Answer:
Properties of Real Numbers ...
Step-by-step explanation:
Commutative Property of Multiplication (Numbers) 2 • 10 = 10 • 2
Associative Property of Addition (Numbers) 5 + (6 + 7) = (5 + 6) + 7
Associative Property of Multiplication (Numbers) 6 • (3 • 2) = (6 • 3) • 2
Additive Identity (Numbers) 6 + 0 = 6
The equation demonstrates the Associative Property of Addition, stating that the grouping of numbers being added does not affect the sum.
Explanation:The property shown in the equation 3 + (5 + 7) = (3 + 5) + 7 is the Associative Property of Addition. According to this property, the grouping of numbers being added does not affect the sum. In other words, when adding three or more numbers, it doesn't matter how they are grouped in parentheses.
In this specific equation, we are adding 5 and 7 first, which gives us 12. Then, adding 3 to 12 gives us a sum of 15. On the other side of the equation, we first add 3 and 5 to get 8, and then add 8 to 7 to get the same sum of 15.
Learn more about Associative Property of Addition here:https://brainly.com/question/34210744
#SPJ2
what relationship is used to find the slope of a line?
Answer:
[tex]m = \frac{y2 - y1}{x2 - x1} [/tex]
Step-by-step explanation:
slope formula
Answer:
[tex]\frac{rise}{run}[/tex]
Step-by-step explanation:
The slope of a line is calculated by dividing the rise by the run.
In the attached example, the rise is 1 and the run is 2, so the slope is 1/2. The rise is the distance the line goes up. The run is the distance the line goes to the right for each (rise) units. The line below goes up 1 and right 2 over and over again.
4) Which equation represents a line parallel to the line y = 5x - 6?
A) y = 2x + 5
(B) y = 5x-2
C) y=-x-5
D) y=-2x-5
Answer:
B
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
y = 5x - 6 is in this form with slope m = 5
• Parallel lines have equal slopes
y = 5x - 2 is the only line with a slope of 5 → B
Parallel lines have the same slope. As the slope of the original line is 5, the line y = 5x - 2 represents a line parallel to the original line y = 5x - 6.
Explanation:When two lines are parallel, their slopes are equal. Using this fact, we can identify which equation represents a line parallel to the line y = 5x - 6 by comparing their slopes. The slope of the given line is 5, as it's the coefficient before x in the equation y = mx + b, where m is the slope.
Looking at the provided options:
A) y = 2x + 5, this is not parallel as the slope is 2, not 5. (B) y = 5x-2, it's parallel as the slope is 5, which matches the slope of the original line.C) y=-x-5, this is not parallel as the slope is -1, not 5. D) y=-2x-5, this is also, not parallel as the slope is -2, not 5. Learn more about Parallel lines here:https://brainly.com/question/29762825
#SPJ3
Solve angle ABC by using the measurements angle ABC = 90°, angle BAC = 40°, and a = 10. Round measures of sides to the
nearest tenth and measures of angles to the nearest degree.
Answer:
∠ACB==50°
b=15.6 units
c=11.9 units
Step-by-step explanation:
step 1
Find the measure of angle BCA
we know that
The sum of the interior angles of a triangle must be equal to 180 degrees
∠ABC+∠BAC+∠ACB=180°
substitute the given values
90°+40°+∠ACB=180°
∠ACB=180°-130°=50°
step 2
Find the measure of side b
Applying the law of sines
a/sin(∠BAC)=b/sin(∠ABC)
substitute the given values
10/sin(40°)=b/sin(90°)
b=10/sin(40°)
b=15.6 units
step 3
Find the measure of side c
Applying the law of sines
c/sin(∠ACB)=a/sin(∠BAC)
substitute the given values
c/sin(50°)=10/sin(40°)
c=[10/sin(40°)]*sin(50°)
c=11.9 units
ANSWER:
C=11.9
ABC=90 deg.
BAC=40 deg.
A=10
Can you help me with this question please? I will reward 20 points for best answer.
* You don't have to solve the problem for me, I just want to know the formula and how to solve it.
"When the fundraiser began, 600 people wanted to purchase the dance troupe’s T-shirts at $12 per T-shirt, but as the group increased the price of their T-shirts, they noticed a fall in the demand. For every $1 increase in price, the demand fell by 50 shirts. The dance troupe’s initial supply was short by 210 T-shirts which corresponded to an initial price of $9.75. For every $1 increase in price, they ordered 40 more T-shirts. Write a system of linear equations to represent both the demand and supply for the T-shirts. Let q represent the quantity of T-shirts and p represent the price."
Answer:
Demand: q = -50p + 1200
Supply: q = 40p
Step-by-step explanation:
First let's define our variables.
q = quantity of T-shirts
p = price
We know that when p = 12, q = 600. When p increases by 1, q decreases by 50. So this is a line with slope -50 that passes through the point (12, 600). Using point-slope form to write the equation:
q - 600 = -50 (p - 12)
Converting to slope-intercept form:
q - 600 = -50p + 600
q = -50p + 1200
Similarly, we know that when p = 9.75, q = 600 - 210 = 390. When p increases by 1, q increases by 40. So this is a line with slope 40 that passes through the point (9.75, 390). Using point-slope form to write the equation:
q - 390 = 40 (p - 9.75)
Converting to slope-intercept form:
q - 390 = 40p - 390
q = 40p
Please help me out!!!
Answer:
8
Step-by-step explanation:
Use the Pythagorean theorem.
a^2 + 6^2 = 10^2
a^2 + 36 = 100
a^2 = 64
a = 8
The equation tan(x- pi/3) is equal to _____.
Answer:
D
Step-by-step explanation:
we can use the formula of tan(A-B) to solve this equation .
The formula is
[tex]tan(A-B)= \frac{tanA-tanB}{1+tanA.tanB}[/tex]
In our question , A is x and B is [tex]\frac{\pi }{3}[/tex]
so when we apply these in the question we get
[tex]tan(x-\frac{\pi }{3} )=\frac{tanx-tan\frac{\pi }{3} }{1+tanx.tan\frac{\pi }{3} }[/tex]
Now since [tex]tan\frac{\pi }{3} = \sqrt{3}[/tex]
we get
[tex]tan(x-\frac{\pi }{3} )=\frac{tanx-\sqrt{3} }{1+\sqrt{3} tanx.} }[/tex]
so correct option is
D
what is the value of x in this figure?
Answer:
D
Step-by-step explanation:
In a 30-60-90 triangle, if the short leg is x, then the long leg is x√3, and the hypotenuse is 2x.
Here, the hypotenuse is 10. So the short leg is:
10 = 2x
x = 5
If the short leg is 5, then the long leg is 5√3.
the equation for the circle below is x ^2 + y^2 = 100. what is the length of the circles radius?
Answer: 10 units.
Step-by-step explanation:
The equation of the circle in Center-radius form is:
[tex](x - h)^2 + (y - k)^2 = r^2[/tex]
Where the center is (h,k) and "r" is the radius.
The equation of the circle given is:
[tex]x ^2 + y^2 = 100[/tex]
You can observe that is written in Center-radius form.
Then, you can identify that:
[tex]r^2=100[/tex]
Knowing this, you need to solve for "r" to find the lenght of the radius.
This is:
[tex]r=\sqrt{100}\\\\r=10[/tex]
Therefore, the lenght of the radius is 10 units.
For retirement, Mike invested $2,500 in an account that pays 6% annual interest, compounded quarterly. Find the value of his investment after 10 years.
$2,035.05
$1,609.05
$4,109.05
$4,535.05
Answer:
$4,535.05
Step-by-step explanation:
Final answer:
The correct option is $4,535.05. To find the value of Mike's investment after 10 years with compound interest, use the formula A = P(1 + r/n)^(nt) with the given values. The final value of Mike's investment is $4,535.05.
Explanation:
Mike invested $2,500 in an account with 6% annual interest compounded quarterly. We can use the compound interest formula: A = P(1 + r/n)^(nt) to calculate the value after 10 years.
Here's the calculation: A = $2,500(1 + 0.06/4)^(4*10) = $4,535.05. Therefore, the value of Mike's investment after 10 years is $4,535.05.
What value of x is in the solution set of 4x - 12 s 16 + 8x?
-10
-9
-8
-7
Answer:
-7
Step-by-step explanation:
4x-12=16+8x
-12-16=8x-4x
-28÷4=x
x=-7
Answer:
-7 :)
Step-by-step explanation:
g(x) = x3 + 6x2 + 12x + 8
Determine the function’s value when x = −1.
Answer:
g(-1) = 1
Step-by-step explanation:
Synthetic division is by far the fastest way to evaluate this function at x = -1. Set up synth. div. as follows:
-1 ) 1 6 12 8
-1 -5 -7
----------------------
1 5 7 1
since the remainder is 1, g(-1) = 1
Which steps will verify that is a rectangle
Answer:
1) Are there 4 right angles? (90° angles)
2) Are there 2 sets of parallel lines?
3) Are there 2 sets of congruent lines?
4) Are there a set of congruent diagonals?
~
A cylinder has a base diameter of 16 inches and a height of 18inches. What is the volume in cubic inches, of the nearest tenths place ?
Answer:
3619.11 cubic inches
Step-by-step explanation:
volume of a cylinder is [tex]V=\pi r^2h[/tex]
diameter is 16 in, so radius (r) is 8 in
plug in values: [tex]V=\pi 8^2(18) = 3619.11[/tex] cubic inches
The volume of a cylinder with a diameter of 16 inches and a height of 18 inches is calculated using the formula V = πr²h, which results in approximately 3617.3 cubic inches when rounded to the nearest tenths place.
To calculate the volume of a cylinder, we use the formula V = πr²h. Given that the diameter of the cylinder is 16 inches, which means its radius (r) is half of that, 8 inches. The height (h) of the cylinder is given as 18 inches. To find the volume, first square the radius, then multiply by π (approximated as 3.14 for this purpose), and then by the height.
So, the calculation looks like this:
Therefore, the volume of the cylinder, rounded to the nearest tenth place, is 3617.3 cubic inches.
A company manufactures its product at a cost of $0.50 per item and sells it for $0.85 per item daily overhead is $600 how many items must be manufactured each day in order for the company to break even
so the company has an overhead of $600, usually that involves premises leasing and industrial equipment for the manufacturing of the product, that's cost. The cost to make each item is 50 cents, so if the company produces "x" items, their cost is 0.5x total.
so our cost equation C(x) = 0.5x + 600 <---- items' cost plus overhead.
the company sells the product for 85 cents, so if they sell "x" items, their total revenue or income will be 0.85x.
so our revenue equation is simply R(x) = 0.85x.
as you already know, the break-even point is when.... well, you break even, no losses but no gains either, how much you take in is the same amount that you shelled out, namely R(x) = C(x).
[tex]\bf \stackrel{R(x)}{0.85x}=\stackrel{C(x)}{0.5x+600}\implies 0.35x=600\implies x=\cfrac{600}{0.35} \\\\\\ x\approx 1714.285714285714\implies \stackrel{\textit{rounded up}}{x=1714}[/tex]
list all the factors of 96
[tex]\text{Hey there!}[/tex]
[tex]\text{1(96) = 96}[/tex]
[tex]\text{2(48) = 96}[/tex]
[tex]\text{4(24) = 96}[/tex]
[tex]\text{6(16) = 96}[/tex]
[tex]\text{8(12) = 96}[/tex]
[tex]\text{The factors of 96 are: 1, 2, 3, 4, 6,8, 12, 16, 24, 32, 48, 96}[/tex]
[tex]\text{Good luck on your assignment and enjoy your day!}[/tex]
~[tex]\frak{LoveYourselfFirst:)}[/tex]
How to solve for y and simplify
-3y = -6/5
-3y(5) = (-6/5)(5)
-15y = -6
y = -6/-15
y = 6/15
y = 2/5
Shawna and her best friend Keisha go shopping. The function p(t) = 3x +2x-4x2+ 21 represents how much money each girl spent based on the number of hours they were shopping. If Shawna and Keisha each go shopping for 2 hours, how much money did they spend together?
Answer:
[tex]\$30[/tex]
Step-by-step explanation:
we have
[tex]p(t)=3x+2x-4x^{2}+21[/tex]
Find the amount of money that each girl spent
For t= 2 hours
[tex]p(2)=3(2)+2(2)-4(2)^{2}+21[/tex]
[tex]p(2)=10-16+21[/tex]
[tex]p(2)=\$15[/tex]
Find the amount of money that they spend together
Multiply by 2 the amount of money that each girl spent
[tex](2)\$15=\$30[/tex]
Shawna and Keisha spent $30 together when each of them went shopping for 2 hours.
It seems there might be a typo in the function p(t) you provided. It should be[tex]\( p(t) = 3t + 2t - 4t^2 + 21 \)[/tex], where t represents the number of hours spent shopping.
To find out how much money Shawna and Keisha spent together when each of them went shopping for 2 hours, we need to evaluate the function p(t) at [tex]\( t = 2 \)[/tex] and then add the results.
Let's plug in t=2 into the function p(t):
[tex]\[ p(2) = 3(2) + 2(2) - 4(2)^2 + 21 \][/tex]
[tex]\[ = 6 + 4 - 16 + 21 \][/tex]
[tex]\[ = 10 - 16 + 21 \][/tex]
[tex]\[ = 15 \][/tex]
Multiply by 2 since $15 is for each girl = 2*$15= $30
What is the answer to 4 plus 4
The answer to 4+4 is 8
4+4=8
find the equation of a line in point slope form with a slope of 3 going through the point (4,-6)?
Answer:
Equation of line: y=3x-18
Step-by-step explanation:
Point: (4,-6) and slope = 3
[tex]y+6=3(x-4)[/tex]
y=3x-18
Answer:
y + 6 = 3(x - 4)
Step-by-step explanation:
The equation of a line in point- slope form is
y - b = m(x - a)
where m is the slope and (a, b) a point on the line
here m = 3 and (a, b) = (4, - 6), hence
y - (- 6) = 3(x - 4), that is
y + 6 = 3(x - 4) ← in point- slope form
Gary is selling paperback and hardcover books at a yard
sale. He charges $2 for each paperback. He earned $10
in sales of hardcover books. He earned $20 selling books
at the yard sale. How many paperbacks did he sell?
Answer:
Gary sold 5 paperback books
Step-by-step explanation:
each book is equal to $2 and $10 were made in Hardcover
So that only leaves us with ten unaccounted dollars
5x=10
Each book or (x) in this case is two dollars
so it will come out to be five books
for any real number b, square root b^2=
Answer:
IbI
Step-by-step explanation:
The square root of [tex]\( b^2 \)[/tex] is [tex]\( b \),[/tex] as the square root of any positive number is its positive root.
The square root of [tex]\( b^2 \)[/tex] can be calculated step by step as follows:
Step 1:
Understand the concept.
The square root of a number is a value that, when multiplied by itself, gives the original number. For any real number [tex]\( b \), \( b^2 \)[/tex] represents [tex]\( b \)[/tex]multiplied by itself.
Step 2:
Apply the square root property.
The square root of [tex]\( b^2 \)[/tex] is [tex]\( b \)[/tex] because [tex]\( b \times b = b^2 \).[/tex] The square root of any positive number is its positive root.
Step 3:
Interpret the result.
Since the square root of [tex]\( b^2 \)[/tex] is [tex]\( b \),[/tex] regardless of the value of \( b \), the square root of [tex]\( b^2 \)[/tex] is simply [tex]\( b \)[/tex] . This property holds true for any real number [tex]\( b \).[/tex]
So, the square root of [tex]\( b^2 \)[/tex] is [tex]\( b \).[/tex]
In the first term, 5 is a . In the second term, (3y + 13) is a . In the third term, -1 is a .
The complete statements of the expression are
In the first term, 5 is a coefficientIn the second term, (3y+ 13) is a factorIn the third term, -1 is a constantHow to complete the statements in the expression
From the question, we have the following parameters that can be used in our computation:
5x - 8(3y + 13) - 1
Consider an expression
Ax + b
Where x is the variable, we have
A is a coefficientA is a factorb is a constantUsing the above as a guide, we have the following:
In the first term, 5 is a coefficient
In the second term, (3y+ 13) is a factor
In the third term, -1 is a constant
Question
Use the given expression to complete the statements.
5x– 8(3y + 13) – 1
In the first term, 5 is a _____
In the second term, (3y+ 13) is a ______
In the third term, -1 is a ______
A triangle has two congruent sides that measure 8.7 cm and 12.3 cm. Which could be the measure of the third side
Answer:
Option C. 15 cm
Step-by-step explanation:
The correct question is
A triangle has two sides that measure 8.7 cm and 12.3 cm. Which could be the measure of the third side?
A. 2.6 cm
B. 3.6 cm
C. 15 cm
D. 21 cm
we know that
The Triangle Inequality Theorem states that the sum of any 2 sides of a triangle must be greater than the measure of the third side
Analyze two cases
Let
x ----> the length of the third side
First case
x+8.7 > 12.3
x>12.3-8.7
x> 3.6 cm
Second case
12.3+8.7 > x
21 > x
Rewrite
x < 21 cm
42 base X + 53 base X = 125 base X
[tex]42_x+53_x=125_x\\4\cdot x^1+2\cdot x^0+5\cdot x^1+3\cdot x^0=1\cdot x^2+2\cdot x^1+5\cdot x^0\\4x+2+5x+3=x^2+2x+5\\x^2-7x=0\\x(x-7)=0\\x=0 \vee x=7[/tex]
There is no numeral system with base 0, so [tex]x=7[/tex].
The volume, V, of a rectangular prism is determined using the formula, where / is the length, w is the width, and his the
height of the prism. Carltren solves for w and writes the equivalent equation w=
Using this formula, what is the width of a rectangular prism that has a volume of 138.24 cubic inches, a height of 9.6 inches,
and a length of 3.2 inches?
Answer:
[tex]\large\boxed{width=4.5\ in}[/tex]
Step-by-step explanation:
[tex]V=lwh\qquad\text{divide both sides by}\ lh\\\\\dfrac{V}{lh}=\dfrac{wlh}{lh}\\\\w=\dfrac{V}{lh}\\\\\text{We have}\\\\V=138.24\ in^3\\h=9.6\ in\\l=3.2\ in\\\\\text{Substitute:}\\\\w=\dfrac{138.24}{(3.2)(9.6)}=\dfrac{138.24}{30.72}=4.5\ in[/tex]
On the April 3 billing date, Michaelle Chappell had a balance due of $ 1495.39 on her credit card. From April 3 through May 2, Michaelle charged an additional $ 305.34 and made a payment of $ 800.
a) Find the finance charge on May 3, using the previous balance method. Assume that the interest rate is 1.8 % per month.
b) Find the new balance on May 3.
a) Finance Charge ≈ $18.01 the interest rate is 1.8 % per month.
b) The finance charge is approximately $18.01, and the new balance is approximately $1018.74.
To calculate the finance charge using the previous balance method, we'll need to follow these steps:
a) Find the finance charge on May 3:
Calculate the average daily balance for the billing period.
Average Daily Balance = (Total of daily balances) / (Number of days in the billing period)
Determine the number of days in the billing period (from April 3 to May 2). There are 30 days in this billing period.
Find the daily balances by considering the transactions during the billing period:
Daily balance from April 3 to May 2 = Previous balance on April 3 + Charges during the period - Payments during the period
Daily balance from April 3 to May 2 = $1495.39 + $305.34 - $800
Calculate the average daily balance:
Average Daily Balance = (Total of daily balances) / (Number of days in the billing period)
Average Daily Balance = [(1495.39 + 305.34 - 800) * 30] / 30
Average Daily Balance = $1000.73
Calculate the finance charge using the previous balance method:
Finance Charge = (Average Daily Balance) * (Monthly Interest Rate)
Finance Charge = $1000.73 * (0.018) [0.018 is the monthly interest rate as a decimal]
Finance Charge ≈ $18.01
b) Find the new balance on May 3:
New Balance = Previous balance + Charges during the period - Payments during the period + Finance Charge
New Balance = $1495.39 + $305.34 - $800 + $18.01
New Balance ≈ $1018.74
So, on May 3, the finance charge is approximately $18.01, and the new balance is approximately $1018.74.
To know more about Finance Charge click here :
https://brainly.com/question/29216351
#SPJ2
Final answer:
The finance charge on May 3 using the previous balance method is $26.92, assuming a monthly interest rate of 1.8%. The new balance on May 3, after adding the finance charge, additional charges, and subtracting the payment, is $1027.65.
Explanation:
To calculate the finance charge using the previous balance method, we take the balance due on the April 3 billing date, which was $1495.39, and apply the monthly interest rate of 1.8%. The charge is computed as follows:
Finance Charge = Previous Balance × Monthly Interest Rate
Finance Charge = $1495.39 × 0.018
Finance Charge = $26.91702
Since financial amounts are usually rounded to cents, the finance charge would be $26.92.
To find the new balance on May 3, we will take the previous balance and add the finance charge and any additional charges, then subtract any payments made. This looks like:
New Balance = Previous Balance + Finance Charge + Additional Charges - Payments
New Balance = $1495.39 + $26.92 + $305.34 - $800
New Balance = $1027.65
Therefore, the new balance on May 3 is $1027.65.
Which values represent the independent variable?
(-2, 4), (3,-2), (1, 0), (5,5)
A. {-2,3, 1,5)
B. (4, -2,0,5)
C. (-2,4,3, -2)
D. (-2,-1,0,5)
someone please help
Solve.
1/3s – 6 < 24
{s | s < 6}
{s | s < 10}
{s | s < 54}
{s | s < 90}
The answer is:
The fourth option,
{s | s <90}
Why?Solving inequalities involves almost the same process of solving equalities for variable isolation.
We are given the inequality:
[tex]\frac{1}{3}s-6<24[/tex]
So, solving we have:
[tex]\frac{1}{3}s-6<24\\\\\frac{1}{3}s-6+6<24+6\\\\\frac{1}{3}s<30\\\\\frac{1}{3}s*3<30*3\\\\s<90[/tex]
Hence, we have that the correct option is the fourth option:
{s | s <90}
Have a nice day!
Answer:
{s | s < 90} D is the correct answer
Step-by-step explanation:
It is.
Use the law of sines to find the value of a.
Law of sines:
What is the best approximation of the value of a?
2.4 cm
2.7 cm
3.0 cm
3.3 cm
Answer:
3.0 cm
Step-by-step explanation:
The Law of Sines states the relationship between the sides and the angles of non-right (oblique) triangles.
In the given triangle,the following relation holds;
[tex]\frac{4.7}{sin(95)}=\frac{a}{sin(40)}\\\\a=\frac{4.7}{sin(95)}*sin(40)\\\\a=3.03[/tex]
Answer:
Option C. a = 3.0 cm
Step-by-step explanation:
We have to find the value of a from the given triangle ABC.
By applying sine rule in ΔABC
[tex]\frac{sin95}{4.7}=\frac{sin40}{a}[/tex]
Now we cross multiply in the given equation.
a(sin95°) = 4.7(sin40°)
a(0.9962) = 4.7(0.6428)
a = [tex]\frac{4.7(0.6428)}{0.9962}[/tex]
a = 3.03 cm ≈ 3.0 cm
Therefore, a = 3.0cm Option C. will be the answer.
factorise 21x^2-14y^2
Answer:
[tex]\large\boxed{21x^4-14y^2=7(3x^4-2y^2)=7(x^2\sqrt3-y\sqrt2)(x^2\sqrt3+y\sqrt2)}[/tex]
Step-by-step explanation:
[tex]21x^4-14y^2=7(3x^4-2y^2)\\\\=7\bigg((\sqrt3)^2x^{2\cdot2}-(\sqrt2)^2y^2\bigg)\qquad\text{use}\ (a^n)^m=a^{nm}\ \text{and}\ (ab)^n=a^nb^n\\\\=7\bigg((x^2\sqrt3)^2-(y\sqrt2)^2\bigg)\qquad\text{use}\ a^2-b^2=(a-b)(a+b)\\\\=7(x^2\sqrt3-y\sqrt2)(x^2\sqrt3+y\sqrt2)[/tex]