2H2 + O2 --> 2H2O
How many grams of oxygen gas are required to produce 90. g of water?

Answers

Answer 1

Answer:

80g

Explanation:

2H2 + O2 —> 2H2O

MM of H2O = (2x1) + 16 = 2 + 16 = 18g/mol

Mass conc. of H2O from the balanced equation = 2 x 18 = 36g

MM of O2 = 16 x 2 = 32g/mol

From the equation,

32g of O2 reacted to produce 36g of H2O.

Therefore Xg of O2 will react to produce 90g of H2O i.e

Xg of O2 = (32x90)/36 = 80g


Related Questions

Which best decribes a similarity between power plants that use water as an energy source

Answers

B.

Both use kinetic energy to produce electricity is a similarity between power plants that use water as an energy source and those that use wind as an energy source.

Explanation:

Kinetic energy Is the intrinsic energy that an object or substance possesses due to its motion. All power plants that use water as an energy source utilize the kinetic energy of water to produce electricity. For example, hydro-power plants use the kinetic energy of water flowing due to gravity. Tidal power plants utilize the kinetic energy of water flowing due to tidal changes and geothermal powerplants utilize the energy of steam-water ejecting underground through fissures.

Learn More:

For more on harnessing the power of water to produce electricity check out;

https://brainly.com/question/2684879

#LearnWithBrainly

You conduct an experiment in which you measure the temperature (T) and volume (V) of a mysterious sphere of gas at several different temperatures.
The sphere can expand or shrink to any volume without changing the pressure of the gas inside.
As a result of your experiment, you find that the volume (V) of the gas divided by its temperature (T) is always equal to 1.75.
What would the volume (V) of the gas be at a temperature of 300K? (assume the unit for volume is liters)
Show your work and answer the question with a clear statement. Show each step of your calculations for full points. After showing your calculations, answer the question with a clear statement.

Answers

Answer:

[tex]\large\boxed{\text{The volume of the gas at a temperature of 300K is 575 liters}}[/tex]

Explanation:

You already know the relation between the volume (V) of the gas and its temperature (T):

           [tex]V/T=1.75[/tex]

The units of V is liters and of T is Kelvin (K).

Thus, the units of the constant 1.75 is liters/K.

Hence, to find the volume (V) of the gas at a temperature (T) of 300 K, you just must solve for V and substitute the temperature to compute V:

Multiply both sides by T:

         [tex]V=1.75T[/tex]

Substitute T with 300K:

          [tex]V=1.75liters/K\times 300K=575liters[/tex]

Match each SI unit to the quantity it measures mass temperature time electric current

Answers

Final answer:

Each SI unit measures a specific fundamental quantity: kilograms (kg) for mass, kelvin (K) for temperature, seconds (s) for time, and amperes (A) for electric current.

Explanation:

The student has asked to match each SI unit to the quantity it measures among mass, temperature, time, and electric current. Here are the matches:

Mass is measured in kilograms (kg).Temperature is measured in kelvin (K).Time is measured in seconds (s).Electric current is measured in amperes (A).

These four units are part of the metric system, which uses powers of 10 to relate quantities over various ranges of nature. All other physical quantities, such as force and charge, are derived from these fundamental units.

chemistry questions?

Answers

Answer:

its to hard

Explanation:

Answer:

its to hard

Explanation:

The data below refer to the following reaction: 2NO(g) + I2(g) 2NOI(g) Concentration (M) [NO] [I2] [NOI] Initial 2.0 4.0 1.0 Equilibrium 1.0 — — Find the concentration of I2 when the system reaches equilibrium.

Answers

Answer:

3.5 mol·L⁻¹  

Explanation:

1. Set up an ICE table.

[tex]\begin{array}{cccccc}\text{2NO} & + & \text{I}_{2} &\, \rightleftharpoons \, & \text{2NOI} & & \\ 2.0 & & 4.0 & & 1.0 & & \\ -2x & & -x & & +2x & & \\ 2.0-2x & & 4.0-x & & 1.0+2x & & \\\end{array}[/tex]

2. Solve for x

The equilibrium concentration of NO is 1.0 mol·L⁻¹, so

       1.0 = 2.0 - 2x

2x + 1.0 = 2.0

        2x =  1.0

          x = 0.5

3. Calculate the equilibrium concentration of I₂

[I₂] = 4.0 - x = 4.0 - 0.5 = 3.5 mol·L⁻¹

The concentration of I₂ at equilibrium is calculated to be 3.5 M by using the initial concentration of NO to determine the stoichiometric change in I₂ concentration based on the reaction 2NO(g) + I₂(g) → 2NOI(g).

To find the concentration of I₂ at equilibrium for the reaction 2NO(g) + I₂(g) → 2NOI(g), we use the initial and equilibrium concentrations of NO to determine the change in concentration of I₂. Given the stoichiometry of the reaction, for every 1 mole decrease in NO, there is a 0.5 mole decrease in I₂. The initial concentration of NO is 2.0 M, and at equilibrium, it is 1.0 M, which means there has been a 1.0 M decrease (2.0 M - 1.0 M). The I₂ concentration at equilibrium can be found by subtracting half of this change from the initial I₂ concentration. Since initially the concentration of I₂ is 4.0 M, the equilibrium concentration is calculated as 4.0 M - (1.0 M / 2) = 3.5 M.

Convert 4.57X-3m to the equivalent length in nanometers

Answers

Answer:

                       4.57 × 10⁶  nanometers  

Explanation:

                    In this problem we are asked to convert between two units i.e. a meter into nanometer. In sciences, the different units are used for a same quantity (achieved by multiplying conversion factors) to get rid of very small values and get a readable and  intelligible values.

For Example:

In given statement the value of small distance is 4.5 × 10⁻³ meter the real number form of this number is 0.00457. Hence, this number can be converted to a very large number by multiplying it with 10⁹ or 1000000000. Hence,

                         4.5 × 10⁻³  × 1.0 × 10⁹  =  4.57 × 10⁶

Or,

                 4.5 × 10⁻³  meters  =  4.57 × 10⁶  nanometers    

Although the quantity is the same for same units but the number has changed.          

what is the molar mass of hydrogen dioxide?

Answers

Answer:                  34.0147 g/mol

Explanation:

Answer:34.02g/mol

Explanation:H2O2

2x1.01 + 2x16 grams/mols

2.02 + 32 =34 .2g/mol

lactic acid, which consists of C, H, and O, has long been thought to be responsible for muscle soreness following strenuous exercise. Determine the empirical formula of lactic acid given that combustion of a 10.0 g sample produces 14.7 g carbon dioxide and 6.00 g water. If the molar mass of lactic acid is 90g/mol, what is the molecular formula

Answers

Final answer:

To find the empirical formula of lactic acid, we calculate the moles of C, H, and O from the products of combustion and determine the simplest whole number ratio. The molecular formula is then found by establishing the integer multiple of the empirical formula that matches the given molar mass of lactic acid.

Explanation:

To determine the empirical formula of lactic acid from the given combustion data, we use the mass of products to find the quantity of each element in the original compound. Starting with carbon, 14.7 g of CO2 is produced from the combustion of lactic acid. Using the molar mass of CO2 (44 g/mol), we calculate that there are 0.334 moles of carbon in the 10.0 g of lactic acid.

For hydrogen, 6.00 g of water means there are 0.333 moles of water, which equates to 0.667 moles of hydrogen, since each water molecule contains two hydrogen atoms. Oxygen is a bit more complicated because it's part of both CO2 and H2O. After accounting for the oxygen in CO2 and H2O, we calculate the remainder to be part of the lactic acid. The molar ratios of C:H:O give us the empirical formula, which can be determined by dividing each mole quantity by the smallest amount to find the simplest whole number ratio.

Given a molar mass of 90 g/mol for lactic acid, we can use the empirical formula mass to determine the number of empirical units in the molecular formula. The molecular formula can be found by multiplying the empirical formula by an integer factor that converts the empirical formula mass to the actual molar mass.

What is the molality of a solution made by dissolving 137.9g of sucrose in 414.1g of water? The density of the solution is 1.104g/ml.

Answers

Answer:

Molality of solution = 0.973 m

Explanation:

Molality : It is defined as the moles of the solute per Kg mass of solvent.It is not temperature dependent.

Solute = Substance which is present in less quantity in the solution is called the solute. Here , Sucrose is the solute.

Solvent = Substance which is present in more quantity is the solvent. Here water is solvent.

[tex]Molality=\frac{moles\ of\ solute}{mass\ of\ solvent}[/tex]

Density = It is defined as the mass per unit volume.

[tex]Density=\frac{mass}{Volume}[/tex]

Mass of Solute = 137.9 g

[tex]Moles=\frac{mass}{Molar\ mass}[/tex]

Molar mass of sucrose =

[tex]C_{12}H_{22}O_{11}[/tex]= 12(mass of C)+22(mass of H)+11(mass of O)

= 12(12)+22(1)+11(16)

= 144+22+176

= 342 g/mol

[tex]Moles=\frac{mass}{Molar\ mass}[/tex]

[tex]Moles=\frac{137.9}{342}[/tex]

[tex]Moles=0.403[/tex]

Moles = 0.403 moles

Mass of Solvent = 414.1 g  (water)

[tex]Molality=\frac{moles\ of\ solute}{mass\ of\ solvent(g)}(1000)[/tex]

[tex]Molality =\frac{0.403}{414.1}\times 1000[/tex]

Molality = 0.973 m

assuming oxygen behaves like an ideal gas, what volume in liters would 3.50 moles of oxygen gas occupy at STP?

Answers

Answer:

78.4L

Explanation:

1 mole of any gas is found to occupy 22.4L at stp. This also indicates that 1mole of oxygen occupy 22.4L.

Therefore,

3.50 moles of oxygen Will occupy = 3.5x22.4 = 78.4L

Final answer:

At Standard Temperature and Pressure (STP), one mole of an ideal gas occupies around 22.4 liters. Accordingly, 3.50 moles of oxygen would occupy a volume of 78.4 liters.

Explanation:

The question is inquiring about the volume an ideal gas, in this case oxygen, would occupy at Standard Temperature and Pressure (STP) given its quantity in moles. It's well established in chemistry that at STP, which is defined as a temperature of 273.15 K and a pressure of 1 atm, one mole of any ideal gas occupies approximately 22.4 liters. This is often known as the standard molar volume. Therefore, to calculate the volume that 3.50 moles of oxygen would occupy, multiply the number of moles (3.50) by the volume of one mole (22.4 L/mole) which results in a volume of 78.4 liters.

Learn more about Standard Molar Volume here:

https://brainly.com/question/2416240

#SPJ3

The table below shows properties of the element gold (Au).

Property Gold's
Characteristics
Color yellow
Density 19.32 g/mL
Electronegativity 2.54
Ionization Potential 9.225
Boiling Point 2807°C
Melting Point 1064.58°C


A physical property of gold is _______.
A.
density of 19.32 g/mL
B.
melting point of 1064.58°C
C.
boiling point of 2807°C
D.
all of these

Answers

Answer:

D = All of these

Explanation:

Physical properties:

Physical properties involve those properties which includes the state of matter.

For example,

Melting point, boiling point, freezing point, density, smell, color

In given example,

The density of gold is 19.32 g/mL

Melting point is 1064.58°C

Boiling point is 2807°C

All these are physical properties.

Chemical properties:

Chemical properties includes those properties which involves the chemical reaction

For example.

Flammability, reactivity, acidity, heat of combustion, toxicity etc.

The reaction of gold with oxygen:

Chemical equation,

3Au + O₂  →  Au₂O₃

An automobile gasoline tank holds 23 kg of gasoline. When the gasoline burns, 86 kg of oxygen is consumed, and carbon dioxide and water are produced.

Answers

Question:

What is the total combined mass of carbon dioxide and water that is produced?

Answer:

109 kg

Explanation:

When 23 kg of gasoline burns by consuming 86 kg oxygen, they produce carbon dioxide and water. To find the total combined mass of carbon dioxide and water, we will use mass conversation law.

According to mass conversation law, the mass of the product is equal to the mass of reagent.

Mass of reagent = Mass of product

In this reaction,

Gasoline + O2 → CO2 + H2O

23 kg + 86 kg → ?

23 kg + 86 kg =  109 kg

Combined mass of carbon dioxide and water will be 109 kg.

Final answer:

To estimate the CO₂ produced from 40 L of gasoline, we multiply the mass of the gasoline (calculated using the density of 0.75 kg/L) by three, resulting in approximately 90 kg of CO₂, which is comparable to human mass.

Explanation:

Based on the provided combustion reaction 2 C8H18 + 25 O2 → 16 CO₂ + 18 H₂O + energy, we can calculate the mass of CO₂ produced from consuming a 40 L tank of gasoline. First, we determine the mass of gasoline using the given density (0.75 kg/L), which is 40 L × 0.75 kg/L = 30 kg of gasoline. Now, using the factor-of-three ratio of CO₂ mass to input fuel mass, we multiply the gasoline mass by three to estimate the CO₂ mass produced. Hence, 30 kg × 3 = 90 kg of CO₂ are produced after burning 40 L of gasoline. If we compare this to the typical human mass, which is roughly between 50-100 kg, one can see that the mass of CO₂ produced is remarkably similar to or even exceeds the mass of an average human.

A rectangular field measures 6.0 m by 8.0 m. What is the area of the field in square centimeters (cm 2 )? Use the formula: Area = length × width.

A: 4.8 × 10 4 cm 2


B: 4.8 × 10 5 cm 2


C: 4.8 × 10 3 cm 2



Answers

Final answer:

The area of a rectangular field measuring 6.0 m by 8.0 m is 480,000 cm², which is 4.8 × 10⁵ cm² in scientific notation. So the correct option is B.

Explanation:

To calculate the area of a rectangular field in square centimeters, you would use the formula Area = length × width. First, we must ensure that both dimensions are in the same units, so we convert the dimensions from meters to centimeters. There are 100 centimeters in a meter, so:

6.0 m = 600 cm8.0 m = 800 cm

Next, we calculate the area using the converted measurements:

Area = 600 cm × 800 cm = 480,000 cm²

Therefore, the area of the field in square centimeters is 480,000 cm², which can be expressed in scientific notation as 4.8 × 105 cm2, making option B the correct answer.

Please help me!!!!
What is the equilibrium constant for the reaction
SO2(g) + NO2(g) = S03(g) + NO(g)?

Answers

Answer:

[tex]\frac{[SO3][NO]}{[SO2][NO2]}[/tex]

Option D is the right answer.

Explanation:

When the rate of the forward reaction equals the rate of the reverse reaction, the chemical reaction is in equilibrium. The equilibrium constant (Kc) is used to determine whether reaction is in the equilibrium or not.

Example:

aA+bB⇋cC+dD      

Equilibrium constant (Kc)  for this reaction will be

Kc = [tex]\frac{[C]^c [D]^d}{[A]^a [B]^b}[/tex]

In this equation, [A] and [B] are equilibrium reactant concentrations. [C] and [D] are equilibrium product concentration and a, b, c, and d are the stoichiometric coefficients of the balanced reaction.

In our reaction,

SO2(g) + NO2(g) = S03(g) + NO(g)

Kc or Keq will be

Keq = [tex]\frac{[SO3][NO]}{[SO2][NO2]}[/tex]

This equation is balanced without any stoichiometric coefficients.

Must be 5 paragraphs please have everything down

Answers

There is much more to living than having a heartbeat. There is much more to life than breathing and the blood flowing through your veins. But not everyone knows this; not everyone sees it this way. You may be living, but are you alive? You are so lucky to be living on this earth, and there are so many people who do not have the clarity of vision to realize that. A human needs the same basic need that every other living form on the planet needs, nourishment, environment and reproduction. A human that can't survive in the natural world must construct an artificial world in which to survive. Humans are multicellular. Multicellular organisms can be much larger and more complex. This is because the cells of the organism have specialised into many different types of cells such as nerve cells, blood cells, muscle cells all performing different functions.

An organism can be associated with complete living things such as animals, plants, fungi or microorganisms commonly defined as, any complex thing with properties normally associated with living things. Fortunately, biologists have developed a list of eight characteristics shared by all living things. Characteristics are traits or qualities. Those characteristics are cellular organization, reproduction, metabolism, homeostasis, heredity, response to stimuli, growth and development, and adaptation through evolution. Physical growth is an increase in size. Development is growth in function and capability. Both processes highly depend on genetic, nutritional, and environmental factors. As children develop physiologically and emotionally, it is useful to define certain age-based groups.

Trees in a forest, fish in a river, horseflies on a farm, lemurs in the jungle, reeds in a pond, worms in the soil — all these plants and animals are made of the building blocks we call cells. Like these examples, many living things consist of vast numbers of cells working in concert with one another. Other forms of life, however, are made of only a single cell, such as the many species of bacteria and protozoa. Cells, whether living on their own or as part of a multicellular organism, are usually too small to be seen without a light microscope. The cell is the structural and functional unit of all living organisms, and is sometimes called the "building block of life." Some organisms, such as bacteria, are unicellular, consisting of a single cell.
Cells are of two types: eukaryotic, which contain a nucleus, and prokaryotic, which do not. Prokaryotes are single-celled organisms, while eukaryotes can be either single-celled or multicellular.

Core organelles are found in virtually all eukaryotic cells. They carry out essential functions that are necessary for the survival of cells – harvesting energy, making new proteins, getting rid of waste and so on. Core components include the nucleus, mitochondria, endoplasmic reticulum and several others. All preforming there own individual and unique tasks. With the most important part of an animal cell are the nucleus vacuoles, and mitochondria all of which are enclosed within the cell membrane and immersed in cytoplasm.

REVIEW QUESTIONS:
I know a decent amount before we started writing this task, the steps I took to create this final product what that of combining all of my knowledge of cells and explaining to the best of my abilities. I could of done this assessment better by going into more detail with every sub category of the question asked. I think I did really well in describing all of the questions asked.


Which half reaction correctly describes the oxidation that is taking place? Z n (s) right arrow upper Z n superscript 2 plus (a q) plus e superscript minus. Upper Z n (s) right arrow upper Z n superscript 2 plus (a q) plus 2 e superscript minus. Upper C u superscript 2 plus (a q) plus 2 e superscript minus right arrow upper C u (s). Upper C u superscript 2 plus (a q) plus e superscript minus right arrow upper C u (s).

Answers

The  half reaction that correctly describes the oxidation that is taking place in electrochemical cell containing Zn-Cu couple .

Explanation::

Electrochemical cell

It is the cell that converts the chemical energy in to electric energy .The reaction staking place in it are spontaneous that is occur by itself .

In it the oxidation and reduction both occur .

The one with high electrode potential looses electrons that is it shows : oxidation

Th one with lower electrode potential gains electrons that is  it shows :Reduction .

In this galvanic cell (Zn-Cu couple )

The oxidation occurs at anode that is :

Zn-2e---->Zn²⁺

The reduction occurs at cathode :

Cu²⁺  + 2e--->Cu

Answer:

The correct answer is option B ;)

Explanation:

NEEED HELP ASAP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
NEED HELP ASAP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1
The biosphere includes all of the fish that are in the ocean. Even though the ocean is part of the hydroshere.


True


False

Answers

True because the biosphere contains

life such as animals and plants Hint the word “bio”

!!!HELP ASAP!!! According to Le Châtelier's principle, how will a pressure increase affect a
system that includes matter in the gas phase and another phase?
A. The system will remain unchanged.
B. The total number of gas molecules will decrease.
C. The equilibrium reactions will slow down.
D. The total number of gas molecules will increase.

Answers

Answer: b. the total number of gas molecules will decrease.

Explanation:

According to principle, how will a pressure increase affect a system that includes matter in the gas phase and another phase that means the total number of gas molecules will decrease.

What is Principle?

This principle shows that when we alter a system in equilibrium, it will seek to acquire a new state that cancels out this disturbance. Thus, there is a shift in equilibrium, that is, a search for a new equilibrium situation, favoring one of the reaction directions.

principle concerns the response of systems in equilibrium when subjected to a perturbation. Simply put, the principle says that a system in equilibrium when disturbed tends to adjust itself in order to remove the disturbance and restore equilibrium.

See more about principle at brainly.com/question/2001993

#SPJ2

What type of reaction is 2NaN3(s) +2Na(s) + 3N2(g)

Answers

The answer is thermal decomposition

Final answer:

The reaction is a decomposition reaction where sodium azide decomposes into sodium and nitrogen gas.

Explanation:

The type of reaction represented is a decomposition reaction. This is a chemical reaction where a single compound breaks down into two or more elements or simpler compounds. Sodium azide (NaN3) decomposes into sodium metal (Na) and nitrogen gas (N2). One mole of sodium azide (NaN3) has a molar mass of approximately 65 g/mol.

Therefore, if 23.4 g of sodium azide is used, the moles of nitrogen gas produced can be calculated using the molar mass and the stoichiometry of the reaction. At standard temperature and pressure (STP), one mole of any gas occupies approximately 22.4 liters. By using the stoichiometry of the balanced equation, one can determine the volume of nitrogen gas produced at STP from a given amount of sodium azide.

Why is it easier for liquid water to evaporate on mars than on earth

Answers

Answer:

Because there is a lesser if not absent atmospheric pressure on Mars relative to earth

Explanation:

On earth the liquid water will experience atmospheric downward pressure due to the earth's atmosphere which will require it to evaporate at a vapour pressure that is greater than the atmospheric pressure. This is not the case for Mars which lacks an atmosphere due to its weak gravitional pull, water will therefore evaporate easily on mars than on earth

Which of the following is the name of the process scientists use to gain
knowledge about the physical world?

Answers

Answer:

The Scientific Method.

When a liquid evaporates - does it take energy from its surroundings or does it give off energy to its surroundings?

Answers

Answer:

yes it doese

Explanation:

what mineral property is illustrated by this photograph?​

Answers

Hardness, lustre, and colour.

These Rocks shown in photographs are made of different types of minerals which have properties as follows:

The color of the rock is grey, brown and yellow after it is ground into a powder its color is streak.

The lustre of the rock tells how shiny the rocks are.

Other properties include hardness, texture, shape, and size.

I need help a b c d

Answers

Answer:

                   Option-A (XY)

Explanation:

                    In this problem one should focus on the number of valence electrons present in each atom. Remember that in lewis structure the dots on an atom always show the valence shell electrons. In given statement;

The,

                   X has one valence electron. It means that it can loose this single electron to attain the noble gas configuration i.e.

                                          X°  →  X⁺  +  1e⁻

Similarly,

                 Y have seven valence shell electrons. Therefore, in order to complete the octet this atom will gain one electron i.e.

                                          ::Y:°  +  1 e⁻  →  Y⁻

Hence, we can conclude that X got stabilized by losing one electron and Y got stabilized by gaining one electron therefore, only one of each is required to form an ionic compound i.e.

                                  X⁺  +  Y⁻  →  XY

You want to test how the mass of a reactant affects the speed of a reaction.
Which of the following is an example of a controlled experiment to test this?

Answers

Final answer:

To test how mass of a reactant affects speed of a reaction, set up an experiment using a consistent reactant, like hydrochloric acid, and alter the mass of another reactant, like sodium bicarbonate. By keeping all other variables constant, you can measure how the varying mass affects the speed of the reaction indicated by when bubbling ceases.

Explanation:

To test how the mass of a reactant affects the speed of a reaction, an experiment could be set up in the following way: Obtain a substance that reacts with a certain reactant. This could be an acid-base reaction or a redox reaction. Let's say the reaction is between hydrochloric acid (HCl) and sodium bicarbonate (NaHCO3) which produces carbon dioxide gas.

Maintain controlled conditions: all other variables such as temperature, pressure, and volume of HCl should be kept constant. The only changing factor would be the mass of the sodium bicarbonate.

Measure the time it takes for the reaction to complete for various masses of NaHCO3. You do this by observing when the bubbling (indicative of CO2 production) stops. You would likely see that increasing the mass of the reactant (NaHCO3) increases the speed of the reaction.

Learn more about Effect of Reactant Mass on Reaction Speed here:

https://brainly.com/question/14680580

#SPJ12

Final answer:

The correct option is D.

The best experimental design for testing how the mass of a reactant affects the speed of reaction would be 'The mass of one reactant at a time is varied, and the time it takes the reaction to finish is measured', while maintaining other factors like temperature and concentration of other reactants constant. This method is known as the method of initial rates.

Explanation:

The best example of a controlled experiment to test how the mass of a reactant affects the speed of a chemical reaction would be option D: The mass of one reactant at a time is varied, and the time it takes the reaction to finish is measured. This method is known as the method of initial rates, often employed in chemistry to measure reaction rates using different initial reactant concentrations. It is crucial to vary only one aspect while keeping others constant (temperature, concentration of other reactants etc.) to accurately determine the effect one factor has on the reaction speed.

The temperature of the reactants and concentration of the reactants also significantly impacts the rate of a chemical reaction. Higher the temperature, or the concentration, faster the reactions typically occur. However, these other factors need to be controlled in this experiment to singularly test the effect of mass of one reactant.

Learn more about Chemical Reaction Speed here:

https://brainly.com/question/20435712

#SPJ6

The complete question is given below:

You want to test how the mass of a reactant affects the speed of a reaction.

Which of the following is an example of a controlled experiment to test this?

A. The mass of one reactant and the temperature of the reaction mixture are increased until the reaction is finished.

B. The mass of all the reactants is varied, and the time it takes the reaction to finish is measured.

C. The mass of all of the reactants is kept the same, and the mixtures are allowed to react for different lengths of time.

D. The mass of one reactant at a time is varied, and the time it takes the reaction to finish is measured.


Igneous rocks can be formed from magma that solidifies deep beneath the Earth’s surface. When the magma solidifies slowly, it results in rocks with large crystals and a coarse texture. When it cools quickly, it creates more smooth and shiny rock with fine grains.

Sedimentary rocks are made from the weathering and erosion of pre-existing rocks. If the sediment is buried deeply, it becomes compacted and cemented. Sedimentary rocks also form from organic material and often contain fossils.

Metamorphic rock is a result of a transformation of a pre-existing rock subjected to high heat and pressure. This causes the minerals in the rock to become unstable so they either reorient themselves into layers, giving them a striped look or recrystallize into larger crystals.
Based on the reading, how would you classify this rock?


A) Sedimentary rock because of its layers.
B) Metamorphic rock because of its stripes.
C) Igneous rock because it has large crystals.
D) Sedimentary because of the presence of fossils.

Answers

Final answer:

A rock with a striped pattern is classified as a metamorphic rock because its characteristics indicate that it has been transformed under high heat and pressure, realigning its mineral structure.

Explanation:

When classifying a rock with stripes, it suggests a transformation under high heat and pressure which typically results in the reorientation of minerals within the rock. This description fits the formation process of metamorphic rocks. Therefore, any rock with a striped pattern is likely a metamorphic rock, as igneous rocks form from the cooling of magma or lava and would not have stripes, and sedimentary rocks are characterized by layers formed from deposited sediment and can sometimes contain fossils.

Final answer:

The rock in question should be classified as metamorphic due to its striped look, which is a result of high heat and pressure reorienting minerals within the rock, characteristic of metamorphism.

Explanation:

You would classify this rock as metamorphic because it has a striped look, which is indicative of the foliation process that occurs when a pre-existing rock is transformed due to high heat and pressure. This reorientation of minerals within the rock often gives it a layered or striped appearance, a characteristic feature of metamorphic rocks. Sedimentary rocks, while they also have layers, are formed from particles of pre-existing rocks or organic material that have been compacted and cemented together.

These can sometimes contain fossils, but it is the presence of distinct stripes from the reorientation of minerals that suggests a metamorphic origin in the case you've mentioned. Igneous rocks with large crystals are formed from magma that solidifies slowly beneath the Earth's surface, but these do not have the striped appearance associated with metamorphic rocks.

what is the mola dirt of a salt solution made by dissolving 250.0 grams of NaCl in 775 mL of solution?

Answers

Answer:

                     Molarity  =  5.52 mol.L⁻¹

Explanation:

             Molarity is the amount of solute dissolved per unit volume of solution. It is expressed as,

                         Molarity  =  Moles / Volume of Solution    ----- (1)

Data Given;

                  Mass  =  250.0 g

                  Volume  =  775 mL  =  0.775 L

First calculate Moles for given mass as,

                   Moles  =  Mass / M.mass

                   Moles  =  250.0 g / 58.44 g.mol⁻¹

                   Moles  =  4.277 mol

Now, putting value of Moles and Volume in eq. 1,

                        Molarity  =  4.277 mol ÷ 0.775 L

                        Molarity  =  5.52 mol.L⁻¹

ANSWER ASAP REALLY NEED IT RN

Answers

Answer:

1. b

2. a

3. d

4. d

Explanation:

A reaction is shown below. Reaction : 2 upper H subscript 2 upper O subscript 2 (l) right arrow with upper M n upper O subscript 2 (s) above it, 2 upper H subscript 2 upper O (l) plus upper O subscript 2 (g). What can be concluded about this reaction?
A homogeneous catalyst is being used in the reaction.
A heterogeneous catalyst is being used in the reaction.
A catalyst is not being used in this reaction.
An enzyme is being used in this reaction.

Answers

Answer:

heterogeneous catalyst

Explanation:

The reaction equation:

                        MnO₂[tex]_{s}[/tex]

         H₂O₂[tex]_{l}[/tex]         →             2H₂[tex]_{g}[/tex]     +   2O₂[tex]_{g}[/tex]

A catalyst is any species that speeds up the rate of chemical reactions. It does not get used up in the reaction but helps facilitate the rate by which two species combines.

In this reaction, MnO₂ is the catalyst used in this reaction.

The catalyst still remains at the end of the reaction.

  Now, we know that from the subscript, the reactant is in liquid phase, the products are in gaseous phase and the catalyst is in solid phase.

A catalyst in a reaction in a different phase with the reactants is called a heterogeneous catalyst.

Answer:

The answer is B. A heterogeneous catalyst is being used in the reaction.

Explanation:

Directions: Consider a 2-kg bowling ball sits on top of a building that is 40 meters tall. It falls to the ground. Think about the amounts of potential and kinetic energy the bowling ball has:
• as sits on top of a building that is 40 meters tall.
• as it is half way through a fall off a building that is 40 meters tall and travelling 19.8 meters per second.
• as it is just about to hit the ground from a fall off a building that is 40 meters tall and travelling 28 meters per second.

1. Does the bowling ball have more potential energy or kinetic energy as it sit on top of the building? Why?

Answers

Answer:

Potential

Explanation:

The higher the elevation is the higher the potential energy levels are also the ball is not moving so it is not using kinetic energy.

Other Questions
When I decided that I would volunteer for the park clean-up project, I went about trying to convince my friends to do the same. I had not expected to meet with such resistance. My friends thought I was nuts to spend a Saturday cleaning up other people's trash. So, I went alone. Never in my wildest dreams did I realize what a rewarding experience this would be.Which BEST describes the author's purpose for his reflective essay?A.to describe a meaningful experienceB.to persuade readers to volunteerC.to explain a decision-making processD.to describe an opinion about volunteering Atomic hydrogen produces well-known series of spectral lines in several regions of the electromagnetic spectrum. Each series fits the Rydberg equation with its own particular n value. Calculate the value of n (by trial and error if necessary) that would produce a series of lines in which: (a) The highest energy line has a wavelength of 3282 nm. (b) The lowest energy line has a wavelength of 7460 nm. Thrasymachus thought that "might makes right" because _______. a. justice is defined by whoever has the most power b. people need to have a powerful ruler c. ethics is generally relative to the observer d. strength is always a good thing Compare and contrast General and Classic Strain Theory Sara got a 70%, 64%, and 83% on her first three tests. What must she get on her 4th test if she wants to get a final average of 75%?Show your work, please. Choose two selections from this unit:The Ramayana by Valmiki"My Father Writes to My Mother" by Assia Djebar"Another Evening at the Club" by Alifa Rifaat"The Happy Man" by Naguib Mahfouz "The Swimming Contest" by Benjamin Tammuz"The Womens Baths" by Ulfat al-IdlibiLike the Sun by R. K. Narayan What did you learn about the role of women in the societies described in your selections from this unit? In two well developed paragraphs that begin with TAG (title, author, genre), describe how the women from two of the selections listed above cope with the conflicts they encounter, citing textual evidence to support your claims. An important tool in archeological research is radiocarbon dating, developed by the American chemist Willard F. Libby.3 This is a means of determining the age of certain wood and plant remains, and hence of animal or human bones or artifacts found buried at the same levels. Radiocarbon dating is based on the fact that some wood or plant remains contain residual amounts of carbon-14, a radioactive isotope of carbon. This isotope is accumulated during the lifetime of the plant and begins to decay at its death. Since the half-life of carbon-14 is long (approximately 5730 years),4 measurable amounts of carbon-14 remain after many thousands of years. If even a tiny fraction of the original amount of carbon-14 is still present, then by appropriate laboratory measurements the proportion of the original amount of carbon-14 that remains can be accurately determined. In other words, if Q(t) is the amount of carbon-14 at time t and Q0 is the original amount, then the ratio Q(t)/Q0 can be determined, as long as this quantity is not too small. Present measurement techniques permit the use of this method for time periods of 50,000 years or more. HELP ASAP. PLEASE RN. TY.In tug of war, when one team moves toward the other, what can be said about the forces? Fifty-five and one-half percent of shareholders in a fast food chain are under 40. If 91,00 shareholders, how many are 40 and over? Compare the impacts these two organizations have had on the federal bureaucracy. How has each helped shape the activities and identity of the executive branch? Which do you think has had a greater impact on the bureaucracy? Provide evidence to support your opinion. Your answer should be polynomial standard form polynomial in standard form (c+8)8c+2)= Examine this information carefully. Angles Sides30 degrees 4 cm60 degrees 3 cm90 degrees 5 cmWhat kind of triangle would these measurements make?A. acute scalene triangleB. right scalene triangleC. right isosceles triangleD. acute isosceles triangle Barker (2014) describes ________ as a nation's system of programs, benefits, and services that help people meet those social, economic, educational, and health needs that are fundamental to the maintenance of society. This feature on Earth forms underground. This one seen here was formed from water flowing through layers of limestone rock underground. What is this feature called? A)cavern B)canyon C)pothole D)underground spring QUESTION 3What steps are involved in creating hydroelectric power?Water falls through a channel to a reservoir where it turns a turbine to generate electricity.Water flows into the reservoir where the generator is located. The generator turns, which causes the turbine to transform electricity.Water flows past a paddle that turns a generator attached to a turbine, and this creates electricity.Water falls from a reservoir through a channel to a turbine. The water turns the turbines, which allows the generator to make electricity. Consider this function for cell duplication where the cells duplicate every minute.f(x) = 75(2)xDetermine what each parameter in the function represents.A)The 75 is the initial number of cells, and the 2 indicates that the number of cells doubles every minute.B)The 75 is the initial number of cells, and the 2 indicates that the number of cells increases by 2 every minute.C)The 75 is the number of cells at 1 minute, and the 2 indicates that the number of cells doubles every minute.D)The 75 is the number of cells at 1 minute, and the 2 indicates that the number of cells increases by 2 every minute. Which phrase is the best description of an artificial satelliteA. A rocket that has a very small amount of thrust B. A spacecraft that orbits a celestial body C. A telescope that allows you to see distant planetsD. A spacecraft that can carry people to the Moon Here is another Animation question, I really need help! ASAP!!After learning about the various niche areas of animation, like Claymation, puppetry, or stop-motion, which do you feel that you would be best suited for based on your skills and interests? Explain. What is 7/`15 divided by 3/4? It takes you 3/8 of an hour to walk 9/10 of a mile.How far can you walk in 1 hour?a. 0.42b. 0.3375c. 2.4 d. 5.25