rho V =1\times0.3=0.3Kg[/tex].

Energy balance for the ice-water system is defined as

[tex]E_i_n-E_o_u_t=\bigtriangleup E_s_y_s\\0=\bigtriangleup U=\bigtriangleup U_i_c_e+\bigtriangleup U_w[/tex]

a.The mass of ice at [tex]0\textdegree C[/tex] is defined as:

[tex][mc(0-T_1)+mh_i_f+mc(T_2-0)]_i_c_e+[mc(T_2-T_1)]_w=0\\\\m_i_c_e[0+333.7+418\times(5-0)]+0.3\times4.18\times(5-20)=0\\m_i_c_e=0.0546Kg=54.6g[/tex]

b.Mass of ice at [tex]20\textdegree C[/tex] is defined as:

[tex][mc(0-T_1)+mh_i_f+mc(T_2-0)]_i_c_e+[mc(T_2-T_1)]_w=0\\\\m_i_c_e[2.11\times(0-(20))+333.7+4.18\times(5-0)]+0.3\times4.18\times(5-20)=0\\\\m_i_c_e=0.0487Kg=48.7g[/tex]

c.Mass of cooled water at [tex]T_c_w=0\textdegree C[/tex]

[tex]\bigtriangleup U_c_w+\bigtriangleup U_w=0[/tex]

[tex][mc(T_2-T_1)]_c_w+[mc(T_2-T_1)]_w=0\\m_c_w\times4.18\times(5-0)+0.3\times4.18\times(5-20)\\m_c_w=0.9kg=900g[/tex]

(a) The mass of ice needed if the ice is at 0°C is [tex]\( 56.4 \, \text{g} \).[/tex]

(b) The mass of ice needed if the ice is at -20°C is [tex]\( 50.1 \, \text{g} \).[/tex]

(c) The mass of cold water needed if the cooling is done with water at 0°C is [tex]\( 900 \, \text{g} \).[/tex]

To determine how much ice needs to be added to the water to cool it from 20°C to 5°C, we need to consider the heat transfer involved. We'll use the principles of heat balance, assuming no heat is lost to the surroundings.

Given Data:

Volume of water: [tex]\( V = 0.3 \, \text{L} \)[/tex]Initial temperature of water: [tex]\( T_i = 20^\circ \text{C} \)[/tex]Final temperature of water: [tex]\( T_f = 5^\circ \text{C} \)[/tex]Specific heat capacity of water: [tex]\( c_w = 4.18 \, \text{kJ/kg}^\circ \text{C} \)[/tex]Density of water: [tex]\( \rho_w = 1 \, \text{kg/L} \)[/tex]Heat of fusion of ice: [tex]\( L_f = 333.7 \, \text{kJ/kg} \)[/tex]Specific heat capacity of ice: [tex]\( c_i = 2.1 \, \text{kJ/kg}^\circ \text{C} \)[/tex]Melting temperature of ice: [tex]\( 0^\circ \text{C} \)[/tex]

Calculations:

(a) Ice at 0°C:

1. Heat required to cool the water from 20°C to 5°C:

[tex]\[ Q_{\text{water}} = m_w \cdot c_w \cdot (T_i - T_f) \][/tex]

  where:

[tex]\( m_w = \rho_w \cdot V \)[/tex][tex]\( \rho_w = 1 \, \text{kg/L} \)[/tex][tex]\( V = 0.3 \, \text{L} \)[/tex]

  So,

[tex]\[ m_w = 1 \, \text{kg/L} \times 0.3 \, \text{L} = 0.3 \, \text{kg} \][/tex]

[tex]\[ Q_{\text{water}} = 0.3 \, \text{kg} \times 4.18 \, \text{kJ/kg}^\circ \text{C} \times (20^\circ \text{C} - 5^\circ \text{C}) \][/tex]

[tex]\[ Q_{\text{water}} = 0.3 \times 4.18 \times 15 \][/tex]

[tex]\[ Q_{\text{ice}} = m_{\text{ice}} \cdot L_f \][/tex]

2. Heat absorbed by ice to melt at 0°C:

[tex]\[ Q_{\text{ice}} = m_{\text{ice}} \cdot L_f \][/tex]

  To find the mass of ice needed:

[tex]\[ m_{\text{ice}} = \frac{Q_{\text{water}}}{L_f} \][/tex]

[tex]\[ m_{\text{ice}} = \frac{18.81 \, \text{kJ}}{333.7 \, \text{kJ/kg}} \][/tex]

[tex]\[ m_{\text{ice}} = 0.0564 \, \text{kg} = 56.4 \, \text{g} \][/tex]

(b) Ice at -20°C:

1. Heat required to cool ice from -20°C to 0°C:

[tex]\[ Q_{\text{cool}} = m_{\text{ice}} \cdot c_i \cdot (0^\circ \text{C} - (-20^\circ \text{C})) \][/tex]

[tex]\[ Q_{\text{cool}} = m_{\text{ice}} \cdot 2.1 \, \text{kJ/kg}^\circ \text{C} \cdot 20 \][/tex]

[tex]\[ Q_{\text{cool}} = m_{\text{ice}} \cdot 42 \, \text{kJ/kg} \][/tex]

2. Heat absorbed by ice to melt at 0°C:

[tex]\[ Q_{\text{melt}} = m_{\text{ice}} \cdot L_f = m_{\text{ice}} \cdot 333.7 \, \text{kJ/kg} \][/tex]

3. Total heat absorbed by the ice:

[tex]\[ Q_{\text{total}} = Q_{\text{cool}} + Q_{\text{melt}} \][/tex]

[tex]\[ Q_{\text{total}} = m_{\text{ice}} \cdot 42 \, \text{kJ/kg} + m_{\text{ice}} \cdot 333.7 \, \text{kJ/kg} \][/tex]

[tex]\[ Q_{\text{total}} = m_{\text{ice}} \cdot (42 + 333.7) \, \text{kJ/kg} \][/tex]

[tex]\[ Q_{\text{total}} = m_{\text{ice}} \cdot 375.7 \, \text{kJ/kg} \][/tex]

Using the heat required to cool the water:

[tex]\[ m_{\text{ice}} = \frac{Q_{\text{water}}}{Q_{\text{total}}} \][/tex]

[tex]\[ m_{\text{ice}} = \frac{18.81 \, \text{kJ}}{375.7 \, \text{kJ/kg}} \][/tex]

[tex]\[ m_{\text{ice}} = 0.0501 \, \text{kg} = 50.1 \, \text{g} \][/tex]

(c) Cooling with Water at 0°C:

1. Heat required to cool the water from 20°C to 5°C:

[tex]\[ Q_{\text{water}} = 18.81 \, \text{kJ} \][/tex]

2. Heat absorbed by the cold water to warm from 0°C to 5°C:

[tex]\[ Q_{\text{cold water}} = m_{\text{cold water}} \cdot c_w \cdot (5^\circ \text{C} - 0^\circ \text{C}) \][/tex]

[tex]\[ 18.81 \, \text{kJ} = m_{\text{cold water}} \cdot 4.18 \, \text{kJ/kg}^\circ \text{C} \cdot 5 \][/tex]

[tex]\[ m_{\text{cold water}} = \frac{18.81 \, \text{kJ}}{4.18 \, \text{kJ/kg}^\circ \text{C} \times 5} \][/tex]

[tex]\[ m_{\text{cold water}} = \frac{18.81}{20.9} \][/tex]

[tex]\[ m_{\text{cold water}} \approx 0.900 \, \text{kg} = 900 \, \text{g} \][/tex]

When a certain ideal gas thermometer is placed in water at the triple point, the mercury level in the right arm is 846 mm above the reference mark. Part A How far is the mercury level above the reference mark when this thermometer is placed in boiling water at a location where the atmospheric pressure is 1.00 atm

Answers

Answer:

P =1156mmHg

Explanation:

Given

Ptriple = 846mmHg

Ttriple = 273.16K

T = temperature of boiling water = 100°C = (273.16 +100)K = 373.16K

P/Ptriple = T/Ttriple

P = T/Ttriple × Ptriple

P = 373.16/×273.6 × 846

P = 1156mmHg.

The temperature used in this solution is the absolute temperature because the gas thermometer use the absolute temperature scale. On this scale (Kelvin temperature scale) the zero point, Absolute zero is 273.16K.

Answer:

The mercury level is [tex]1155.68 mm[/tex] above the reference level

Explanation:

Ideal gas obeys the law , [tex]PV = RT[/tex]

When volume remains constant

[tex]\frac{P2}{P1} = \frac{T2}{T1}[/tex]

Temperature of triple point of water is [tex]T1 = 273.16K[/tex]

Temperature of normal boiling point of water is [tex]T2 = 373.15 K[/tex]

therefore,

[tex]P2 = 846 * \frac{373.15}{273.16}\\\\P2 = 1155.68 mm[/tex]

For more information on this visit

https://brainly.com/question/23379286

A charging bull elephant with a mass of 5240 kg comes directly toward youwith a speed of 4.55 m/s. You toss a 0.150- kg rubber ball at the elephant with a speed of 7.81 m/s. (a)When the ball bounces back toward you, what is its speed? (b) How do you account for the fact that theball’s kinetic energy has increased?

Answers

Answer:

Explanation:

mass of elephant, m1 = 5240 kg

mass of ball, m2 = 0.150 kg

initial velocity of elephant, u1 = - 4.55 m/s

initial velocity of ball, u2 = 7.81 m/s

Let the final velocity of ball is v2.

Use the formula of collision

[tex]v_{2}=\left ( \frac{2m_{1}}{m_{1}+m_{2}} \right )u_{1}+\left ( \frac{m_{2}-m_{1}}{m_{1}+m_{2}} \right )u_{2}[/tex]

[tex]v_{2}=\left ( \frac{2\times 5240}{5240+0.150} \right )(-4.55)+\left ( \frac{0.15-5240}{5240+0.150} \right )(7.81)[/tex]

v2 = - 16.9 m/s

The negative sign shows that the ball bounces back towards you.

(b) It is clear that the velocity of ball increases and hence the kinetic energy of the ball increases. This gain in energy is due to the energy from elephant.

A 1050 kg sports car is moving westbound at 13.0 m/s on a level road when it collides with a 6320 kg truck driving east on the same road at 14.0 m/s . The two vehicles remain locked together after the collision.

a. What is the velocity (magnitude and direction) of the two vehicles just after the collision?
b. At what speed should the truck have been moving so that both it and the car are stopped in the collision?
c. Find the change in kinetic energy of the system of two vehicles for the situations of part (a) and part (b). For which situation is the change in kinetic energy greater in magnitude?

Answers

Answer:

(A) V = 9.89m/s

(B) U = -2.50m/s

(C) ΔK.E = –377047J

(D) ΔK.E = –257750J

Explanation:

The full solution can be found in the attachment below. The east has been chosen as the direction for positivity.

This problem involves the principle of momentum conservation. This principle states that the total momentum before collision is equal to the total momentum after collision. This problem is an inelastic kind of collision for which the momentum is conserved but the kinetic energy is not. The kinetic energy after collision is always lesser than that before collision. The balance is converted into heat by friction, and also sound energy.

See attachment below for full solution.

One ring of radius a is uniformly charged with charge +Q and is placed so its axis is the x-axis. A second ring with charge –Q is placed concentric with the first and in the same plane. The radius of this ring is a/2. If a = 1m and Q = 3µC, what force is exerted on an electron 5m to the right of these along their common axis?

Answers

Answer:

The force exerted on an electron is [tex]7.2\times10^{-18}\ N[/tex]

Explanation:

Given that,

Charge = 3 μC

Radius a=1 m

Distance  = 5 m

We need to calculate the electric field at any point on the axis of a charged ring

Using formula of electric field

[tex]E=\dfrac{kqx}{(a^2+x^2)^{\frac{3}{2}}}\hat{x}[/tex]

[tex]E_{1}=\dfrac{kqx}{(a^2+x^2)^{\frac{3}{2}}}\hat{x}[/tex]

Put the value into the formula

[tex]E_{1}=\dfrac{9\times10^{9}\times3\times10^{-6}\times5}{(1^2+5^2)^{\frac{3}{2}}}[/tex]

[tex]E_{1}=1.0183\times10^{3}\ N/C[/tex]

Using formula of electric field again

[tex]E_{2}=\dfrac{kqx}{(a^2+x^2)^{\frac{3}{2}}}\hat{x}[/tex]

Put the value into the formula

[tex]E_{2}=\dfrac{9\times10^{9}\times(-3\times10^{-6})\times5}{((0.5)^2+5^2)^{\frac{3}{2}}}[/tex]

[tex]E_{2}=-1.064\times10^{3}\ N/C[/tex]

We need to calculate the resultant electric field

Using formula of electric field

[tex]E=E_{1}+E_{2}[/tex]

Put the value into the formula

[tex]E=1.0183\times10^{3}-1.064\times10^{3}[/tex]

[tex]E=-0.045\times10^{3}\ N/C[/tex]

We need to calculate the force exerted on an electron

Using formula of electric field

[tex]E = \dfrac{F}{q}[/tex]

[tex]F=E\times q[/tex]

Put the value into the formula

[tex]F=-0.045\times10^{3}\times(-1.6\times10^{-19})[/tex]

[tex]F=7.2\times10^{-18}\ N[/tex]

Hence, The force exerted on an electron is [tex]7.2\times10^{-18}\ N[/tex]

What must the charge (sign and magnitude) of a particle of mass 1.41 gg be for it to remain stationary when placed in a downward-directed electric field of magnitude 670 N/CN/C ?

Answers

Answer:

[tex]q = 2.067 \times 10^{-5}\ C[/tex]

Explanation:

Given,

mass = 1.41 g = 0.00141 Kg

Electric field,E = 670 N/C.

We know,

Force in charge due to Electric field.

F = E q

And also we know

F = m g

Equating both the equation of motion

m g = E q

[tex]q =\dfrac{mg}{E}[/tex]

[tex]q =\dfrac{0.00141 \times 9.81}{670}[/tex]

[tex]q = 2.067 \times 10^{-5}\ C[/tex]

Charge of the particle is equal to [tex]q = 2.067 \times 10^{-5}\ C[/tex]

P7.36 A ship is 125 m long and has a wetted area of 3500 m2. Its propellers can deliver a maximum power of 1.1 MW to seawater at 20C. If all drag is due to friction, estimate the maximum ship speed, in kn.

Answers

The solution is in the attachment

A wire is stretched just to its breaking point by a force F . A longer wire made of the same material has the same diameter. The force that will stretch the longer wire to its breaking point is much smaller than F?

Answers

Answer: No

Explanation:

The force F required is equal to the Force exerted in stretching the first material since conditions are the same

Answer:

No.

Explanation:

Both wires are made up of the same material which means they will have the same young modulus.

Y = F/A × L/ΔL

From the equation above, the force applied per cross sectional (same diameter) are is the same for both materials and is constant.

So

L1/ΔL1 = L2/ΔL2

Or L2/L1 = ΔL2/ΔL1

So the force needed to bring about a stretching the the breaking point is the same. The only difference is in by how much the longer wire would have to stretch before reaching its breaking point.

Two satellites, one in geosynchronous orbit (T = 24 hrs) and one with a period of 12 hrs, are orbiting Earth. How many times larger than the radius of Earth is the distance between the orbits of the two satellites.

Answers

The distance between the orbits of two satellites is 7.97 m.

Explanation:

Johannes Kepler was the first to propose three laws for the planetary motion. According to him, the orbits in which planets are rotating are elliptical in nature and Sun is at the focus of the ellipse. Also the area of sweeping is same.

So based on these three assumptions, Kepler postulated three laws. One among them is Kepler's third law of planetary motion. According to the third law, the square of the time taken by a planet to cover a specified region is directly proportional to the cube of the major elliptical axis or the radius of the ellipse.

So, [tex]T^{2} = r^{3}[/tex]

Thus, for the geosynchornous satellite, as the time taken is 24 hours, then the radius or the major axis of this satellite is

[tex](24)^{2}= r^{3} \\(2*2*2*3)^{2} = r^{3}\\r = \sqrt[\frac{2}{3} ]{2*2*2*3} =(2)^{2} * (6)^{\frac{2}{3} } =13.21 m[/tex]

Similarly, for the another satellite orbiting in time period of 12 hours, the major axis of this satellite is

[tex](12)^{2}= r^{3} \\(2*2*3)^{2} = r^{3}\\r = \sqrt[\frac{2}{3} ]{12} =5.24 m[/tex]

So, the difference between the two radius will give the distance between the two orbits, 13.21-5.24 = 7.97 m.

So the distance between the orbits of two satellites is 7.97 m.

ou slide a slab of dielectric between the plates of a parallel-plate capacitor. As you do this, the charges on the plates remain constant. What effect does adding the dielectric have on the energy stored in the capacitor?

Answers

Answer:

Explanation:

Energy stored in a capacitor is given by the expression

E = Q² / 2C , where Q is charge on it and C  is its capacitance . As we put dielectric slab between the plates , capacitance increases , Due to it energy decreases as capacitance form the denominator in the formula above and Q is constant .

Hence energy decreases.

The system is in equilibrium and the pulleys are frictionless and massless. 5 kg 8 kg 9 kg T Find the force T. The acceleration of gravity is 9.8 m/s 2 . Answer in units of N.

Answers

Explanation:

It is given that mass at the right side of the pulley weighs 9 kg, mass at the center weighs 8 kg and mass at the left side weighs 5 kg.

Hence, starting from the right side

              [tex]T_{1}[/tex] = 9 kg

Now,  [tex]T_{2} = 2 \times 9 kg[/tex]

                      = 18 g

Hence, the force balance on 8 kg mass is as follows.

            [tex]T_{2} + mg = T_{3}[/tex]

     [tex]T_{3}[/tex] = [tex](18 + 8) \times g[/tex]

                 = 26 g

Now, force balance on 5 kg mass is as follows.

              5 g + T = [tex]2 \times 26 g[/tex]

                 T = 47 g

                   = [tex]47 \times 9.8[/tex]

                   = 460.6 N

Therefore, we can conclude that value of force T is 460.6 N.

The value of force T is 460.6N

Tension

Tension is a force developed by a rope, string, or cable when stretched under an applied force.

Given:

Mass (m₁) = 9 kg, m₂ = 8 kg, m₃ = 5kg, g = acceleration due to gravity = 9.8 m/s².

T₁ = 9 kg * 9.8 m/s² = 88.2N

T₂ = 2 * m₁ * g = 2 * 9 kg * 9.8 = 176.4N

T₂ + m₂g = T₃

176.4 + 8*9.8 = T₃

T₃ = 254.8N

Force balance on 5 kg mass:

T + 5(9.8) = 2 * T₃

T + 5(9.8) = 2 * 254.8

T = 460.6N

The value of force T is 460.6N

Find out more on Tension at: https://brainly.com/question/24994188

(a) All our household circuits are wired in parallel. Below is an example of a simple household circuit with 3 identical bulbs with resistance of 100 Ω each. Assume that this is the standard household 120 V circuit. What is the current running through each bulb? bulb 1 bulb 2 bulb 3

Answers

Explanation:

Below is an attachment containing the solution.

Final answer:

(a) In a parallel circuit, each bulb receives the full voltage of the household circuit. Therefore, the current running through each bulb is 1.2A.

Explanation:

(a) In a parallel circuit, the voltage across each component remains the same. Therefore, each bulb in the circuit will receive the full 120V supplied by the household circuit.

Using Ohm's Law (V = IR), we can calculate the current running through each bulb. The resistance of each bulb is given as 100 Ω. Therefore, the current through each bulb is:

I = V/R = 120V / 100 Ω = 1.2A

Learn more about parallel circuit here:

https://brainly.com/question/32539613

#SPJ3

A generator has a square coil consisting of 269 turns. The coil rotates at 113 rad/s in a 0.222-T magnetic field. The peak output of the generator is 79.2 V. What is the length of one side of the coil?

Answers

Answer:

length of one side of the coil is 0.1083 m

Explanation:

given data

no of turn = 269

coil rotates = 113 rad/s

magnetic field = 0.222-T

peak output = 79.2 V

solution

we will apply here formula for maximum emf induced in a coil that is

εo = N × A × B × ω    ........................1

and here Area A = l²

so

l = [tex]\sqrt{A}[/tex]

put here value of A from equation 1

I = [tex]\sqrt{\frac{\epsilon _o}{N\times B\times \omega} }[/tex]  

put here value and we will get

l =  [tex]\sqrt{\frac{79.2}{269\times 0.222\times 113}}[/tex]

l = 0.1083 m

Answer:

Explanation:

number of turns, n = 269

angular velocity, ω = 113 rad/s

magnetic field, B = 0.222 T

Voltage, V = 79.2 V

Let the area of the coil is A and the side of the square is s.

The maximum emf generated by the coil is

V = n x B x A x ω

79.2 = 269 x 0.222 x A x 113

A = 0.01174 m²

so, s x s = 0.01174

s = 0.108 m

Thus, the side of the square coil is 0.108 m.

A physics professor is pushed up a ramp inclined upward at an angle 33.0° above the horizontal as he sits in his desk chair that slides on frictionless rollers. The combined mass of the professor and chair is 90.0 kg. He is pushed a distance 2.00 m along the incline by a group of students who together exert a constant horizontal force of 600 N. The professor's speed at the bottom of the ramp is 2.30 m/s.
A) Find velocity at the top of the ramp.

Answers

Answer:

2.51 m/s

Explanation:

Parameters given:

Angle, A = 33°

Mass, m = 90kg

Inclined distance, D = 2m

Force, F = 600N

Initial speed, u = 2.3m/s

From the relationship between work and kinetic energy, we know that:

Work done = change in kinetic energy

W = 0.5m(v² - u²)

We also know that work done is tẹ product of force and distance, hence, net work done will be the sum of the total work done by the force from the students and gravity.

Hence,

W = F*D*cosA - w*D*sinA

w = m*9.8 = weight

=> W = 600*2*cos33 - 90*9.8*2*sin33

W = 45.7J

=> 45.7 = 0.5*m*(v² - u²)

45.7 = 0.5*90*(v² - 2.3²)

45.7 = 45(v² - 5.29)

=> v² - 5.29 = 1.016

v² = 6.306

v = 2.51 m/s

The final velocity is 2.51 m/s

Answer: v = 3.26 m/s

Explanation:

Force applied (F) = 900 N,

mass of professor and chair (m) = 90kg,

g = acceleration due to gravity = 9.8 m/s²,

Fr = frictional force = 0 ( since from the question, the rollers the chair and professor are moving is frictionless),

θ = angle of inclination = 33°

a = acceleration of object =?

From newton's second law of motion, we have that

F - (mg sinθ +Fr) = ma

Where mg sinθ is the horizontal component of the weight of the mass of professor and chair due to the inclination of the ramp.

But Fr = 0

Hence, we have that

F - mg sinθ = ma

600 - (90×9.8×sin30) = 90 (a)

600 - 480.371= 90a

119.629 = 90a

a = 119.629/ 90

a = 1.33 m/s².

But the body started the morning (at the bottom of the ramp) with a velocity of 2.30 m/s²

Hence u = initial velocity = 2.30 m/s², a = acceleration = 1.33m/s², v = final velocity =?, s = distance covered = 2m

By using equation of motion for a constant acceleration, we have that

v² = u² + 2as

v ² = (2.3)² +2(1.33)×(2)

v² = 5.29 + 5.32

v² = 10.61

v = √10.61

v = 3.26 m/s

For a particular pipe in a pipe-organ, it has been determined that the frequencies 576 Hz and 648 Hz are two adjacent natural frequencies. Using 343 m/s as the speed of sound in air, determine the following.(a) fundamental frequency for this pipe (b) Is the pipe is open at both ends or closed at one end?(c) length of the pipe

Answers

Answer:

(A) Fo = 72 Hz

(B) The pipe is open at both ends

(C) The length of the pipe is 2.38m

This problem involves the application of the knowledge of standing waves in pipes.

Explanation:

The full solution can be found in the attachment below.

For pipes open at both ends the frequency of the pipe is given by

F = nFo = nv/2L where n = 1, 2, 3, 4.....

For pipes closed at one end the frequency of the pipe is given by

F = nFo = nv/4L where n = 1, 3, 5, 7...

The full solution can be found in the attachment below.

suppose that throughout the united states, 350.0 x 10^6 suck braking processes occur in the course of a given day. calculate the average rate (megawatts) at which energy us being

Answers

Full Question:

Consider an automobile with a mass of 5510 lbm braking to a stop from a speed of 60.0 mph.

How much energy (Btu) is dissipated as heat by the friction of the braking process?

______Entry field with incorrect answer Btu

Suppose that throughout the United States, 350.0 x 10^6 such braking processes occur in the course of a given day.   Calculate the average rate (megawatts) at which energy is being dissipated by the resulting friction.

______Entry field with incorrect answer MW

Answer:

Energy dissipated as heat = 852.10 Btu

Average rate of energy dissipation = 3.64 MW

Explanation:

1 lb = 0.453592 Kg

Mass = 5510 lb = 0.453592 * 5510 Kg = 2499.29 Kg

1 mph = 0.44704 m/s

Velocity = 60 mph = 60 * 0.44704 m/s = 26.82 m/s

Let E be equal to energy acquired

[tex]E = 1/2 MV^{2}[/tex]

[tex]E = 0.5 * 2499.29 * 26.88^{2} \\E = 899.01 * 10^{3} Joules[/tex]

Energy dissipated as heat:

[tex]E= 8.99*10^{3} = 0.0009478 * 8.99*10^{3}\\E = 852.10 tu[/tex]

E = 852.10 Btu

Energy dissipated throughout the United States

[tex]E = 350 * 10^{6} * 899.01 *10^{3} \\E=3.1466 * 10^1^4 Joules\\[/tex]

Average power rate in MW, P

[tex]P = (3.1466*10^{14} )/(24*60*60)\\P=3.64*10^{9} \\P=3.64MW[/tex]

The mass luminosity relation L  M 3.5 describes the mathematical relationship between luminosity and mass for main sequence stars. It describes how a star with a mass of 2 M⊙ would have a luminosity of _____________ L⊙ while a star with luminosity of 3,160 L⊙ would have an approximate mass of ________________ M⊙.

Answers

Answer:

(a) 11.3 L

(b) 10 M

Explanation:

The mass-luminosity relationship states that:

Luminosity ∝ Mass^3.5

Luminosity = (Constant)(Mass)^3.5

So, in order to find the values of luminosity or mass of different stars, we take the luminosity or mass of sun as reference. Therefore, write the equation for a star and Sun, and divide them to get:

Luminosity of a star/L = (Mass of Star/M)^3.5 ______ eqn(1)

where,

L = Luminosity of Sun

M = mass of Sun

(a)

It is given that:

Mass of Star = 2M

Therefore, eqn (1) implies that:

Luminosity of star/L = (2M/M)^3.5

Luminosity of Star = (2)^3.5 L

Luminosity of Star =  11.3 L

(b)

It is given that:

Luminosity of star = 3160 L

Therefore, eqn (1) implies that:

3160L/L = (Mass of Star/M)^3.5

taking ln on both sides:

ln (3160) = 3.5 ln(Mass of Star/M)

8.0583/3.5 = ln(Mass of Star/M)

Mass of Star/M = e^2.302

Mass of Star = 10 M

Answer:

1. 11

2. 10

Explanation:

1. Using the formula L=M^3.5, and the fact that we were given the Mass,

L=2^3.5

L=11.3137085

L=11

Thus, the luminosity of the star would be 11 solar lumen

2. If we invert the formula, M=L^(2/7)

M=3160^(2/7)

M=9.99794159

M=10

Thus, the mass of the starwould be 10 solar masses.

An industrial laser is used to burn a hole through a piece of metal. The average intensity of the light is W/m². What is the rms value of the electric field in the electromagnetic wave emitted by the laser?

Answers

I think your question should be:

An industrial laser is used to burn a hole through a piece of metal. The average intensity of the light is

[tex] S = 1.23*10^9 W/m^2 [/tex]

What is the rms value of (a) the electric field and

(b) the magnetic field in the electromagnetic wave emitted by the laser

Answer:

a) [tex] 6.81*10^5 N/c [/tex]

b) [tex] 2.27*10^3 T [/tex]

Explanation:

To find the RMS value of the electric field, let's use the formula:

[tex] E_r_m_s = sqrt*(S / CE_o)[/tex]

Where

[tex] C = 3.00 * 10^-^8 m/s [/tex];

[tex] E_o = 8.85*10^-^1^2 C^2/N.m^2 [/tex];

[tex] S = 1.23*10^9 W/m^2 [/tex]

Therefore

[tex] E_r_m_s = sqrt*{(1.239*10^9W/m^2) / [(3.00*10^8m/s)*(8.85*10^-^1^2C^2/N.m^2)]} [/tex]

[tex] E_r_m_s= 6.81 *10^5N/c [/tex]

b) to find the magnetic field in the electromagnetic wave emitted by the laser we use:

[tex] B_r_m_s = E_r_m_s / C [/tex];

[tex] = 6.81*10^5 N/c / 3*10^8m/s [/tex];

[tex] B_r_m_s = 2.27*10^3 T [/tex]

Complete Question:

An industrial laser is used to burn a hole through a piece of metal. The average intensity of the light is 1.38 * 10⁹ W/m². What is the rms value of the electric field in the electromagnetic wave emitted by the laser?

Answer:

E = 7.21 * 10⁶ N/C

Explanation:

S = 1.38 * 10⁹ W/m²..............(1)

The formula for the average intensity of light can be given by:

S = c∈₀E²

The speed of light, c = 3 * 10⁸ m/s²

Permittivity of air, ∈₀ = 8.85 * 10⁻¹²m-3 kg⁻¹s⁴ A²

Substituting these parameters into equation (1)

1.38 * 10⁹ = 3 * 10⁸ * 8.85 * 10⁻¹² * E²

E² = (1.38 * 10⁹)/(3 * 10⁸ * 8.85 * 10⁻¹²)

E² = 0.052 * 10¹⁷

E = 7.21 * 10⁶ N/C

Electroplating uses electrolysis to coat one metal with another. In a copper-plating bath, copper ions with a charge of 2ee move through the electrolyte from the copper anode to the cathode; the metal object to be plated.
If the current through the system is 1.2 A, how many copper ions reach the cathode each second?

Answers

Answer:

1.2 A of current will send (3.744 × 10¹⁸) ions to the cathode per second.

Explanation:

According to Faraday's second law of electrolysis, the amount of ions/mass of substance deposited at an electrode depends on its equivalent weight.

For a divalent ion, it will require 2F of electricity per mole.

1 F = 96500 C

Amount of electricity that passes through the electrolyte per second = (magnitude of current) × (time) = It = (1.2 × 1) = 1.2 C

2F (2×96500C) of electricity will deposit 1 mole of Copper ions

That is,

193000 C of electricity will deposit 1 mole of Copper.

1.2 C will deposit (1.2×1/193000); 0.0000062176 mole of Copper.

1 mole of Copper contains (6.022 × 10²³) ions according to the Avogadro's constant.

0.0000062176 mole of Copper will contain (0.0000062176 × 6.022 × 10²³) ions = (3.744 × 10¹⁸) ions.

Therefore, 1.2 A of current will send (3.744 × 10¹⁸) ions to the cathode per second.

Hope this Helps!!!

A circular coil 17.0 cm in diameter and containing nine loops lies flat on the ground. The Earth's magnetic field at this location has magnitude 5.50×10−5T and points into the Earth at an angle of 56.0∘ below a line pointing due north. A 7.80-A clockwise current passes through the coil.

Determine the torque on the coil.

Answers

Answer:

The torque in the coil is  4.9 × 10⁻⁵ N.m  

Explanation:

T = NIABsinθ

Where;

T is the  torque on the coil

N is the number of loops = 9

I is the current = 7.8 A

A is the area of the circular coil = ?

B is the Earth's magnetic field = 5.5 × 10⁻⁵ T

θ is the angle of inclination = 90 - 56 = 34°

Area of the circular coil is calculated as follows;

[tex]A = \frac{\pi d^2}{4} \\\\A = \frac{\pi 0.17^2}{4} =0.0227 m^2[/tex]

T = 9 × 7.8 × 0.0227 × 5.5×10⁻⁵ × sin34°

T = 4.9 × 10⁻⁵ N.m

Therefore, the torque in the coil is  4.9 × 10⁻⁵ N.m

Other Questions
At December 31, John Photography Supplies estimated that approximately 5 % of merchandise sold will be returned. Sales Revenue for the year was $ 90 comma 000 with a cost of $ 58 comma 000 . Journalize the adjusting entries needed to account for the estimated returns. what is the expansion of (3+x)^4 A wire is first bent into the shape of a square. Each side of the square is 6cm long. Then the wire is unbent and reshaped into a rectangle. If the length of the rectangle is 9cm, what is its width? Inputs and outputs of the light reactions From the following choices, identify those that are the inputs and outputs of the light reactions. (Recall that inputs to chemical reactions are modified over the course of the reaction as they are converted into products. In other words, if something is required for a reaction to occur, and it does not remain in its original form when the reaction is complete, it is an input.) Drag each item to the appropriate bin. If the item is not an input to or an output from the light reactions, drag it to the "not input or output" bin. Input: NADP+, ADP, water, light Output: ATP, NADPH, O2 Not input or output: CO2, G3P, glucose What is the product of (-a+3)(a+4) A 1 kg rock is suspended by a massless string from one end of a meter stick at the 0 cm mark. What is the mass m suspended from the meter stick at the 75 cm mark if the system is balanced? How did Southern Conservatives view Reconstruction?*20 points* What evidence did Darwin use to support his theory of evolution? Check all that apply. Write simplified expressions for the area and perimeter of the rectangle. Area: 8 8 x+ x+ Perimeter: 2 2 x+ x+ On February 1, 2021, Arrow Construction Company entered into a three-year construction contract to build a bridge for a price of $8,510,000. During 2021, costs of $2,170,000 were incurred with estimated costs of $4,170,000 yet to be incurred. Billings of $2,670,000 were sent, and cash collected was $2,420,000.In 2022, costs incurred were $2,670,000 with remaining costs estimated to be $3,855,000. 2022 billings were $2,920,000 and $2,645,000 cash was collected. The project was completed in 2023 after additional costs of $3,970,000 were incurred. The companys fiscal year-end is December 31. Arrow recognizes revenue over time according to the percentage of completion.Required:1. Compute the amount of revenue and gross profit or loss to be recognized in 2021, 2022, and 2023 using the percentage of completion method.2a. Prepare journal entries for 2021 to record the transactions described (credit "various accounts" for construction costs incurred).2b. Prepare journal entries for 2022 to record the transactions described (credit "various accounts" for construction costs incurred).3a. Prepare a partial balance sheet to show the presentation of the project as of December 31, 2021.3b. Prepare a partial balance sheet to show the presentation of the project as of December 31, 2022. 1) Calculate the torque required to accelerate the Earth in 5 days from rest to its present angular speed about its axis. 2) Calculate the energy required. 3) Calculate the average power required. Is there any questions about the human or animal behavior that you would really like to answer? Generate a hypothesis and briefly describe how you would conduct an experiment to answer your question. Some people in the art field distinguish between assembling, which brings sculpture parts on or near each other, and____________ , which joins the pieces through a process such as welding or nailing. The line L is a tangent to the circle x^2 + y^2 = 50 at point A. A is the point (1,7)The line crosses the X-axis at point PWork out the are of triangle OAP The epigastric region of the abdominopelvic cavity: a. is medial to the umbilical region b. is lateral to the umbilical region c. is inferior to the umbilical region d. none of the above Does 2.1,7.2,7.5 make a right triangle 90 degrees clockwise about the origin Find the volume of a rectangular prism with a length of 13.2 in, a width of 13.8 in anda height of 15.9 in, to the nearest tenth of a cubic inch. Jake feel's a hunger growing in his stomach. The more he feels the hunger, the more he wishes lunchtime would hurry and arrive. He is already planning what he will eat and how good it will taste. Which of the following processes MOST ACCURATELY what Jake is feeling?1. Need Activation2. Tension3. Drive4. Goal Attained All of thes are found in a commond economy except