3/122 The collar has a mass of 2 kg and is attached to the light spring, which has a stiffness of 30 N/m and an unstretched length of 1.5 m. The collar is released from rest at A and slides up the smooth rod under the action of the constant 50‐N force. Calculate the velocity v of the collar as it passes position B.

Answers

Answer 1

Explanation:

According to the law of conservation of energy, work done by the force is as follows.

        [tex]W_{F} = F Cos (30^{o}) \times 1.5[/tex]

                   = 64.95 J

Now, gain in potential energy is as follows.

                P.E = mgh

                      = [tex]2 \times 9.8 \times 1.5[/tex]

                      = 29.4 J

Gain in potential energy will be as follows.

           = [tex]\frac{1}{2}kx^{2}_{2} - \frac{1}{2}kx^{2}_{1}[/tex]

           = [tex]\frac{1}{2} \times 30 N/m \times [(2.5 - 1.5)^{2} - (2 - 1.5)^{2}][/tex]

           = 11.25

As,

          [tex]W_{f} = u_{1} + u_{2} + \frac{1}{2}mv^{2}[/tex]

          [tex]\frac{1}{2}mv^{2} = W_{f} - u_{1} - u_{2}[/tex]  

                   = 64.95 J - 29.4 - 11.25

                   = 24.3

              [tex]v^{2} = \frac{24.3 \times 2}{2}[/tex]

                  v = 4.92 m/s

Therefore, we can conclude that relative velocity at point B is 4.92 m/s.  

Answer 2
Final answer:

To calculate the velocity of the collar as it passes position B, we need to consider the forces acting on the collar and use Newton's second law of motion. The collar is attached to a light spring, so the force exerted by the spring can be calculated using Hooke's law. The net force acting on the collar is the sum of the force exerted by the spring and the constant 50-N force.

Explanation:

To calculate the velocity of the collar as it passes position B, we need to consider the forces acting on the collar and use Newton's second law of motion. The collar is attached to a light spring, so the force exerted by the spring can be calculated using Hooke's law. The net force acting on the collar is the sum of the force exerted by the spring and the constant 50-N force. We can equate this net force to the mass of the collar times its acceleration. Solving for the acceleration gives us the magnitude of the velocity as it passes position B.

Using Hooke's law, the force exerted by the spring can be calculated as:

F = k * x

where F is the force, k is the stiffness of the spring, and x is the displacement of the collar from its equilibrium position. Since the collar is attached to a light spring, we can assume that the displacement of the spring is negligible. Therefore, the force exerted by the spring is zero.

The net force is then equal to the constant 50-N force:

Net force = 50 N

Applying Newton's second law, we have:

Net force = mass * acceleration

Solving for acceleration gives us:

Acceleration = Net force / mass = 50 N / 2 kg = 25 m/s^2

Since velocity is the derivative of displacement, we can integrate the acceleration with respect to time to find the velocity:

v = a * t

where v is the velocity, a is the acceleration, and t is the time.

Since the collar is released from rest at position A, the time taken to reach position B can be determined using the equation of motion:

s = u*t + (1/2)*a*t^2

where s is the displacement, u is the initial velocity, a is the acceleration, and t is the time.

Since the collar starts from rest, the initial velocity is zero. Solving for t gives us:

t = sqrt((2*s) / a) = sqrt((2*1.5 m) / 25 m/s^2) = 0.7746 s

Finally, substituting the values of acceleration and time into the equation for velocity gives us:

v = a * t = 25 m/s^2 * 0.7746 s = 19.365 m/s

Learn more about Newton's second law of motion here:

https://brainly.com/question/13447525

#SPJ12


Related Questions

A 6.0-cm-diameter, 11-cm-long cylinder contains 100 mg of oxygen (O2) at a pressure less than 1 atm. The cap on one end of the cylinder is held in place only by the pressure of the air. One day when the atmospheric pressure is 100 kPa, it takes a 173 N force to pull the cap off.

Answers

Explanation:

The given data  is as follows.

Mass of oxygen present = 100 mg = [tex]100 \times 10^{-3}[/tex] g

So, moles of oxygen present are calculated as follows.

      n = [tex]\frac{100 \times 10^{-3}}{32}[/tex]

         = [tex]3.125 \times 10^{-3}[/tex] moles

Diameter of cylinder = 6 cm = [tex]6 \times 10^{-2}[/tex] m

                              = 0.06 m

Now, we will calculate the cross sectional area (A) as follows.

    A = [tex]\pi \times \frac{(0.06)^{2}}{4}[/tex]

        = [tex]2.82 \times 10^{-3} m^{2}[/tex]

Length of tube = 11 cm = 0.11 m

Hence, volume (V) = [tex]2.82 \times 10^{-3} \times 0.11[/tex]

                              = [tex]3.11 \times 10^{-4} m^{3}[/tex]

Now, we assume that the inside pressure is P .

And,   [tex]P_{atm}[/tex] = 100 kPa = 100000 Pa,

Pressure difference = 100000 - P

Hence, force required to open is as follows.

      Force = Pressure difference × A

                = [tex](100000 - P) \times 2.82 \times 10^{-3}[/tex]

We are given that force is 173 N.

Thus,

         [tex](100000 - P) \times 2.82 \times 10^{-3}[/tex] = 173

Solving we get,

          P = [tex]3.8650 \times 10^{4} Pa[/tex]

            = 38.65 kPa

According to the ideal gas equation, PV = nRT

So, we will put the values into the above formula as follows.

                PV = nRT

    [tex]38.65 \times 3.11 \times 10^{-4} = 3.125 \times 10^{-3} \times 8.314 \times T[/tex]

                    T = 462.66 K

Thus, we can conclude that temperature of the gas is 462.66 K.

A bulb pile is driven to the ground with a 2.5 ton hammer. The drop height is 22 ft and the volume in last batch driven is 4 cu ft. Establish the safe load if the number of blows to drive the last batch is 36, volume of base and plug is 27 cu ft, and the soil K value is 28.

Answers

Answer:

159.1 ton

Explanation:

The solution is shown in the attached file

Answer:

The safe load is 159 ton

Explanation:

The safe load is equal to:

[tex]L=\frac{WHBV^{2/3} }{K}[/tex]

Where:

W = weight of hammer = 2.5 ton

H = drop height = 22 ft

B = number of blows used to drive the last batch = 36/4 = 9 ft³

K = dimensionless constant = 28

V = uncompacted volume = 27 ft³

Replacing values:

[tex]L=\frac{2.5*22*9*(27^{2/3}) }{28} =159ton[/tex]

Ball B is suspended from a cord of length l attached to cart A, which can roll freely on a frictionless, horizontal track. The ball and the cart have the same mass m. If the cart is given an initial horizontal velocity v0 while the ball is at rest, describe the subsequent motion of the system, specifying the velocities of A and B for the following successive values of the angle θ (assume positive counterclockwise) that the cord will form with the vertical:
(a) θ = θmax
(b) θ = 0
(c) θ = θmin

Answers

Final answer:

The motion involves energy conversion between kinetic and potential energy, with ball B reaching maximum potential energy at θmax and θmin, and maximum kinetic energy at θ = 0. Cart A's velocity will be adjusted according to the change in motion of ball B, based on the conservation of momentum.

Explanation:

The question relates to the physics concept known as conservation of momentum and energy in the context of pendular motion and collisions within an isolated system. When cart A is given an initial velocity and ball B is at rest, the force that accelerates ball B will be the component of the tension in the string that acts horizontally, as there's no friction resistance on the track. During the motion, the total energy of ball B will be conserved, converting between potential energy when at its highest at θmax and θmin, and kinetic energy when passing through the lowest point at θ = 0. As the system consists of pendular motion, for a given displacement, the velocity of the pendulum and cart at various angles can be determined by using energy conservation.


 (a) At θ = θmax, ball B is momentarily at rest, as it has reached its maximum height and thus its velocity is zero. All its energy is potential.
 (b) At θ = 0, ball B passes through its lowest point, having maximum kinetic energy, and thus maximum velocity.
 (c) At θ = θmin, similar to the case at θmax, ball B is momentarily at rest at its minimum height (which should be symmetric to the maximum height if air resistance is negligible), with all its energy being potential.

Given that cart A and ball B have the same mass, the velocities can be tracked by considering the movement as a combination of the cart rolling and the pendulum swinging, respecting the conservation of angular momentum around the axis from which the ball B is suspended.

A Carnot engine receives 250 kJ·s−1 of heat from a heat-source reservoir at 525°C and rejects heat to a heat-sink reservoir at 50°C. What are the power developed and the heat rejected?

Answers

a. The quantity of heat rejected by the Carnot engine is equal to -101.2 kJ/s.

b. The power developed by the Carnot engine is equal to 148.8 kJ/s.

Given the following data:

Quantity of heat received = 250 kJ/sTemperature of heat-source = 525°CTemperature of heat rejected = 50°C

Conversion:

Temperature of heat-source = 525°C to Kelvin = 525 + 273 = 798K

Temperature of heat rejected = 50°C to Kelvin = 50 + 273 = 323K

To find the power developed and the heat rejected, we would use Carnot's equation:

[tex]-\frac{Q_R}{T_R} = \frac{Q_S}{T_S}[/tex]

Where:

[tex]Q_R[/tex] is the quantity of heat rejected.[tex]T_R[/tex] is the heat-sink temperature.[tex]T_S[/tex] is the heat-source temperature.[tex]Q_S[/tex] is the quantity of heat received.

Making [tex]Q_R[/tex] the subject of formula, we have:

[tex]Q_R = -( \frac{Q_S}{T_S})T_R[/tex]

Substituting the given parameters into the formula, we have;

[tex]Q_R = -( \frac{250}{798}) \times 323\\\\Q_R = -( \frac{80750}{798})[/tex]

Quantity of heat rejected = -101.2 kJ/s

Now, we can determine the power developed by the Carnot engine:

[tex]P = -Q_S - Q_R\\\\P = -250 - (-101.2)\\\\P = -250 + 101.2[/tex]

Power, P = 148.8 kJ/s.

Read more: https://brainly.com/question/13144439?referrer=searchResults

The power developed by the Carnot engine is approximately 148.8 kilowatts. The heat rejected by the Carnot engine is approximately 101.2 kilowatts.

The Carnot efficiency (η) of a heat engine is given by the formula:

η = 1 - (T₁ ÷ T₂)

Heat received (Q(in)) = 250,000 J/s

Temperature of the heat-source reservoir (T(Hot)) = 798.15 K

Temperature of the heat-sink reservoir (T(Cold) = 323.15 K

The Carnot efficiency:

η = 1 - (T₁ ÷ T₂)

η = 1 - (323.15  ÷ 798.15 )

η = 0.5952

Therefore, The Carnot efficiency is 0.5952, which means the engine converts 59.52% of the heat received into useful work.

Power Developed:

P = η × Q(in)

P = 0.5952 × 250,000

P =  148,800 = 148.8 kW

Therefore, The power developed by the Carnot engine is approximately 148.8 kilowatts.

Heat Rejected:

Q(out) = Q(in) - P

Q(out) = 250,000- 148,800 = 101,200 J/s

Q(out) = 101.2 kW

Therefore, The heat rejected by the Carnot engine is approximately 101.2 kilowatts.

To know more about the Carnot engine:

https://brainly.com/question/21126569

#SPJ3

The potential energy for a certain mass moving in one dimension is given by U(x)=(2.0J/m3)x3−(15J/m2)x2+(36J/m)x−23JU(x)=(2.0J/m3)x3−(15J/m2)x2+(36J/m)x−23JU(x) = (2.0 {\rm J/m}^{3})x^{3}- (15 {\rm J/m}^{2})x^{2}+ (36 {\rm J/m})x - 23 {\rm J}. Find the location(s) where the force on the mass is zero.

Answers

Answer:x=2 and x=3

Explanation:

Given

Potential Energy for a certain mass is

[tex]U(x)=2x^3-15x^2+36x-23[/tex]

and we know force is given by

[tex]F=-\frac{\mathrm{d} U}{\mathrm{d} x}[/tex]

[tex]F=-(2\times 3x^2-15\times 2x+36)[/tex]

For Force to be zero F=0

[tex]\Rightarrow 6x^2-30x+36=0[/tex]

[tex]\Rightarrow x^2-5x+6=0[/tex]

[tex]\Rightarrow x^2-2x-3x+6=0[/tex]

[tex]\Rightarrow (x-2)(x-3)=0[/tex]

Therefore at x=2 and x=3 Force on particle is zero.

A comet orbits a star in a strongly elliptical orbit. The comet and star are far from other massive objects. As the comet travels away from the star, how does the kinetic energy and potential energy of the system change?

Answers

Answer:

the kinetic energy decreases and the potential energy Increases.

Explanation:

as the comet travels away from the star it gains an energy which it posses because of its position or state.once the comet moves away form the star the kinetic decreases until its lost all together to where the potential energy starts increasing.

Answer:

The potential energy increase and the kinetic energy decrease.

Two identical wires A and B are subject to tension. The tension in wire A is 3 times larger than that in wire B. Find the ratio of the frequencies of the first harmonic in these two wires, fA1 / fB1.

Answers

Answer:

1.732

Explanation:

Let

Tension in wire B=T

Tension in wire A=3 T

We have to find the ratio of the frequencies of the first harmonic in these two wires.

When two wires are identical then the length of both wires are same.

Suppose, the length of each wire=l

Frequency=[tex]\frac{1}{2l}\sqrt{\frac{T}{\mu}}[/tex]

Where [tex]\mu=[/tex]Mass per unit length

Mass per unit length of both wires are same because the two wires are identical.

[tex]\mu_A=\mu_B[/tex]

[tex]\frac{f_A}{f_B}=\frac{\frac{1}{2l}\sqrt{\frac{T_A}{\mu_A}}}{\frac{1}{2l}\sqrt{\frac{T_B}{\mu_B}}}[/tex]

[tex]\frac{f_A}{f_B}=\frac{\frac{1}{2l}\sqrt{\frac{T_A}{\mu_A}}}{\frac{1}{2l}\sqrt{\frac{T_B}{\mu_A}}}=\sqrt{\frac{T_A}{T_B}}=\sqrt{\frac{3T}{T}}[/tex]

[tex]\frac{f_A}{f_B}=\sqrt 3=1.732[/tex]

The ratio of the frequencies of the first harmonic in these two wires is [tex]\sqrt{3}[/tex].

The given parameters;

tension in wire A = Ttension in wire B = 3T

The frequency of first harmonic of each wire is calculated as follows;

[tex]F_ A = \frac{1}{2l} \sqrt{\frac{3T}{\mu} } \\\\F_B = \frac{1}{2l} \sqrt{\frac{T}{\mu} }[/tex]

where;

l is the length of the wiresT is the tension on the wireμ is the mass per unit length

The ratio of the two frequencies is calculated as follows;

[tex]\frac{F_A}{F_B} = \frac{\frac{1}{2l} \sqrt{\frac{3T}{\mu} } }{\frac{1}{2l} \sqrt{\frac{T}{\mu} } } \\\\\frac{F_A}{F_B} = \sqrt{\frac{3T}{T} } \\\\\frac{F_A}{F_B} = \sqrt{3}[/tex]

Thus, the ratio of the frequencies of the first harmonic in these two wires is [tex]\sqrt{3}[/tex].

Learn more here:https://brainly.com/question/14149129

college physics 1, final exam 2015 a closed 2.0l container holds 3.0 mol of an idea gas. if 200j of heat is added, and no work is done, what is the chanhe in internal enegery of the system

Answers

Answer: The change in internal energy of the system is 200 Joules

Explanation:

According to first law of thermodynamics:

[tex]\Delta E=q+w[/tex]

[tex]\Delta E[/tex]=Change in internal energy

q = heat absorbed or released

w = work done or by the system

w = work done by the system=[tex]-P\Delta V=0[/tex]  

q = +200J   {Heat absorbed by the system is positive}

[tex]\Delta E=+200+0=+200J[/tex]

Thus the change in internal energy of the system is 200 Joules

A pressure cooker cooks a lot faster than an ordinary pan by maintaining a higher pressure and temperature inside. the lid of a pressure cooker is well sealed, and steam can escape only through an opening in the middle of the lid. a separate metal piece, the petcock, sits on top of this opening and prevents steam from escaping until the pressure force overcomes the weight of the petcock. the periodic escape of the steam in this manner prevents any potentially dangerous pressure buildup and keeps the pressure inside at a constant value. determine the mass of the petcock of a pressure cooker whose operation pressure is 100 kpa gauge and has an opening cross-sectional area of 4 mm2. assume an atmospheric pressure of 101 kpa.

Answers

A pressure cooker cooks a lot faster than an ordinary pan by maintaining a higher pressure and temperature inside. The mass of the petcock of the pressure cooker is approximate [tex]40.8\ gm[/tex].

The pressure force on the petcock is the difference between the pressure inside the cooker and the atmospheric pressure, multiplied by the cross-sectional area of the opening:

Pressure force = (Pressure inside - Atmospheric pressure) * Opening area

Given that the operating pressure is 100 kPa gauge and the atmospheric pressure is 101 kPa,

Pressure inside[tex]= (100+ 101) \times 1000 = 201000\ Pa[/tex]

Atmospheric pressure [tex]= 101 \times 1000 = 101000\ Pa[/tex]

Now, calculate the pressure force:

Pressure force[tex]= (201000\ Pa - 101000\ Pa) \times 4\ mm^2[/tex]

Pressure force [tex]= 100000\ Pa \times 4 \times 10^{-6} m^2[/tex]

Pressure force [tex]= 0.4\ N[/tex]

The weight of the petcock is equal to the force of gravity acting on it:

Weight = mass × gravitational acceleration

[tex]Weight = mass \times 9.8 m/s^2\\m \times 9.8 = 0.4 \\m = 0.4 / 9.8 \\m = 0.0408\ kg[/tex]

So, the mass of the petcock of the pressure cooker is approximate [tex]40.8\ gm[/tex].

To know more about the pressure:

https://brainly.com/question/30673967

#SPJ12

To find the mass of the petcock, we calculate the force exerted by the steam using the given pressure and area, then equate it to the weight of the petcock. This gives us a mass of approximately 0.082 kg.

To determine the mass of the petcock in a pressure cooker, we need to understand the pressure dynamics and forces at play. The pressure cooker operates at a gauge pressure of [tex]100 kPa,[/tex] and the cross-sectional area of the opening through which steam escapes is given as [tex]4 mm^2[/tex].

First, let's convert the cross-sectional area from [tex]mm^2[/tex] to [tex]m^2[/tex]:

[tex]4 mm^2 = 4 \times 10^{-6} m^2[/tex]

The force exerted by the steam on the petcock can be calculated using the pressure-force relationship: [tex]F = PA[/tex]

Here, P is the absolute pressure inside the cooker, which is the sum of the gauge pressure and the atmospheric pressure:

[tex]P = 100 kPa (gauge) + 101 kPa (atmospheric) = 201 kPa[/tex]

The force is then:

[tex]F = P \times A = 201,000 Pa \times 4 \times 10^{-6} m^2 = 0.804 N[/tex]

The force exerted by the petcock due to its weight is [tex]F = mg[/tex], where m is the mass and g is the acceleration due to gravity ([tex]9.81 m/s^2[/tex]).

Setting the force exerted by the steam equal to the weight of the petcock gives us:

[tex]mg = 0.804 N[/tex]

Therefore, the mass of the petcock is:

[tex]m = F/g = 0.804 N / 9.81 m/s^2 \approx 0.082 kg[/tex]

Thus, the mass of the petcock is approximately [tex]0.082 kg[/tex].

What is the energy in the spark produced by discharging the second capacitor? 1. The same as the discharge spark of the first capacitor 2. More energetic than the discharge spark of the first capacitor 3. Less energetic than the discharge spark of the first capacitor

Answers

Complete Question

The two isolated parallel plate capacitors be-  low, one with plate separation d and the other  with D > d, have the same plate area A and

are given the same charge Q.

What is the energy in the spark produced by discharging the second capacitor?

 1. The same as the discharge spark of the first capacitor

2. More energetic than the discharge spark of the first capacitor

3. Less energetic than the discharge spark of the first capacitor

Answer:

The correct option is 2

Explanation:

The formula for the energy stored in the capacitor is

             [tex]U = \frac{Q^2}{2C}[/tex]

And generally the formula for finding the capacitance of a capacitor is

               [tex]C = \frac{\epsilon_oA}{d}[/tex]

We can denote the capacitance of the first capacitor as [tex]C_1 = \frac{\epsilon_oA}{d}[/tex]

          and   denote the capacitance of the second  capacitor as [tex]C_2 = \frac{\epsilon_oA}{D}[/tex]

Looking at this formula we can see that C varies inversely with d            

as D > d it means that [tex]C_1 > C_2[/tex]

                Since the charge is constant

                         [tex]U\ \alpha\ \frac{1}{C}[/tex] i.e U varies inversely with C

           So [tex]C_1 > C_2[/tex]   => [tex]U_2 >U_1[/tex]

This means that the energy of spark would be more for capacitor two compared to capacitor one

The correct option is 2

The energy in the spark produced by discharging a capacitor can vary between different capacitors based on their capacitance and potential difference.

When discharging a capacitor, the energy stored in the capacitor is released as a spark, which can be compared between different capacitors.

In this case, if the second capacitor discharges, the spark produced may have varying energy levels compared to the spark produced by the first capacitor, depending on the capacitance and potential difference.

The energy in the spark produced by discharging the second capacitor can be calculated using relevant formulas relating to capacitance, potential difference, and energy stored.

An object with total mass mtotal = 15.8 kg is sitting at rest when it explodes into three pieces. One piece with mass m1 = 4.5 kg moves up and to the left at an angle of θ1 = 18° above the –x axis with a speed of v1 = 27.5 m/s. A second piece with mass m2 = 5.4 kg moves down and to the right an angle of θ2 = 23° to the right of the -y axis at a speed of v2 = 21.4 m/s. 1)What is the magnitude of the final momentum of the system (all three pieces)?

Answers

Answer:

Explanation:

total mass, M = 15.8 kg

initial velocity, u = 0 m/s

m1 = 4.5 kg

m2 = 5.4 kg

v1 = 27.5 m/s at an angle 18°

v2 = 21.4 m/s at an angle 23°

As there is no external force acts on the system, so the moemntum of the system is conserved.

Momentum before collision = momentum after collision

as the momentum before collision is zero, so the momentum after collision is also zero.

A lead block drops its temperature by 5.90 degrees celsius when 427 J of heat are removed from it. what is the mass of the block?(unit=kg)

Answers

Mass of the block is 0.557 kg

Solution:

The quantity of heat (q)  liberated during any process is equal to the product of the mass of the block (m), specific heat (C) and the change in temperature (ΔT). Specific heat of lead is 130 J/kg °C.

We have to rearrange the equation to find the mass of the block of lead as,

[tex]\begin{array}{l}\boldsymbol{q}=\boldsymbol{m} \times \boldsymbol{C} \times \boldsymbol{\Delta} \mathbf{T}\\ \\\boldsymbol{m}=\frac{\mathbf{q}}{\boldsymbol{c} \times \mathbf{\Delta} \mathbf{T}}\\ \\\mathbf{m}=\frac{427 \mathbf{J}}{13 \mathbf{0}_{\mathbf{4} *}^{\prime} \mathbf{r} \times \mathbf{s} \mathbf{9} \mathbf{0}^{*} \mathbf{c}}=\mathbf{0} . \mathbf{5} \mathbf{5} \mathbf{7} \mathbf{k} \mathbf{g}\end{array}[/tex]

Thus the mass (m) = 0.577 kg

Answer:

the correct answer is 0.57

Explanation:

The wheel of a stationary exercise bicycle at your gym makes one rotation in 0.670 s. Consider two points on this wheel: Point P is 10.0 cm from the rotation axis, and point Q is 20.0 cm from the rotation axis. Find the speed of point P on the spinning wheel.

Answers

Answer:

0.938 m/s.

Explanation:

Given:

ω = 1 rev in 0.67 s

In rad/s,

1 rev = 2pi rad

ω = 2pi ÷ 0.67

= 9.38 rad/s

Rp = 10 cm

= 0.1 m

V = ω × r

= 9.38 × 0.1

= 0.938 m/s.

The deflection plates in an oscilloscope are 10 cm by 2 cm with a gap distance of 1 mm. A 100 volt potential difference is suddenly applied to the initially uncharged plates through a 1025 ohm resistor in series with the deflection plates. How long does it take for the potential difference between the deflection plates to reach 55 volts?

Answers

Explanation:

Given data:

Area A = 10 cm×2 cm = 20×10⁻⁴ m²

Distance d between the plates = 1 mm = 1×10⁻³m

Voltage of the battery is emf = 100 V

Resistance = 1025 ohm

Solution:

In RC circuit, the voltage between the plates is related to time t. Initially the voltage is equal to that of battery V₀ = emf = 100V. But After time t the resistance and capacitor changes it and the final voltage is V that is given by

[tex]V = V_{0}(1-e^{\frac{-t}{RC} } )\\\frac{V}{V_{0} } = 1-e(^{\frac{-t}{RC} }) \\e^{\frac{-t}{RC} } = 1- \frac{V}{V_{0} }[/tex]

Taking natural log on both sides,

[tex]e^{\frac{-t}{RC} } = 1- \frac{V}{V_{0} } \\\frac{-t}{RC} = ln(1-\frac{V}{V_{0} } )\\t = -RCln(1 - \frac{V}{V_{0} })[/tex]

[tex]t = -RC ln (1-\frac{V}{V_{0} })[/tex]        (1)

Now we can calculate the capacitance by using the area of the plates.

C = ε₀A/d

  = [tex]\frac{(8.85*10^{-12))} (20*10^{-4}) }{1*10^{-3} }[/tex]

  = 18×10⁻¹²F

Now we can get the time when the voltage drop from 100 to 55 V by putting the values of C, V₀, V and R in the equation (1)

[tex]t = -RC ln (1-\frac{V}{V_{0} })[/tex]

 = -(1025Ω)(18×10⁻¹² F) ln( 1 - 55/100)

 = 15×10⁻⁹s

= 15 ns

A white billiard ball with mass mw = 1.43 kg is moving directly to the right with a speed of v = 3.39 m/s and collides elastically with a black billiard ball with the same mass mb = 1.43 kg that is initially at rest. The two collide elastically and the white ball ends up moving at an angle above the horizontal of θw = 38° and the black ball ends up moving at an angle below the horizontal of θb = 52°. 1)What is the final speed of the white ball? m/s 2)What is the final speed of the black ball? m/s 3)What is the magnitude of the final total momentum of the system? kg-m/s 4)What is the final total energy of the system?

Answers

Answer: a) VW = 1.28m/s

b) Vb = 3.86m/s

c) p = 5.82kgm/s

d) E = 11.84J

Explanation: To solve this question, we make use of explosion formula in linear momentum concept.

Please find the attached file for the solution

Even though Alice visits the wishing well frequently and always tosses in a coin for good luck, none of her wishes have come true. As a result, she decides to change her strategy and make a more emphatic statement by throwing the coin downward into the well. If the water is 7.03 m below the point of release and she hears the splash 0.81 seconds later, determine the initial speed at which she threw the coin. (Take the speed of sound to be 343 m/s.)

Answers

Explanation:

The formula to calculate total time taken is as follows.

      Total time = time to fall + time for sound

So,   time for sound = [tex]\frac{distance}{velocity}[/tex]

                                 = [tex]\frac{7.03}{343}[/tex]

                                 = 0.0204  sec

Hence, time to fall is as follows.

          (0.81 - 0.0204) sec

         = 0.7896 sec

Now, we will calculate the time to fall as follows.  

            y = [tex]y_{o} + v_{o}yt + \frac{1}{2}at^{2}[/tex]

            0 = [tex]h + v \times t - \frac{1}{2}gt^{2}[/tex]

            0 = [tex]7.03 + v \times (0.81 - 0.0204) - 0.5 \times 9.81 \times(0.81 - 0.0204)^{2}[/tex]

               = [tex]7.8196 - 0.5 \times 9.81 \times 0.623[/tex]

              = 7.8196 - 3.058

              = 4.7616 m/s  

Therefore, she threw the coin at 4.76 m/s in the upward direction.

How much work does it take for an external agent to move a 45.0-nC charge from a point on the +x-axis, 3.40 cm from the origin to a point halfway between the 41.0-nC and 52.0-nC charges?

Answers

Answer:

The work done on the 45.0nC charge is 2.24×10^-3J. The detailed solution can be found in the attachment below.

Explanation:

The Problem solution makes use of the potential energy relationship between the charges. This solution assumes the distance as shown in the diagram. For a different distance arrangement adjustments should be made appropriately.

Final answer:

The question in Physics pertains to the work needed by an external agent to move a charge within an electric field, and it involves applying the concept of electric potential energy. The work done is equal to the change in electric potential energy, which requires knowledge of the charges' positions and potentials.

Explanation:

The question asks: How much work does it take for an external agent to move a 45.0-nC charge from a point on the +x-axis, 3.40 cm from the origin to a point halfway between the 41.0-nC and 52.0-nC charges? To answer this question, we would use the concept of electric potential energy in the electric field created by point charges. Work is required to move a charge within an electric field against electric forces. The work done by an external force to move a charge from one point to another is equal to the change in electric potential energy, which can be calculated from the initial and final electric potentials at the points in question.

To find the required work, we need to know the initial and final positions relative to other charges, and then we apply the electric potential energy formula. However, a complete solution would require additional specifics about the configuration and distances between the charges. Without these details, we cannot provide an exact numerical answer.

A running back with a mass of 86 kg and a velocity of 9 m/s (toward the right) collides with, and is held by, a 129-kg defensive tackle going in the opposite direction (toward the left). What is the velocity of the tackle before the collision for their velocity afterward to be zero

Answers

Final answer:

The velocity of the defensive tackle before the collision is -6 m/s (toward the left).

Explanation:

According to the law of conservation of momentum, the total momentum before the collision is equal to the total momentum after the collision. Since the two players stick together after the collision, their velocities will be equal but opposite in direction.

Let's assume that the velocity of the defensive tackle before the collision is v. The total momentum before the collision is given by:

m1 * v1 + m2 * v2 = (m1 + m2) * v

Where:

m1 = mass of the running back = 86 kg

v1 = velocity of the running back = 9 m/s (toward the right)

m2 = mass of the defensive tackle = 129 kg

v2 = velocity of the defensive tackle (to be determined)

Using the above equation, we can solve for v:

(86 kg * 9 m/s) + (129 kg * v2) = (86 kg + 129 kg) * 0

774 kg*m/s + 129 kg * v2 = 0 kg*m/s

v2 = -6 m/s

Therefore, the velocity of the defensive tackle before the collision is -6 m/s (toward the left).

A 2.40 kg snowball is fired from a cliff 7.69 m high. The snowball's initial velocity is 13.0 m/s, directed 49.0° above the horizontal. (a) How much work is done on the snowball by the gravitational force during its flight to the flat ground below the cliff? (b) What is the change in the gravitational potential energy of the snowball-Earth system during the flight? (c) If that gravitational potential energy is taken to be zero at the height of the cliff, what is its value when the snowball reaches the ground?

Answers

Answer:

a) W = 180.87 J , b)  ΔU = -180.87 J , c)  ΔU = -180.87 J

Explanation:

a) Work is defined as

         W = F .ds

Where bold indicates vectors, we can write the scalar product

         W = F s cos θ

Where the angle is between force and displacement.

The force of gravity is the weight of the body, which is directed downwards and the displacement thickens the tip of the cliff at the bottom, so that it is directed downwards, therefore the angle is zero degrees

        W = [tex]F_{g}[/tex] y

        W = m g y

For this problem we must fix a reference system, from the statement it is established that the system is placed at the base of the cliff, so that final height is zero and the initial height (y₀ = 7.69m)

    W = 2.40 9.8 (7.69-0)

    W = 180.87 J

b) The potential energy is

            U = mg y

The change in potential energy,

        ΔU = [tex]U_{f}[/tex]- U₀

       ΔU = mg ([tex]y_{f}[/tex]- y₀)

      ΔU = 2.4 9.8 (0 -7.69)

      ΔU = -180.87 J

 

c) in this case we change the reference system to the height of the cliffs, for this configuration

          y₀ = 0

          [tex]y_{f}[/tex] = -7.69 m

          ΔU = 2.4 9.8 (-7.69 -0)

          ΔU = -180.87 J

A 0.9 µF capacitor is charged to a potential difference of 10.0 V. The wires connecting the capacitor to the battery are then disconnected from the battery and connected across a second, initially uncharged, capacitor. The potential difference across the 0.9 µF capacitor then drops to 2 V. What is the capacitance of the second capacitor?

Answers

Answer:

3.6μF

Explanation:

The charge on the capacitor is defined by the formula

q = CV

because the charge will be conserved

q₁ = C₁V₂

q₂ = C₂V₂ where C₂ V₂ represent the charge on the newly connected capacitor  and the voltage drop across the two capacitor will be the same

q = q₁ + q₂ = C₁V₂ + C₂V₂

CV = CV₂ + C₂V₂

CV - CV₂ = C₂V₂

C ( V - V₂) = C₂V₂

C ( V/ V₂ - V₂ /V₂) = C₂

C₂ = 0.9 ( 10 /2) - 1) = 0.9( 5 - 1) = 3.6μF

At a carnival, you can try to ring a bell by striking a target with a 7.76-kg hammer. In response, a 0.372-kg metal piece is sent upward toward the bell, which is 4.87 m above. Suppose that 29.7 percent of the hammer's kinetic energy is used to do the work of sending the metal piece upward. How fast must the hammer be moving when it strikes the target so that the bell just barely rings?

Answers

Answer:

3.93 m/s

Explanation:

Let the kinetic energy of hammer be 'K' and speed of hitting the target be 'v'.

Given:

Mass of the hammer (M) = 7.76 kg

Mass of the metal piece (m) = 0.372 kg

Kinetic energy of the hammer used by the metal piece = 29.7% of 'K' = 0.297K

Vertical height traveled by the metal piece (h) = 4.87 m

From conservation of energy, the kinetic energy used by the metal piece is transformed to the gravitational potential energy when it reaches the height of the bell.

Gravitational potential energy of the piece is given as:

[tex]U=mgh\\\\U=0.372\times 9.8\times 4.87=17.754\ J[/tex]

Now, as per question:

[tex]0.297K=17.754\ J\\\\K=\frac{17.754}{0.297}\\\\K=59.78\ J[/tex]

Therefore, the kinetic energy of the hammer is 59.78 J.

We know that,

Kinetic energy = [tex]\frac{1}{2}mv^2[/tex]

So, [tex]K=\frac{1}{2}mv^2[/tex]

Expressing in terms of 'v', we get:

[tex]mv^2=2K\\\\v^2=\frac{2K}{m}\\\\v=\sqrt{\frac{2K}{m}}[/tex]

Plug in the given values and solve for 'v'. This gives,

[tex]v=\sqrt{\frac{2\times 59.78}{7.76}}\\\\v=3.93\ m/s[/tex]

Therefore, the hammer must move with a speed of 3.93 m/s when it strikes the target so that the bell just barely rings.

A transverse sine wave with an amplitude of 2.50 mm and a wavelength of 1.80 m travels from left to right along a long, horizontal stretched string with a speed of 36.0 m/s. Take the origin at the left end of the undisturbed string. At time t = 0, the left end of the string has its maximum upward displacement.


(a) What are the frequency and angular frequency of the wave?

(b) What is the wave number of the wave?

Answers

Answer:

(a)

[tex]f=20Hz\\And \\w=125.7s^{-1}[/tex]

(b)

[tex]K=3.490m^{-1}[/tex]

Explanation:

We know that the speed of any periodic wave is given by:

v=f×λ

The wave number k is given by:

K=2π/λ

Given data

Amplitude A=2.50mm

Wavelength λ=1.80m

Speed v=36 m/s

For Part (a)

For the wave frequency we plug our values for v and λ.So we get:

v=f×λ

[tex]36.0m/s=(1.80m)f\\f=\frac{36.0m/s}{1.80m}\\ f=20Hz\\[/tex]

And the angular speed we plug our value for f so we get:

[tex]w=2\pi f\\w=2\pi (20)\\w=125.7s^{-1}[/tex]

For Part (b)

For wave number we plug the value for λ.So we get

K=2π/λ

[tex]K=\frac{2\pi }{1.80m}\\ K=3.490m^{-1}[/tex]

The answers for this question are

a.) frequency of the wave is 20 Hz.

b.) angular frequency of the wave is [tex]125.71428\ s^{-1}[/tex]

c.) wave number of the wave is [tex]k=3.4920\ m^{-1}[/tex].

Given to us:

Amplitude A= 2.50 mm,

Wavelength λ= 1.80 m,

Velocity V= 36.0 m/sec,

a.) To find out frequency and angular frequency of the wave,we know

[tex]frequency=\dfrac{Velocity}{Wavelength}[/tex]

[tex]f=\dfrac{V}{\lambda}[/tex]

Putting the numerical value,

[tex]f=\dfrac{36}{1.80}\\\\f= 20\ Hz[/tex]

Therefore, the frequency of this wave is 20 Hz.

Also, for angular frequency

[tex]f=2\pi \omega[/tex]

Putting the numerical value,

[tex]\omega=2\pi f \\\\\omega=2\times\pi \times 20\\\\\omega= 125.71428\ s^{-1}[/tex]

Therefore, the angular frequency of this wave is [tex]125.71428\ s^{-1}[/tex].

b.) To find out the wave number of the wave (k),

The wave number for an EM field is equal to 2π divided by the wavelength(λ) in meters.

[tex]k=\dfrac{2\pi}{\lambda}[/tex]

Putting the numerical value,

[tex]k=\dfrac{2\pi}{\lambda}\\\\k=\dfrac{2\pi}{1.80}\\\\k=3.4920\ m^{-1}[/tex]

Therefore, the wave number of the wave is [tex]k=3.4920\ m^{-1}[/tex].

Hence, for this wave

a.) frequency of the wave is 20 Hz.

b.) angular frequency of the wave is [tex]125.71428\ s^{-1}[/tex]

c.) wave number of the wave is [tex]k=3.4920\ m^{-1}[/tex].

To know more visit:

https://brainly.com/question/3813804

A conducting sphere of radius R1 carries a charge Q. Another conducting sphere has a radius R2 = 3 4 R1, but carries the same charge. The spheres are far apart. What is the ratio E2 E1 of the electric field near the surface of the sphere with radius R2 to the field near the surface of the sphere with radius R1?

Answers

Answer:

The ratio of electric field is 16:9.

Explanation:

Given that,

Radius [tex]R_{2}=\dfrac{3}{4}R_{1}[/tex]

Charge = Q

We know that,

The electric field is directly proportional to the charge and inversely proportional to the square of the distance.

In mathematically term,

[tex]E=\dfrac{kQ}{R^2}[/tex]

Here, [tex]E\propto\dfrac{1}{R^2}[/tex]

We need to calculate the ratio of electric field

Using formula of electric field

[tex]\dfrac{E_{2}}{E_{1}}=\dfrac{R_{1}^2}{R_{2}^2}[/tex]

Put the value into the formula

[tex]\dfrac{E_{2}}{E_{1}}=\dfrac{(4R_{1})^2}{(3R_{1})^2}[/tex]

[tex]\dfrac{E_{2}}{E_{1}}=\dfrac{16}{9}[/tex]

Hence, The ratio of electric field is 16:9.

Final answer:

The ratio of the electric fields E2/E1 at the surface of two conducting spheres with radii R2 = 3/4R1 carrying the same charge is 16/9.

Explanation:

The question is asking for the ratio of the electric fields near the surface of two conducting spheres carrying the same charge Q but having different radii, R1 and R2 where R2 is three-fourths of R1. To find the electric field E near the surface of a conducting sphere, we use the formula:

E = kQ/[tex]r^{2}[/tex]

where k is Coulomb's constant, Q is the charge, and R is the radius of the sphere. Since the charge Q is the same on both spheres, we can calculate the ratio of the electric fields by plugging in the radii:

E2/E1 = (kQ/[tex]r2^{2}[/tex]) / (kQ/[tex]r1^{2}[/tex])

Simplifying further, since k is a constant it cancels out, along with Q, which is the same for both spheres, we get:

E2/E1 = ([tex]r1^{2}[/tex]) / ([tex]r2^{2}[/tex])

Substituting R2 = 3/4R1:

E2/E1 = [tex]r1^{2}[/tex] / (3/4 R1)[tex]{2}[/tex]

E2/E1 = 1 / (3/4)^2

E2/E1 = 1 / (9/16) = 16/9

Therefore, the ratio E2/E1 is 16/9.

A chamber fitted with a piston can be controlled to keep the pressure in the chamber constant as the piston moves up and down to increase or decrease the chamber volume. The chamber contains an ideal gas at 296 K and 1.00 atm.What is the work done on the gas as the piston compresses it from 1.00 L to 0.633 L ?

Express your answer with the appropriate units.

W =
J

Answers

Answer:

W = 37.2J

Explanation:

See attachment below.

A standard door into a house rotates about a vertical axis through one side, as defined by the door's hinges. A uniform magnetic field is parallel to the ground and perpendicular to this axis. Through what angle must the door rotate so that the magnetic flux that passes through it decreases from its maximum value to 0.30 of its maximum value?

Answers

Answer:

The angle that the door must rotate is 70.5 graus

Explanation:

When the door rotates through and angel X, the magnetic flux that passes through the door decreases from its maximum value to 0.3 of its maximum value

This way,

X = 0.3 Xmax

X = B A cosX = 0.3 B A  

or

cosX = 0.3

or

X = [tex]cos^{-1}[/tex] (0.3) = 70.5

X = 70.5 graus

The particle starts from rest at t=0. What is the magnitude p of the momentum of the particle at time t? Assume that t>0. Express your answer in terms of any or all of m, F, and t.

Answers

Answer:

Ft

Explanation:

We are given that

Initial velocity=u=0

We have to find the magnitude of p of the momentum of the particle at time t.

Let mass of particle=m

Applied force=F

Acceleration, [tex]a=\frac{F}{m}[/tex]

Final velocity , [tex]v=a+ut[/tex]

Substitute the values

[tex]v=0+\frac{F}{m}t=\frac{F}{m}t[/tex]

We know that

Momentum, p=mv

Using the formula

[tex]p=m\times \frac{F}{m}t=Ft[/tex]

The magnitude of the momentum of the particle after time, t is Ft = mv.

The given parameters:

initial velocity of the particle, u = 0

The magnitude of the momentum of the particle after time, t is calculated as follows;

[tex]P =mv[/tex]

The force applied to the particle is calculated as;

[tex]F = ma = \frac{mv}{t} \\\\Ft = mv[/tex]

Thus, the magnitude of the momentum of the particle after time, t is Ft = mv.

Learn more here:https://brainly.com/question/23927723

A basketball player throws a chall -1 kg up with an initial speed of his hand at shoulder height = 2.15 m Le gravitational potential energy ber ground level the ball leves 50% .(a) Give the total mechanical energy of the ball E in terms of maximum height Am it reaches, the mass m, and the gravitational acceleration g.(b) What is the height, hm in meters?

Answers

Complete Question:

A basketball player tosses a basketball m=1kg straight up with an initial speed of v=7.5 m/s. He releases the ball at shoulder height h= 2.15m. Let gravitational potential energy be zero at ground level

a)  Give the total mechanical energy of the ball E in terms of maximum height hn it reaches, the mass m, and the gravitational acceleration g.

b) What is the height, hn in meters?

Answer:

a) Energy = mghₙ

b) Height, hₙ = 5.02 m

Explanation:

a) Total energy in terms of maximum height

Let maximum height be hₙ

At maximum height, velocity, V=0

Total mechanical energy , E = mgh + 1/2 mV^2

Since V=0 at maximum height, the total energy in terms of maximum height becomes

Energy = mghₙ

b) Height,  hₙ in meters

mghₙ = mgh + 1/2 mV^2

mghₙ = m(gh + 1/2 V^2)

Divide both sides by mg

hₙ = h + 0.5 (V^2)/g

h = 2.15m

g = 9.8 m/s^2

V = 7.5 m/s

hₙ = 2.15 + 0.5(7.5^2)/9.8

hₙ = 2.15 + 2.87

hₙ = 5.02 m

A charge Q is transfered from an initially uncharged plastic ball to an identical ball 12 cm away. The force of attraction is then 17 mN. How many electrons were transfered from one ball to the other

Answers

Answer:

Explanation:

The ball from which electrons are transferred will acquire Q charge and the ball receiving electrons will acquire - Q charge . force of attraction between them

= k Q² / d²

9 x 10⁹ x Q² / .12² = 17 X 10⁻³

Q² = .0272 X 10⁻¹²

Q = .1650 X 10⁻⁶ C

No of electrons = .1650 x 10⁻⁶ / 1.6 x 10⁻¹⁹

= .103125 x 10¹³

1.03125 x 10¹²

Atmospheric pressure is reported in a variety of units depending on local meteorological preferences. In many European countries the unit millibar (mbar) is preferred, in other countries the unit hectopascal (1 hPa = 1 mbar) is used, and in the United States inches of mercury (in Hg) is the commonly used unit. In most chemistry textbooks the units most commonly used are torr, mmHg, and atmospheres (atm). The unit atm is defined at sea level to be 1 atm = 760 mm Hg exactly. The density of mercury is 13.534 times that of water, if atmospheric pressure will support 769.6 mm Hg, what height of a water column would that same pressure support in mm?

Answers

Answer:

[tex]h_w=10415.7664\ mm[/tex] of water column.

Explanation:

Given:

density of mercury, [tex]S_m=13.534[/tex]

height of the mercury column supported by the atmosphere, [tex]h_m=769.6\ mm[/tex]

As we know that the equivalent pressure in terms of liquid column is given as:

[tex]P=\rho.g.h[/tex]

so,

[tex]S_m\times 1000\times g.h_m=\rho_w.g.h_w[/tex]

where:

[tex]g=[/tex] gravity

[tex]h_w=[/tex] height of water column

[tex]\rho_w=[/tex] density of water

[tex]13534\times 9.8\times 769.6=1000\times 9.8\times h_w[/tex]

[tex]h_w=10415.7664\ mm[/tex] of water column.

Final answer:

The atmospheric pressure that supports a 769.6 mm column of mercury will support a water column that is 13.6 times taller due to the density difference, resulting in a water column approximately 10,466.56 mm, or about 10.47 meters, tall.

Explanation:

When we talk about atmospheric pressure, we often use various units like millimeters of mercury (mmHg) or torr, which are equivalent to 1 atm of pressure, defined as exactly 760 mmHg. Since mercury is about 13.6 times denser than water, a column of mercury under atmospheric pressure is much shorter than a column of water under the same pressure. To find the height of a water column supported by a pressure of 769.6 mm Hg, we can set up a proportion using the densities of mercury and water. Since 1 atm supports a 760 mm column of mercury, and the density of mercury is 13.6 times that of water, the same pressure will support a water column that is 13.6 times taller.

The calculation is straightforward:

Height of mercury column (Hg): 769.6 mmDensity ratio (Hg:water): 13.6Height of water column = Height of mercury column × Density ratioHeight of water column = 769.6 mm × 13.6Height of water column = 10466.56 mm

Therefore, the atmospheric pressure that supports a 769.6 mm Hg column will support a water column of approximately 10,466.56 mm, or about 10.47 meters tall.

The Acorn Insurance Company charges $3.50 for each unit of coverage under a block of 1-year term life insurance policies. The annual premium amount for a $50,000 policy in this block would be equal to ____.

Answers

Answer:

$175

Explanation:

Insurance premium is expressed as a rate $1000

($3.50 per $1000)

Therefore;

Annual premium= $50000x$3.50/$1000

= $175

Final answer:

The annual premium for a $50,000 policy at the rate of $3.50 per unit of coverage from the Acorn Insurance Company would be $175.00.

Explanation:

The Acorn Insurance Company charges $3.50 for each unit of coverage under a 1-year term life insurance policy. To calculate the annual premium for a $50,000 policy, we'll need to divide the total coverage amount by the unit price and then multiply by the cost per unit. Here's the math:

Total Coverage Needed: $50,000

Cost Per Unit of Coverage: $3.50

Number of Units: $50,000 / $1,000 = 50

Annual Premium: 50 units * $3.50 = $175.00

So, the annual premium amount for a $50,000 policy in this block would be $175.00.

Other Questions
Which of the following English words contains the sound closest to the Spanish E?a. endb. evilc. awesomePlease select the best answer from the choices providedPLEASEE HURRYY Greta selected a research topic, decided what she wanted to learn about the topic, reviewed the literature on the topic, and formulated a hypothesis. What must she do next in order to continue in her research? Which search engine optimization technique involves sending data describing your web site to the search engines and then paying a fee to ensure that your pages are part of the sites engine index? The atoms in barium metal are arranged in a bodycentered cubic unit cell. Calculate the radius of a barium atom if the density of barium is 3.50 g?cm23 . Hint: Use your answer to Exercise 4.18. Parents wish to have 160,000 available for a child's education. If the child is now 8 years old, how much money must be set aside at 3 % compounded semiannually to meet their financial goal when the child is 18? If, based on a sample size of 950, a political candidate finds that 563 people would vote for him in a two-person race, what is the 99% confidence interval for his expected proportion of the vote? Would he be confident of winning based on this poll? A rectangle that is x feet wide is inscribed in a circle of radius 25 feet. Express the area of the rectangle as a function of x. Give the function and state its domain. Why does liquid water have such a high heat capacity?Choose 1 answer:(Choice A)Water is a nonpolar molecule.(Choice B)Water molecules are packed very closely together.(Choice C)Water is a linear molecule which makes absorbing heat easier.(Choice D)Water molecules are good at forming and breaking hydrogen bonds. The two major forms of employee involvement are participative management and ________. 1. job sharing 2. job rotation 3. representative participation 4. job enlargement 5. organizational restructuring" The magnitudes of the vertical and horizontal components of a vector are 11 and 17 centimeters respectively. Find the magnitude of the vector and the angle from the horizontal axis. A 328-kg car moving at 19.1 m/s in the + x direction hits from behind a second car moving at 13.0 m/s in the same direction. If the second car has a mass of 790 kg and a speed of 15.1 m/s right after the collision, what is the velocity of the first car after this sudden collision? Write a rule to describe each transformation. (What is the reflection?ex. Reflect with reaparece to x-axis, reflect across y=2, etc.) In France, how did Socialists attempt to fight the effects of the Great Depression?They overthrew the government.They created new jobs.They passed worker reforms.They banned all imports. Why did Alabama Governor George Wallace block a doorway of the registrar's office at the University of Alabama? A. He supported the complete segregation of public schools. B.He believed desegregation should happen slowly over time.C. He feared for the safety of the African American students. D. He worried that teachers would be hurt in the chaos. Conclusions _____.a. are experimental factors which do not changeb. can only be made if the hypothesis is proven truec. are made from careful analysis of datad. are formed before the experiment begins What is the capital of South Africa ? The 1997 book by Don Campbell,The Mozart Effect: Tapping the Power of Music to Heal the Body, Strengthen the Mind, and Unlock the Creative Spirit, discusses the theory that listening to Mozart (especially the piano concertos) may temporarily increase one's IQ and produce many other beneficial effects on mental function. (1) Campbell recommends playing specially selected classical music to infants, in the expectation that it will benefit their mental development. (2) Playing Mozart to animals decreases anxiety and stress and allows them to be more receptive to commands from their owners.AfterThe Mozart Effect, Campbell wrote a follow-up book,The Mozart Effect For Children, and created related products. (3)Among these are collections of music that he states harness the Mozart effect to enhance "deep rest and rejuvenation", "intelligence and learning", and "creativity and imagination". Campbell defines the term as "an inclusive term signifying the transformational powers of music in health, education, and well-being. (4)It represents the general use of music to reduce stress, depression, or anxiety; induce relaxation or sleep; activate the body; and improve memory or awareness. Innovative and experimental uses of music and sound can improve listening disorders, dyslexia, attention deficit disorder, autism, and other mental and physical disorders and diseases."Which sentence is not relevant to the paragraph and should be deleted? In the late 1960s, Robert Paine conducted landmark studies on diversity in the rocky intertidal zone, comparing the species diversity in control plots with diversity in experimental plots from which he removed the top predator, sea stars. After 5 years, 15 species of intertidal invertebrates lived in the control plots, while the experimental plots were dominated by only two species, one mussel and one barnacle. The process most likely responsible for the loss of species diversity in the experimental plots was:_______.predation.a. parasitism.b. competitive exclusion.c. resource partitioning.d. mutualism. When investors expect interest rates to ____, they may ____.a. increase; sell bonds and buy short-term securitiesb. increase; sell short-term securities and buy bondsc. decrease; sell bonds and buy short-term securitiesd.e. B and C What is the definition of a probe?