In a crystal, the particles are arranged in an orderly, repeating, three-dimensional pattern.
Option C
Explanation:
Solid crystal particles can be ions, molecules or atoms, based on the material kind. The three-dimensional solid crystal system is called the crystal lattice. The crystals are divided into general categories according to their shape.
The crystal is characterized by faces that intersect at specific angles characteristic of this material. Crystal is a material in which particles get arranged in an ordered, repeatable, three-dimensional way. Means, a solid contains an atomic patterns that is uniformly repeated in three dimensions.
what is a solution
A. Two liquids that do not mix with each other
B.The substance that is dissolved in another substance
C.The mixture of one substance dissolved in another
D. the substance that dissolves another substance
What are five main characteristics of a mineral
Explanation:
Minerals are naturalMinerals should be found in nature. Elements made laboratories are not actual minerals like masquerading as rubies or sapphires. All naturally available crystals are not minerals like opal and amber.
Minerals are inorganicMinerals are not under any class of organic compounds. Almost all known minerals come from inorganic processes. Some minerals originate from organic processes like pearls.
Minerals are solidsMinerals exist only as solids. Solids have a defined volume and shape, and they cannot be compressed any further. Minerals are rigid.
Definite chemical compositionEach mineral has a unique combination of atoms that cannot be found in other minerals. The strength of mineral can be defined by the type of bond a mineral has. Some minerals, like gold and diamond, have only one element in it.
Crystalline structureMinerals form crystals that have repeated arrangements of ions. Minerals have different shapes depending on the size of the ion. Crystals usually take six types of shapes.
2) C_H,(g) + 30,(g) → 2 CO2(g) + 2 H2O(g)
a) 2.7 mol of C,H, is reacted with 6.3 mol of 0,, how many moles of water will be
made?
b) What is the limiting reactant?
c) What is the excess reactant?
Answer:
a. 2.7 mol of water
b CH2.
c. O2
Explanation:
The complete equation of the reaction should be:
2CH2(g) + 3O2(g) → 2 CO2(g) + 2 H2O(g)
a) how many moles of water will be made?
To make 2 molecules of water (H2O) we need 2 molecules of CH and 3 molecules of O2.
We have 2.7 mol of CH2, the possible yield of water produced if it all used up will be:
2.7 mol * 2/2= 2.7 mol
We have 6.3 mol of O2, the possible yield of water produced if it all used up will be:
6.3 mol * 2/3 = 4.2 mol
Since the maximum yield of CH2 lower, we can have 2.7 mol of water and have some excess oxygen at the end of the reaction.
b) What is the limiting reactant?
A limiting reactant is a reactant that will be used up in the reaction. This reactant has the lowest stoichiometric ratio compared to other reactants, which make them the one depleted out first. Since they depleted, the reaction will stop. Thus they limit the number of reactions and called limiting reactants. If you add the limiting reactant, the reaction will continue.
The limiting reactant in this reaction is the CH2. When producing water molecules, all 2.7 mol of CH2 will be used while we still have O2 left.
c) What is the excess reactant?
The excess reactant will have some remains after the reaction stop. That is because the excess reactant has more mass than needed for the reaction that will use all limiting reactants. Since we still have remains, adding excess reactant won't continue the reaction.
The excess reactant in this question is O2 since it still has remained after we make 2.7 mol of water. The O2 remaining, in this case, will be:
6.3 mol - 2.7mol * 3/2= 2.25 moles
Chocolate Chip Cookie Recipe: 1 cup of flour 100 chocolate chips 1 cup sugar 1/2 cup milk Yields 10 cookies You and your sister want to bake chocolate chip cookies. You go to the store and buy 5 cups of flour, three bags of chips, each containing 100 chocolate chips, 6 cups of sugar, and a half gallon of milk. You want to make as many cookies as possible. What is your limiting reactant, the ingredient that would run out first?
The first ingredient to run out would be the chocolate chips.
Limiting ReactantsA limiting reactant is a reactant that determines the amount of product that would be formed in a reaction.
In this scenario, the ratio of flower to chocolate chips to sugar to milk for a 100 cookies is 1:100:1:0.5.
The ratio of the same ingredients bought in the store is 5:300:6:16
Note: 16 cups = a gallon
To the lowest ratio: 5:300:6:16 = 1:60:1.2:3.02
Since the ratio of flour to chocolate chips is 1:100, it means that the chocolate chips would be the first to run out first and thus, the limiting reactant.
More on limiting reactants can be found here: https://brainly.com/question/14225536?referrer=searchResults
What is the best way to describe how mutations relate to the concept of survival of the fittest? Choose the best answer from the choices below.
A. Only those mutations that are helpful will be passed-on.
B. A mutation that allows organisms to survive is more likely to be passed on.
C. Only those mutations that are harmful will be passed-on.
D. Mutations do not relate to survival of the fittest.
Answer:
B
Explanation:
Mutations that increase an organism's ability to survive and reproduce in its environment are more likely to be passed on to future generations. This core principle is known as survival of the fittest.
Explanation:The concept of survival of the fittest is closely related to the idea of mutations. Mutations are changes in an organism's DNA that can lead to new traits. The best way to describe how mutations relate to survival of the fittest is to say that a mutation that allows an organism to survive and reproduce more successfully in its environment is more likely to be passed on to future generations.
Thus, option B is the correct answer: 'A mutation that allows organisms to survive is more likely to be passed on'. Not all mutations are beneficial, some can be harmful or neutral, but only those mutations that increase an organism's fitness — its ability to survive and reproduce — are likely to be passed on.
Learn more about Survival of the Fittest and Mutations here:https://brainly.com/question/11577490
#SPJ2
solar panels use which of the following energy sources to generate electricity?
Sunlight/light from the sun
3. Potassium chlorate, KC103, decomposes when heated to produce potassium
chloride and oxygen gas.
If 6.50 grams of KClO3 were heated in a test tube, how many grams of oxygen
gas should be given off?
Answer: oxygen=2.547g
Explanation:
Based on the question,it was observed that the reaction is reversible
2 moles of KClO3 gives 2 moles of KCl and three moles of O2
Molar mass for KClO3 is 245 g/mol
Molar mass for O2 is 96 g/mol
We are to find the mass of O2 and we Are given the mass KCLO3 is 6.50g
245g of KClO3 gives 96g of O2
6.50g of KClO3 gives xg of O2
Cross multiply
245x=624
X=624/245
X=2.547g
Therefore the gram of oxygen is 2.547g
When 6.50 grams of potassium chlorate (KClO3) are heated, approximately 2.54 grams of oxygen gas should be given off.
Explanation:When potassium chlorate (KClO3) is heated, it decomposes to produce potassium chloride (KCl) and oxygen gas (O2). The balanced chemical equation for this reaction is:
2KClO3(s) → 2KCl(s) + 3O2(g)
In order to determine the amount of oxygen gas produced, we need to calculate the theoretical yield of oxygen gas. This can be done using stoichiometry and the molar mass of KClO3.
First, calculate the molar mass of KClO3:
39.10 g/mol (K) + 35.45 g/mol (Cl) + 3(16.00 g/mol) (O) = 122.55 g/mol
Next, use the molar mass of KClO3 to convert grams of KClO3 to moles:
6.50 g KClO3 * (1 mol KClO3 / 122.55 g KClO3) = 0.053 mol KClO3
According to the balanced chemical equation, 2 moles of KClO3 produce 3 moles of O2. Therefore, the number of moles of O2 produced can be calculated as:
0.053 mol KClO3 * (3 mol O2 / 2 mol KClO3) = 0.0795 mol O2
Finally, convert moles of O2 to grams:
0.0795 mol O2 * (32.00 g/mol O2) = 2.54 g O2
Therefore, when 6.50 grams of KClO3 are heated, approximately 2.54 grams of oxygen gas should be given off.
Changes in the environment that cause an organism to respond are called?
Answer:
Anything in the environment that causes a change is called a stimulus.
Explanation:
Answer:
Anything in the environment that causes a change is called a stimulus.
Explanation:
Organisms react to many stimuli, including light, temperature, odor, sound, gravity, heat, water, and pressure. The ability of living things to react to stimuli is known as irritability.
Charge of an electron
Answer: The charge on one electron is –1.6 x 10–19 coulomb.
Hope this helps!
An electron has a negative charge.
10. Blood which is flung off of swinging objects creates which type of spatter?
A. Arterial spray
B. Expirated
C. Cast-off
D. Void
Answer:
I'm pretty sure it's B
Explanation:
Blood flung off swinging objects creates a type of spatter known as cast-off, different from arterial spray, expirated blood patterns, or void patterns. Option C is correct.
Blood that is flung off of swinging objects creates a type of spatter known as cast-off. This typically occurs when blood on an object, such as a weapon, is flung into the surrounding area when the object is quickly swung or moved.
It can be distinguished from other types of spatter, such as arterial spray, which is characterized by the pulsating pattern of blood that spurts out with each heartbeat, or expirated blood patterns, which are caused by blood that is expelled from the mouth or nose from an internal injury. Void patterns occur when an object blocks the deposition of blood spatter onto a surface or object, creating a blank space within the bloodstained area.
Hence, C. is the correct option.
On sunny day the barometer reading was 765 mm Hg What is this measurement in atmospheres
Answer:
1.01atm
Explanation:
760mmHg = 1atm
765mm Hg = 765/760 = 1.01atm
Therefore, the barometer reading in atmosphere is 1.01atm
1 Mr. Chavez paid $14.32 total for 8 protein bars.
If each protein bar cost the same amount, how
much did one protein bar cost?
A $1.69 C $1.79
B $1.82 D $1.59
Answer:
Option C. $1.79
Explanation:
From the question, were told that the total cost of 8 protein bar is $14.32.
Therefore, the cost of 1 protein bar will be = $14.32/8 = $1.79
Why are strong acids also strong electrolytes? Also, is every strong electrolyte a strong acid?
Answer:
Explanation:
An acid is a substance that interacts with water to produce excess hydroxonium ions in an aqueous solution.
An electrolyte is a compound which breaks up into ions when dissolved in water or when in molten form.
A strong acid is one that ionizes almost completely ion aqueous solution.
To make a strong electrolyte, there must be presence of ions from compounds that ionizes completely in aqueous solution or in molten form to give free mobile ions. This is why strong acids are very strong electrolytes too.
2. Other examples of strong electrolytes are mineral acids, caustic alkalis and salts because they also ionize completely in aqueous solutions. Any compoud that ionizes completely in aqueous solution will produce a strong electrolyte.
Strong acids are considered strong electrolytes because they completely ionize in solution, producing a high concentration of ions which makes them good conductors of electricity. However, not all strong electrolytes are strong acids; other substances like strong bases and salts can also be strong electrolytes.
Explanation:Strong acids, such as hydrochloric acid (HCl), are also strong electrolytes because they ionize completely in aqueous solution, meaning they release all their hydrogen ions (H*). This leads to a high concentration of ions, making them excellent conductors of electricity, which is the characteristic of a strong electrolyte. These acids are more likely to donate H* and react with other substances in solution.
However, not every strong electrolyte is a strong acid. A strong electrolyte only indicates that a substance can fully dissociate into ions in solution, enhancing its ability to conduct electricity. Other substances, like strong bases and salts, can also be strong electrolytes. For example, sodium hydroxide (NaOH) is a strong base and a strong electrolyte because it readily dissociates into Na+ and OH- ions in solution.
Learn more about Strong Acids and Electrolytes here:https://brainly.com/question/15196551
#SPJ6
When is the color emitted from an atom
Answer:
Color is emitted from an atom when an electron jumps from a higher energy level to a lower energy level
Explanation:
According to Bohr's model of the atom, electrons are arranged into circular orbits, each orbit corresponding to a precise energy level.
In this model of the atom, electrons cannot be between two orbits: this means that the energy level of the atom are discrete, so they can only assume certain values.
As a result, when an electron jumps between two energy levels, it emits/absorbs a photon whose energy is equal to the difference in energy between the two levels.
In particular:
- If an electron jumps from a lower energy level to a higher energy level, it absorbs a photon
- If an electron jumps from a higher energy level to a lower energy level, it emits a photon
The energy of the emitted photon is equal to the difference in energy between the two levels, and it is related to the wavelength [tex]\lambda[/tex] of the photon by
[tex]E=\frac{hc}{\lambda}[/tex]
where h is the Planck's constant and c the speed of light.
For usual gases, the value of the energy E is such that the value of the wavelength [tex]\lambda[/tex] falls within the visible light range of the electronmagnetic spectrums, so we observe light emitted as different colors, depending on the wavelength.
The volume of 350 mL of gas at 25°C is decreased to 135mL at constant pressure. what is the final temperature of the gas?
The decrease in the volume of gas at constant pressure results in the final temperature of the gas is 115.05 K.
The Charles law states that with the gas constant pressure there has been a proportional relationship between the volume and temperature.
At constant pressure, the relationship between the temperature and volume can be given by:
[tex]\rm \dfrac{Initial\;volume}{\Initial\;Temperature}\;=\;\dfrac{Final\;Volume}{Final\;Temperature}[/tex]
For the given gas, the final temperature can be calculated as:
[tex]\rm \dfrac{350\;ml}{298.15\;K}\;=\;\dfrac{135\;ml}{Final\;temperature}[/tex]
1.173 = [tex]\rm \dfrac{135\;ml}{Final\;temperature}[/tex]
Final temperature = [tex]\rm \dfrac{135\;ml}{1.173\;K}[/tex]
Final temperature = 115.05 K.
The reduction in the volume of gas at constant pressure results in the final temperature of the gas is 115.05 K.
For more information about the volume of gas at constant pressure, refer to the link:
https://brainly.com/question/24691513
Using Charles's Law, we can calculate that the final temperature of the gas at constant pressure when its volume is decreased from 350 mL at 25°C to 135 mL is -157.95°C.
Explanation:The student is asking about the relationship between the volume and temperature of a gas held at constant pressure, which can be described using Charles's Law. According to this law, at constant pressure, the volume of a gas is directly proportional to its absolute temperature (measured in Kelvin). To find the final temperature when the volume of 350 mL of gas at 25°C is decreased to 135 mL, we can set up the proportion:
V1 / T1 = V2 / T2
where:
V1 is the initial volume (350 mL)T1 is the initial temperature (25°C or 298 K)V2 is the final volume (135 mL)T2 is the final temperature (in Kelvin)First, we need to convert the initial temperature from Celsius to Kelvin by adding 273.15 (T1 in Kelvin is 298.15 K). Then we can solve for T2:
(350 mL / 298 K) = (135 mL / T2)
Multiplying both sides by T2 and then by 298 K, we get:
T2 = (135 mL * 298 K) / 350 mL = 115.2 K
Converting back to Celsius, we subtract 273.15 from 115.2 K to get -157.95°C, which is the final temperature of the gas at constant pressure.
What change in volume results if 60 mL of a gas is cooled from 33 C to 5 C?
Answer:
Change in volume on changing temperature from 33[tex]^{\circ}C[/tex] to 5[tex]^{\circ}C[/tex] is 5.49 mL
Explanation:
Initial volume of gas = V = 60 mL
Assuming final volume of gas to be V' mL
Initial temperature = T = 33[tex]^{\circ}C[/tex] = 306 K
Final temperature = T' = 5[tex]^{\circ}C[/tex] = 278 K
The relationship between volume and temperature of gas at constant pressure is shown below
[tex]\displaystyle \frac{V}{V'}=\displaystyle \frac{T}{T'} \\\displaystyle \frac{60\textrm{ mL}}{V'} = \displaystyle \frac{306\textrm{ K}}{T} \\V' = 54.51 \textrm{ mL} \\\textrm{Change in volume} = \left ( V-V' \right ) \\\textrm{Change in volume} = \left ( 60-54.51 \right )\textrm{ mL} \\\textrm{Change in volume} = 5.49 \textrm{ mL}[/tex]
Change in volume on changing temperature = 5.49 mL
what are the six scientific method in order?
conclusion, observation, experiment, problem, hypothesis, results..
what are the number of molecules in 2.56 moles of water?
Answer:
1.54x10^24
Explanation:
To convert moles to molecules, multiply the number of moles by Avagadro's number (6.02x10^23).
2.56mol × 6.02x10^23 = 1.54x10^24
To find the number of molecules in 2.56 moles of water, we multiply the number of moles (2.56) by Avogadro's number (6.022 x 10²³), resulting in 1.54 x 10²⁴ molecules of water.
The question asks, what are the number of molecules in 2.56 moles of water? To answer this, we need to understand Avogadro's number, which is a fundamental concept in chemistry representing the number of units in one mole of any substance. Specifically, Avogadro's number is 6.022 x 10²³. Therefore, to find the number of molecules in 2.56 moles of water, we multiply the number of moles by Avogadro's number:
Number of molecules = 2.56 moles x 6.022 x 10²³ molecules/moleThis calculation gives us: 1.54 x 10²⁴ molecules of water in 2.56 moles.
Which sample of argon contains a total of 3.01 x 10^23 molecules at STP?
A)40.0g B)22.4L C)20.0g D)11.2L
Answer:option d
Explanation:
Final answer:
The correct answer is 22.4L. At Standard Temperature and Pressure (STP), 1 mole of gas occupies 22.4 liters, allowing for the calculation of the total number of molecules in a given sample volume.
Explanation:
The correct answer is B) 22.4L. At STP (standard temperature and pressure), 1 mole of gas occupies 22.4 liters. Given that the question asks for the total number of molecules and not mass, we should consider the volume to calculate the number of molecules of argon. So, to contain 3.01 x 10^23 molecules, the sample should have a volume of 22.4 liters.
0.349 M solution of CuOh is formed is the solution basic, acidic, or neutral?
Answer:
basic
Explanation:
A solution of copper (I)hydroxide is a base and it will form a basic solution no matter what.
A base is a compound the produces hydroxyl ions in aqueous solutions. Most known bases always have the OH⁻ group attached to them in a compound.
Copper(I) hydroxide is a an alkali as it can dissolve in water. It shares all the unique characteristics of a typical base and it will turn red litmus paper blue.
15. Sulfur hexafluoride is an example of a
It is an example of a binary compound.
What does L represent? When did it form?
Answer:
All I can say is that it seems to go through the other layers. I would say this is an intrusive rock and probably the youngest
Explanation:
I suggest d i k e s. Put it together. somehow I cant post it when put together
Answer:
Layer L represents a fault line. It formed after layer E and all the layers beneath it. There is no displacement in layer G or layer A. Therefore, the fault line formed before these two layers.
Explanation:
this is the actual answer
a wave has a wavelength of 1.2m andr a frequency of 3 Hz. what is the wave speed
Answer:
3.6m/s
Explanation:
The following data were obtained from the question:
Frequency = 3Hz
Wavelength = 1.2m
Velocity =?
Velocity = wavelength x frequency
Velocity = 1.2 x 3
Velocity = 3.6m/s
Which has a larger radius: a sodium atom or a sodium ion? Explain why.
Answer:
sodium atom
Explanation:
the sodium ion loses a valence shell when it ionizes. The sodium atom retains this valence shell which adds to its radius
Please answer for me
Answer:
1. Nitric Acid
2. Hydrochloric Acid
3. Acetic Acid
4. Hydrogen bromide
5. Nitrous Acid
Explanation:
1. H2SO4
2. HF
3. H3PO4
4. H2CO3
5. H2S
P.S. make the numbers smaller ok?
A child has a toy balloon with a volume of 1.80 L. The temperature of the balloon when it was filled was 293 K at a pressure of 101.3 kPa. If the child were to let go of the balloon and it rose 3 kilometers into the sky where the pressure of 67.6 kPa and the temperature is 263 K, what would the new volume of the balloon be?
Answer:
2.42L
Explanation:
Given parameters:
V₁ = 1.8L
T₁ = 293K
P₁ = 101.3kPa
P₂ = 67.6kPa
T₂ = 263K
Unknown:
V₂ = ?
Solution:
To solve this problem, we are going to use the combined gas law to find the final volume of the gas. The combined gas law expression combines the equation of Boyle's law, Charles's law and Avogadro's law;
[tex]\frac{P_{1} V_{1} }{T_{1} } = \frac{P_{2} V_{2} }{T_{2} }[/tex]
All the units are in the appropriate form. We just substitute and solve for the unknown;
101.3 x 1.8 / 293 = 67.6 x V₂ / 263
V₂ = 2.42L
Magnesium +Hydrogen Phospahate
Answer:
That makes Dimagnesium phosphate
Answer:
The reaction between Magnesium and Hydrogen Phosphate forms Magnesium Hydrogen Phosphate
Explanation:
When magnesium reacts with hydrogen phosphate it forms an ionic compound called Magnesium Hydrogen Phosphate or Dimagnesium Phosphate.
Magnesium Hydrogen Phosphate is an ionic compound with the formula HMgO4P.
Equation;
Mg + HPO4 ------> HMgO4P
Similarly we can use Magnesium Phosphate to demonstrate the reaction.
In chemistry, the sum of charges of the anion and the cation of any ionic compound is always equal to zero.
To determine the number of anion and cation required for the sum to be zero we simply use the criss-cross method. This involves taking the charge of one ion and making the absolute value of that charge to be the amount of the other ion.
Therefore, Magnesium having a charge of 2+; we will have two(2) Phosphate cations for it.
Also, Phosphate has a charge of 3-; so we have three(3) Magnesium cations.
Equation;
[tex]Mg^{2+} + (PO4)^{3-} ----> Mg3(PO4)2[/tex]
what is the amount of heat,in joules, required to increase the temperature of a 49.5-gram sample of wanted from 22c to 66c
Answer :
the amount of heat,in joules, required to increase the temperature of a 49.5-gram sample of wanted from 22°c to 66°c is 9.104 Joules.
Explanation:
The answer can be calculated using the formula
Q = mCрΔT
where
Q is the amount of heat required in joules to raise the temperature.
m is the mass of the sample in Kg.
Cp is the specific heat of the sample in J/Kg°C.
ΔT is the change in temperature required.
Here, m = 49.5-gram = 0.0495 kg
Cp = 4.18 J/Kg°C (for water)
T₁ = 22°C ; T₂ = 66°C
ΔT = 66 - 22 = 44
Substituting values in Q = mCрΔT
Q = (0.0495)(4.18)(44)
Q = 9.104 J
Mg+2N=??
complete and balance it
Answer:
mg3n2
Explanation:
Answer:
3Mg + N2 —> Mg3N2
Explanation:
The reaction between Mg and N2 is given below:
Mg + N2 —> Mg3N2
Now let us balance the equation:
There are 3 atoms of Mg on the right side and 1atom on the left side. It can be balance by putting 3 in front of Mg as shown below:
3Mg + N2 —> Mg3N2
Now the equation is balanced
Which of the following statements about the periodic table is true
1.elements in the same column are similar in their properties
2.elements in the same row are similar in their properties
3.elements that start with the same letter are similar in their properties
4.elements that have the same atomic mass are similar in their properties
Answer: Elements in the same column are similar in their properties
Explanation: The columns on the periodic table are also know as group of the periodic table elements in the same group of the periodic table tends to have similar chemical properties because they all have the same number of valence electrons in their outermost shell. This plays an important roles in their reactivity and properties
Answer:
1. elements in the same column are similar in their properties
Explanation:
I got it right :)